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IRREDUCIBLE IDENTITIES OF n-ALGEBRAS

M. ROTKIEWICZ

Abstract. One can generalize the notion of n-Lie algebra (in the sense of Fil-
lipov) and define ”weak n-Lie algebra” to be an anticommutative n-ary algebra
(A, [·, . . . , ·]) such that the (n − 1)-ary bracket [·, . . . , ·]a = [·, . . . , ·, a] is an (n − 1)-
Lie bracket on A for all a in A. It is well known that every n-Lie algebra is weak
n-Lie algebra. Under some additional assumptions these notions coincide. We show
that it is not the case in general. By means of representation theory of symmetric
groups a full description of n-bracket multilinear identities of degree 2 that can be
satisfied by an anticommutative n-ary algebra is obtained. This is a solution to
the conjectures proposed by M. Bremner. These methods allow us to prove that
the dual representation of an n-Lie algebra is in fact a representation in the sense
of Kasymov. We also consider the generalizations of n-Lie algebra proposed by
A. Vinogradov, M. Vinogradov and Gautheron. Some correlation between these
generalizations can be easily seen. We also describe the kernel of the expansion
map.

Introduction

Following Fillipov [F], an n-Lie algebra is a vector space A together with an
antisymmetric n-argument operation [·, . . . , ·] : A × . . . × A → A which satisfies
the general Jacobi identity (GJI)

[[u1, u2, . . . , un], un+1, un+2, . . . , u2n−1] =

=
n∑

i=1

(−1)i+1[[ui, un+1, un+2, . . . , u2n−1], u1, u2, . . . , ûi, . . . , un]. (GJI)

The following are the standard examples of n-Lie algebras.

Example 1. [F] Let V be an (n + 1)-dimensional oriented Euclidian space.
Define

[v1, . . . , vn] = v1 × . . .× vn,

where v1 × . . .× vn is the vector product of the vectors vi ∈ V . Then (V, [·, . . . , ·])
is an n-Lie algebra.
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Example 2. Let C∞(Rk) be the algebra of C∞-functions on Rk and
x1, . . . , xk be the coordinates on Rk. Define

[f1, . . . , fn] = det
(
∂fi

∂xj

)
i,j=1,...,n

, n ≤ k .(1)

Then (C∞(Rk), [·, . . . , ·]) is an n-Lie algebra.

The bracket (1) satisfies also the following Leibniz rule

[f · g, f2, f3, . . . , fn] = f · [g, f2, f3, . . . , fn] + g · [f, f2, f3, . . . , fn]. (LR)

It gives rise to a definition of Nambu-Poisson manifold to be a pair (C∞(M),
[·, . . . , ·]), whereM is a differential manifold and the antisymmetric bracket [·, . . . , ·]
satisfies the general Jacobi identity (GJI) and the Leibniz rule (LR). The bracket
of the form (1) was considered by Nambu [N]. Then Takhtajan [T] discovered the
identity (GJI) in its physical context in generalized formulations of Hamiltonian
Mechanics.

These structures are widely studied. It is easily seen that every Nambu-Poisson
structure on M is given by an n-vector field V on M :

[f1, . . . , fn] (p) = Vp(f1, . . . , fn) for p ∈M.

It is known (see [AG], [Ga2]) that if Vp 6= 0 and V defines an n-Nambu-Poisson
structure then V , in some neighbourhood of p, can be given in the form

V = ∂x1 ∧ ∂x2 ∧ . . . ∧ ∂xn

for some coordinate functions x1, . . . , xn.

Several authors have been investigating the properties of n-Lie algebras. It
was already noticed in [F] that each n-Lie algebra A gives a family of (n− 1)-Lie
algebras with the operations defined by

[x1, . . . , xn−1]a = [x1, . . . , xn−1, a], a ∈ A.

An anticommutative n-algebra A such that (A, [·, . . . , ·]a) is an (n− 1)-Lie algebra
for all a in A we call a weak n-Lie algebra.

Under some additional assumptions the notions of “weak n-Lie algebra” and
“n-Lie algebra” coincide. For example, it is proved in [GM] that every weak
n-algebra bracket on C∞(M) satisfying the Leibniz rule (LR) must automatically
satisfy the Jacobi identity (GJI). Thus it gives rise to a Nambu-Poisson manifold.

We will prove that in general a weak n-Lie algebra needs not to be an n-Lie
algebra. Our example will use the concept of a free n-Lie algebra based on the
construction of a free n-algebra given in [HW].

By an identity in some n-algebra we mean an n-ary polynomial which is zero
when the variables of the polynomial are replaced by elements of the n-algebra.
Sometimes, to emphasize a point, we will put “= 0” on the right of the polynomial
identity. It is well known that, in case of the characteristic of the ground field
equal to zero, every identity is equivalent to the linearizations of its homogenous
components. For example, we get the linearization of the identity

[[x1, x2, x3], x1, x1] + [[x1, x2, x3], x2, x3](2)
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if we put x1 = a1 + a2 + a3, x2 = b1 + b2, x3 = c1 + c2 and omit the monomials
in which some of the variables a1, a2, a3, b1, b2, c1, c2 occur at least twice. The
obtained identity is equivalent to (2) in case charA 6= 2, 3. From now on we assume
the ground field to be of characteristic zero.

We will consider multilinear n-ary identities in which each term involves two
bracket operations. Our approach is a well-known one, treating the space freely
spanned by two-bracket terms as an Sd-module (d = 2n−1) acting on the variables
of the terms.This gives us a

(
2n−1

n

)
-dimensional S2n−1-module, denoted as P 2

n ,

considered in [B]. We will give a list of all simple components of P 2
n together

with a list of the corresponding identities. Note that if A is an anticommutative
n-algebra satisfying a multilinear identity I in variables u1, . . . , ud and σ ∈ Sd then
A satisfies also the identity Iσ coming from I by interchanging ui with uσ(i). Thus
if we treat I as an element of P 2

n then A satisfies also every identity which belongs
to the Sd -submodule generated by I. Because, as we will see, the decomposition
of P 2

n into simple submodules is homogeneous we can work out what exactly the
submodule generated by I is. The decomposition of P 2

n is the thesis of conjecture
3 from [B] which generalizes the conjecture 1 of [B]. This reduces the study of
two-bracket identities to a finite set of identities.

Some authors have introduced some generalizations of the n-algebras by im-
posing on the n-ary skew-symmetric operation ω of an n-algebra (A,ω) some
additional conditions. For example Gautheron ([Ga]) considered the following
identity

[ωa1,...,an−k
, ω]RN = 0(3)

where [·, ·]RN is the Richardson-Nijenhuis bracket of skew-symmetric maps and
ωa1,...,an−k

(x1, . . . , xk) = ω(x1, . . . , xk, a1, . . . , an−k). Also in [V] the following
identity

[ωa1,...,ak
, ωb1,...,bl

]RN = 0

is under consideration.
Gautheron has shown that the condition (3) for odd k is equivalent to the

identity∑
σ

sgn(σ)[a1, a2, . . . , an−k−1, xσ1 , xσ2 , . . . , xσk
, [xσk+1 , . . . , xσn+k

]] = 0

for all a1, a2, . . . , an−k−1 in A, where the summation is taken over all permutations
of x’s. We will achieve description of theses identities in term of submodules
of P 2

n . From this one can easily see some correlations between some of these
generalizations.

Kasymov in [K] considered representations of an n-Lie algebra. Since we have
a simple method for proving (or disproving) an identity in some special n-algebras
(e.g. n-Lie algebras) we are able to show that the notion of dual representation in
the theory of n-Lie algebras makes sense.

At the end we will also give the description of the kernel of the S2n−1-map from
P 2

n to CS2n−1, called expansion map (see [B]), moving a basis vector[[x1, . . . , xn],
xn+1, . . . , x2n−1] to



26 M. ROTKIEWICZ

∑
σ∈S{1,2,...,n}

τ∈S{n+1,n+2,...,2n−1}
i=1...n

Aστ

where

Aστ = sgn(στ)(−1)i+1xτ(n+1)xτ(n+2) . . . xτ(n+i−1)·xσ1 . . . xσn·xτ(n+i) . . . xτ(2n−1).

Free n-Lie algebra

We fix an integer n ≥ 1.
Let T be a rooted tree. The set of its nodes splits up into two sets: the set of

leaves denoted by L(T ) and the set of interior nodes.

Definition. An N -labelled tree is a pair (T, φ), where T is a rooted tree in
which every interior node has exactly n children and φ : L(T ) → N is a function
to a set N .

Figure 1

Note that the children of a node in an N -labelled tree are ordered so that
the trees in the Figure 1. are different. Every N -labelled tree gives rise to a
pure bracket in variables xi, i ∈ N , e.g. [[x1, [x2, x1, x3], x1], [x5, x3, x2], x2] is
represented by the tree in Figure 2.

Consider the space W with the basis consisting of all N -labelled trees, where
N is a fixed set. We have an n-ary bracket on W in the obvious way. The space
W is graded

W =
∞⊕

k=0

Wk ,

where Wk is a subspace spanned by all N -labelled trees with k interior nodes.
Note that

[Wa1 ,Wa2 , . . . ,Wan ] ⊆Wa1+...+an+1 .

Moreover, we can decompose W2 = W
′
2 ⊕ W

′′
2 where W

′
2 is a subspace of W2

spanned by all N -labelled trees with 2 interior nodes and φ being injective. Here
W

′′
2 is spanned by those N -labelled trees with φ not being injective.
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Figure 2

Let SN = S|N | be the full permutation group of the set N. Then SN acts on
W by changing the labelling of the base vectors. Moreover, the action of SN is

homogeneous, i.e. SNWk ⊆Wk and SNW
′
2 ⊆W ′

2, SNW
′′
2 ⊆W ′′

2 .
Consider the expressions

A(u1, u2, . . . , un;σ) = [u1, u2, . . . , un] − sgn(σ) [uσ(1), uσ(2), . . . , uσ(n)], σ ∈ SN

J(u1, u2, . . . , u2n−1) = [[u1, u2, . . . , un], un+1, un+2, . . . , u2n−1] −

−
n∑

i=1

(−1)i+1[[ui, un+1, un+2, . . . , u2n−1], u1, u2, . . . , ûi, . . . , un],(4)

WJ(u1, u2, . . . , u2n−1) = J(u1, u2, . . . , u2n−1) +
+J(u1, u2, . . . , un−1, u2n−1, un+1, un+2, . . . , u2n−2, un).(5)

The meaning of ui’s will be explained later.
For the following paragraph take the expression WJ(x1, x2, . . . , x2n−1) = 0 as

an identity in variables x1, x2, . . . , x2n−1 in an n-algebra. Note that an anticom-

mutative n-algebra A is a weak n-Lie algebra if and only if A satisfies this identity.
We will refer to this identity by WJI (weak Jacobi identity).

Let us take an N -labelled tree T and its interior node v and let u1, u2, . . . , un

be the subtrees rooted at the children of v. Let σ ∈ Sn and T σ be the tree
obtained from T by replacing each ui with uσ(i). Set VA to be a subspace of W
spanned by elements of the form T − sgn(σ)T σ. Take again an N -labelled tree
T and its interior nodes x and y with y being the left-most child of x. Let un+1,
un+2, . . . , u2n−1 be the trees whose roots are other children of x and u1, u2, . . . , un

be those whose roots are the children of y (See Figure 3). Let Tα1,...,α2n−1 , αi’s in
{1, 2, . . . , 2n− 1}, be the tree obtained from T by replacing ui with uαi . Consider
the subspace VJ spanned by the elements of the form

T −
n∑

i=1

(−1)i+1T i,n+1,n+2,...,2n−1,1,2,...,ı̂,...,n
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Figure 3

In the same way we can define the subspace VWJ spanned by elements of the form
associated with the weak Jacobi identity (WJI).

It is clear from the definitions of VJ and VWJ that [VJ ,W, . . . ,W ] ⊆ VJ and
[VWJ ,W, . . . ,W ] ⊆ VWJ . Hence there is a well defined bracket [·, . . . , · ] on the
spaces AJ = W/VJ and AWJ = W/VWJ inherited from W . Thus AJ and AWJ

are respectively n-Lie and weak n-Lie algebras. We will call them free n-Lie and
free weak n-Lie algebras with the set of generators equal to N .

Note that the elements which span VJ and VWJ are homogeneous, i.e. belong
to a single component Wk. This applies also to the components W

′
2 and W

′′
2 . This

implies that the algebras AJ and AWJ are graded algebras with respect to the
bracket operation.

The Construction of the example

In this section we construct an example of weak n-Lie algebra which does not
satisfies (GJI).

Take N = {1, 2, . . . , 2n− 1} and write

AWJ = A0 ⊕A1 ⊕A
′
2 ⊕A

′′
2 ⊕

∞⊕
k=3

Ak,

where AWJ is the free weak n-Lie algebra with the set of generators equal to N
and Ai = Wi/Wi ∩ VWJ , A′

2 = W ′
2/W

′
2 ∩ VWJ and A

′′
2 = W ′′

2 /W
′′
2 ∩ VWJ . Note

the dimensions:

A0 = span {x1, . . . , x2n−1}, dim A0 = 2n− 1,
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A1 = span{[xα1 , xα2 , . . . , xαn ]: 1 ≤ α1 < . . . < αn ≤ 2n−1}, dim A1 =
(

2n− 1
n

)
.

We can view A′
2 as an S2n−1-module isomorphic to P 2

n/M where P 2
n is a

(
2n−1

n

)
dimensional module spanned by the elements

[[xα1 , xα2 , . . . , xαn ], xαn+1 , xαn+2 , . . . , xα2n−1 ], 1 ≤ α1 < . . . < αn ≤ 2n− 1,
1 ≤ αn+1 < . . . < α2n−1 ≤ 2n− 1

andM is the S2n−1-module generatedby the identity expressionWJ(x1, . . . ,x2n−1).

Remark. We also deal with elements of the form [[xα1 , xα2 , . . . , xαn ], xαn+1 ,

xαn+2 , . . . , xα2n−1 ] as elements of P 2
n , where the condition on αi’s is weakened to

{α1, α2, . . . , α2n−1} = {1, . . . , 2n − 1}. Such an element is, of course, equal to
one of the base vectors up to a sign. Then any n-bracket multilinear identity in
x1, . . . , x2n−1 in which each term involves two n-bracket operations can be seen as
an element of P 2

n , so saying that an identity generates a submodule of P 2
n makes

sense.

The conjecture in the paper [B] says that

P 2
n '

n⊕
i=1

[2n−i12i−1],

where [2i1j ] is the module associated with the Young diagram of the partition

2i+ j = 2 + 2 + . . .+ 2︸ ︷︷ ︸
i times

+ 1 + . . .+ 1︸ ︷︷ ︸
j times

.

For n = 3, 4 the author [B] gives a full list of modules and associated identities they
are generated by. For example, for n = 3 the weak Jacobi identity generates the
4 dimensional module [2 13] while the Jacobi identity – the 5 dimensional module
[213] ⊕ [15].

Our example of the weak n-Lie algebra is as follows. Take B = A0 ⊕A1 ⊕A
′
2.

This is a quotient algebra of the weak free n-Lie algebraA described above. We will
show that it does not satisfy the Jacobi identity. Note that [[A1, B,B, . . . , B], B,
B, . . . , B] = 0 and [A′

2, B,B, . . . , B] = 0. Moreover, [[xi, B,B, . . . , B], xi, B,
B, . . . , B]] = 0. Because the Jacobi identity is multilinear, it is enough to verify

it on the basis of A0. Now it is enough to show that the element J(x1, . . . , x2n−1)
does not belong to M, a submodule of P 2

n . This is equivalent to say that the mod-
ules generated by the weak Jacobi identity and the Jacobi identity differ. This is
the case for n = 3, 4, according to the result of [B]. The general case is the subject
of the next section. Thus B is a weak n-Lie algebra which is not an n-Lie algebra.
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The main theorem

In this section we will prove the following theorem:

Theorem 1. Identifying n-algebra identities involving two brackets with ele-
ments of P 2

n we have the following:

1. P 2
n ' ⊕n

i=1 [2n−i12i−1].
2. The Engel’s identity

[[b, a1, a2, . . . , an−1], a1, a2, . . . , an−1],(6)

(more precise, its linearization) generates the submodule [2n−11].
3. The identity for [2n−i12i−1] is∑

σ∈
S({1,...,2i−1})

sgn(σ) [[xσ(1), xσ(2), . . . , xσ(i)]Y , xσ(i+1),... , xσ(2i−1)]Y ,(7)

where [u1, u2, . . . , ui]Y = [u1, u2, . . . , ui, y1, y2, . . . , yn−i],

4. The Jacobi identity generates the submodule
n⊕

i=2

[2n−i12i−1].

5. The weak Jacobi identity generates the submodule
n−1⊕
i=2

[2n−i12i−1].

We precede the proof with some notation and preliminary results.
Let λ = (λ1, λ2, . . . , λk) be a partition of d, λ1 ≥ λ2 ≥ . . . ≥ λk, λ1 +
+λ2 + . . . + λk = d. To a partition λ we can associate a labelled Young dia-
gram Yλ. For example, for the partition λ = (5, 3, 3, 1, 1, 1) of d = 14 we can
associate

Yλ =

1 2 3 4 5
6 7 8
9 10 11
12
13
14

It has λi boxes in the ith row, the rows of boxes lined up to the left. The labelling
of boxes is injective.

For a given numbered Young diagram consider the subgroups of Sd :

Pλ = {g ∈ Sd : g preserves rows of λ},
Qλ = {g ∈ Sd : g preserves columns of λ}
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and the elements

aλ =
∑
g∈P

g ∈ CSd,

bλ =
∑
g∈Q

sgn(g) g ∈ CSd.

The conjugate partition λ′ to the partition λ is defined by interchanging rows and
columns in the Young diagram, i.e. reflecting the diagram in the 45◦ line.

Let us quote some basic results on representations of Sd.

Theorem 2. [FH] The module Vλ = CSdaλbλ is irreducible. Every finite
dimensional irreducible representation of Sd can be obtained in this way for a
unique partition. Changing the labelling of the Young diagram leads, of course, to
equivalent representation.

Theorem 3. [FH] Vλ′ ' Vλ ⊗ U, where U is the one dimensional alternating
representation, i.e. g · u = sgn(g)u, for g ∈ Sd, u ∈ U.

Theorem 4. [FH, Exercise 4.48]

CSdbλ '
⊕

τ

Kτ ′,λ′ Vτ ,

where Kµ,τ are so called Kostka’s numbers and can be defined combinatorially as
the number of ways to fill the boxes of the Young diagram for µ with τ1 of 1′s, τ2
of 2′s, up to τk of k′s, in such a way that the entries in each row are non-decreasing,
and those in each column are strictly increasing.

Define now a linear function

φ : P 2
n → CS2n−1,

φ([[xi1 , xi2 , . . . , xin ], xj1 ,... , xjn−1 ]) =
∑
σ∈Sn

τ∈Sn−1

sgn(σ) sgn(τ)µσ,τ ,(8)

where [[xi1 , xi2 , . . . , xin ], xj1 ,... , xjn−1 ] is the standard basis vector of P 2
n and

µσ,τ ∈ S2n−1, µσ,τ =
(

1 . . . n n+ 1 ... 2n− 1
iσ(1) . . . iσ(n) jτ(1) . . . jτ(n−1)

)
σ ∈ S{1,...,n}, τ ∈ S{1,...,n−1}.

Lemma 1. The following holds:
(i) φ is injective,
(ii) φ is a homomorphism of S2n−1-modules, where S2n−1 acts by re-numbering, i.e.
for g ∈ S2n−1

g · [[xi1 , xi2 , . . . , xin ], xj1 ,... , xjn−1 ]=[[xg(i1), xg(i2), . . . , xg(in)], xg(j1), . . . , xg(jn−1)].

Proof. Note that the definition of φ in (8) is still correct if we drop the assumption
that ik’s and jk’s are in the increasing order.
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(i) Follows from the fact that for different basis vectors of P 2
n , x and x′, we have

supp(φ(x)) ∩ supp(φ(x′)) = ∅.
(ii) This is obvious. One may identify µ ∈ S2n−1with the element xµ1xµ2 · · ·xµ(2n−1)

in the free associative algebra. Then S2n−1 acts by permuting the generators
x1, . . . , x2n−1.

�

We will write the same symbol for a partition and for the unique (up to iso-
morphism) irreducible S2n−1-module associated with this partition (e.g. [2n−11]).
We hope it will not lead to misunderstanding.

Next step is to see that φ(P 2
n) = CS2n−1bλ, where λ = (2, 2, . . . , 2︸ ︷︷ ︸

n−1

, 1) = [2n−11],

and

Yλ =

1 n+ 1
2 n+ 2
...

...
n− 1 2n− 1
n

It is true, since P 2
n as an S2n−1-module is generated by t = [[x1, x2, . . . , xn],

xn+1,... , x2n−1] and we have φ(t) = bλ.

Now we are ready to prove the main theorem.

Proof of Theorem 1. 1. We need to prove that CS2n−1bλ ' ⊕n
i=1 [2n−i12i−1],

where λ = [2n−11].
Introduce ([FH]) the standard ordering on the set of partitions of a given number
d :

τ > µ iff the first non vanishing τi − µi is greater than 0 .

It is easy to see that Kµτ = 0 for µ < τ and

Kτ ′,(n,n−1) 6= 0 iff τ = (2n−i12i−1) for some i = 1, 2, . . . , n.

For such a τ we have Kτ ′,(n,n−1) = 1. This, in view of Theorem 4, justifies the
decomposition CS2n−1bλ '⊕n

i=1 [2n−i12i−1].
2. The Engel’s identity (6) has the following multilinear form

E
def
=

∑
ε:{1,...,n−1}

→{0,1}

[[x0, xi1 , xi2 , . . . , xin−1 ], xj1 ,... , xjn−1 ] ,

where ik = k + ε(k) (n − 1), jk = k + (1 − ε(k)) (n − 1), k = 1, 2, . . . , n − 1, so
ik ≡ jk (modn− 1), ik 6= jk.
Note that

φ(E) = aλbλ ,
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where

Yλ =

1 n

2 n+ 1
...

...
n− 1 2n− 2

0

Indeed, since

φ([[x0, xi1 , xi2 , . . . , xin−1 ], xj1 ,... , xjn−1 ]) =

(
0 1 . . . n . . . 2n− 2
0 i1 . . . j1 . . . jn−1

)
· bλ

and

(
0 1 . . . n . . . 2n− 2
0 i1 . . . j1 . . . jn−1

)
is a generic element of supp aλ = Pλ,

we get (2).

3. For i = 1 this reduces to the statement (2).
Let I be an ordered set of symbols

I = {s1, s2, . . . , s2i−1, t1, t2, . . . , tn−i, t
′
1, t

′
2, . . . , t

′
n−i}.

The linearization of the identity (7) has the following form

T ′ =
∑

σ∈S({s1,s2,...,s2i−1}),
ε:{1,...,n−i}→{0,1}

Bσ, ε(9)

where

Bσ, ε = sgn(σ) [[xσ(s1), . . . , xσ(si), y1,..., yn−i], xσ(si+1), . . . , xσ(s2i−1), y
′
1,..., y

′
n−i] ,

and

yk =

{
xtk

if ε(k) = 0
xt′k if ε(k) = 1

and y′k =

{
xtk

if ε(k) = 1
xt′k if ε(k) = 0

.

Consider the group S(I) = S2n−1 ' S({1, . . . , 2n − 1}), where the pairing is as
follows

I ↔ {1, . . . , 2n− 1},
sk ↔ k, for k = 1, . . . , i
tk ↔ i+ k, for k = 1, . . . , n− i

si+k ↔ n+ k, for k = 1, . . . , i− 1
t′k ↔ n+ k + i− 1, for k = 1, . . . , n− i .
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Let

λ = [2n−i12i−1], Yλ =

t1 t′1
t2 t

′
2

...
...

tn−i t′n−i

s1
...

s2i−1

with the above identifications. Consider the map defined by:

ψ : CS2n−1 → P 2
n ,

ψ(xi1xi2 . . . xi2n−1) = [[xi1 , xi2 , . . . , xin ], xin+1 , . . . , xi2n−1 ].(10)

This is obviously homomorphism of left CS2n−1-modules. One can verify that
ψ(aλbλ) is a non-zero scalar multiple of T ′. (Notice that some terms in ψ(aλbλ)
reduces, since [[· · · ], · · · ] is anticommutative on the last n − 1 positions.) Now
ψ([2n−i12i−1]) must be an irreducible module, i.e. the module generated by T ′.

4. We will prove this in two steps.
(a) For each i = 2, . . . , n, [2n−i12i−1] ⊆ CS2n−1J, where J = J(x1, x2,... , x2n−1)

as in (4).
By (3) it remains to prove that (GJI) implies the identity (7).
Note that it is enough to show this for i = n, as if (A, [ ·, . . . , ·]) satisfies (GJI),
then (A, [ ·, . . . , ·]y) so. Let H = Sn× Sn−1⊂ S2n−1. For h ∈ H we have

h · J = sgn(h)J .

Hence,∑
g∈S2n−1

sgn(g) g · J = |H |·
∑

σ1<...<σn
σn+1<...<σ2n−1

sgn(σ) [[xσ1 , . . . , xσn ], xσn+1 , . . . , xσ2n−1 ] ,

what ends the proof of (a).

(b) J ∈ [2n−11]⊥ =
⊕n

i=2 [2n−i12i−1] .
If it isn’t true, we get [2n−11] ⊆ CS2n−1J by the simplicity of [2n−11] and
part 1. By (a) we get CS2n−1J = P 2

n . This implies that every n-Lie algebra
satisfies

[[u1, u2, . . . , un], un+1, un+2, . . . , u2n−1] = 0,

thus a contradiction.
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5. Part 4. shows that the identity (GJI) is equivalent to the system of n− 1
identities (7). Hence the weak Jacobi identity, as being the general Jacobi iden-
tity for the bracket [·, . . . , ·]a, is equivalent to the system of n − 2 identities (7)
for the bracket [·, . . . , ·]a, so to the identities (7) for the bracket [·, . . . , ·] and
i = 2, 3, . . . , n− 1. This ends the proof of the theorem. �

Dual Representation

Following Kasymov [K], a representation of an n-Lie algebra is a linear map

ρ :
n−1∧

A −→ End(V ),

where V is a vector space and ρ satisfies the following two conditions

[ρ(a), ρ(b)] =
n−1∑
i=1

ρ(a1, . . . , [ai, b1, . . . , bn−1], . . . , an−1)(11)

ρ([a1, . . . , an], b2, . . . , bn−1) =

=
n∑

i=1

(−1)i+1ρ(ai, b2, . . . , bn−1)ρ(a1, . . . , âi, . . . , an)(12)

where we used the notation (x) = (x1, . . . , xn−1).
One can check that the adjoint map ρ = ad, ad(a1, . . . , an−1)(a0) = [a0, a1, a2, . . .
. . . , an−1] is a representation of an n-Lie algebra.

There is a Loday algebra structure on
∧n−1

A (see [Ga2]) given by

{(a), (b)} =
n−1∑
i=1

a1 ∧ . . . ∧ [ai, b1, . . . , bn−1] ∧ . . . ∧ an−1 .

This means {·, ·} is not necessary skew-symmetric but satisfies {Z, {X,Y }} =
= {{Z,X}, Y } − {{Z, Y }, X}.
The condition (11) says that ρ is a representation of Loday algebra (

∧n−1A, {·, ·})
or equivalently a representation of Lie algebra (A,{·,·})

〈{x,y}+{y,x}〉 , where 〈{x, y}+{y, x}〉
stands for the two-sided ideal in Loday algebra generated by elements of the form
{x, y} + {y, x}.

Let ρ :
∧n−1

A −→ End(V ) be a representation of an n-Lie algebra A. Then ρ
induces a map on dual space V ∗ given by −ρT , where T stands for the transposition
map, which certainly satisfies the condition (11). We will show that the condition
(12) is also satisfied.

Theorem 5. If ρ is a representation of an n-Lie algebra then the same is true
for the dual −ρT .

Proof. We need to show that

−ρT ([a1, . . . , an], b2, . . . , bn−1]) =
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=
n∑

i=1

(−1)i+1ρT (ai, b2, . . . , bn−1)ρT (a1, . . . , âi, . . . , an) .

Let L and R be, respectively, the left and the right side of the above equation. We
have

RT =
n∑

i=1

(−1)i+1ρ(a1, . . . , âi, . . . , an)ρ(ai, b2, . . . , bn−1) =

=
n∑

i=1

(−1)i+1ρ(ai, b2, . . . , bn−1)ρ(a1, . . . , âi, . . . , an) +

+
n∑

i=1

(−1)i+1[ρ(a1, . . . , âi, . . . , an), ρ(ai, b2, . . . , bn−1)] =

= ρ([a1, . . . , an], b2, . . . , bn−1) +

+2
∑
s<t

(−1)s+tρ([as, at, b2, . . . , bn−1], a1, . . . , âs, . . . , ât, . . . , an) .

We are left to show that

ρ([a1, . . . , an], b2, . . . , bn−1])+

+
∑
s<t

(−1)s+tρ([as, at, b2, . . . , bn−1], a1, . . . , âs, . . . , ât, . . . , an) = 0 . (T0)

First we will show (T0) for the adjoint representation i.e. we will prove that
the following identity holds in any n-Lie algebra:

[c, [a1, . . . , an], b2, . . . , bn−1]+

+
∑
s<t

(−1)s+t[c, [as, at, b2, . . . , bn−1], a1, . . . , âs, . . . , ât, . . . , an] = 0. (T)

Let U be an n-ary identity of degree 2. If necessary, we can linearize U and treat
U as an element in P 2

n . Denote MU for the S2n−1-submodule of P 2
n generated by

the identity U. Then MU is a direct sum of its simple components. Thanks to
homogenity of P 2

n we know exactly what identities generate these simple compo-
nents. Thus U is equivalent to the system of some identities of the form specified
in Theorem 1.

As we know Pn
2
∼= ME⊕MJ , whereME

∼= [2n−11] is associated with the Engel’s
identity

[[b, a1, . . . , an−1], a1, . . . , an−1]] = 0 (E)
and MJ

∼= ⊕n
i=2 [2n−i12i−1] is associated with (GJI).

We want to show that (GJI) implies (T) or equivalently that MT ⊆ MJ . It
is enough to show that ME 6⊆ MT or equivalently that (T) does not implies the
Engel’s identity. We will be done if we find an n-algebra which satisfies (T) but
not (E).
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We take the n-algebra Vn from Example 1 with the bracket being the vector
product. Let {e1, . . . , en+1} be the basis of Vn. Taking b = en and ai = ei for
i = 1, 2, . . . , n− 1 in (E) we see that Vn does not satisfies the Engel’s identity.

Next we will show that Vn satisfies (T). It is easy to see that T is antisymmetric
with respect to ai’s and also to bi’s. Thus it is enough to check (T) in case ai’s being
different basis vectors and the same for bi’s. Take bi = ei for i = 2, . . . , n−1. Then
[c, [as, at, b2, . . . , bn−1], a1, . . . , âs, . . . , ât, . . . , an] 6= 0 only if [a1, . . . , an] = ±e1 or
±en or ±en+1. From symmetry it is enough to verify only one of these cases. Let
for example ai = ei for i = 1, 2, . . . , n. Then the only non zero summand in the
sum of (T) occurs when s = 1 and t = n. But

[c, [e1, en, e2, . . . , en−1], e2, . . . , en−1] = −[c, en+1, e2, . . . , en−1].

We continue the proof of (T0) for any ρ.
Consider the vector space Q with basis given by

ρ([xi1 , . . . , xin ], xin+1 , . . . , xi2n−2 ), i1 < . . . < in, in+1 < . . . < i2n−2,

{i1, . . . , i2n−2} = {1, . . . , 2n− 2},
ρ(xj1 , . . . , xjn−1)ρ(xjn , . . . , xj2n−2), j1 < . . . < jn−1, jn < . . . < j2n−2,

{j1, . . . , j2n−2} = {1, . . . , 2n− 2} .
Notice that dim Q =

(
2n−2

n

)
+
(
2n−2
n−1

)
=
(
2n−1

n

)
= dim Pn

2 . Moreover, there is an
isomorphism Φx0 : Q −→ Pn

2 defined on basis by

ρ([xi1 , . . . , xin ], xin+1 , . . . , xi2n−2)
Φx07−→ [x0, [xi1 , . . . , xin ], , xin+1 , . . . , xi2n−2 ],

ρ(xj1 , . . . , xjn−1)ρ(xjn , . . . , xj2n−2) 7−→ [[x0, xj1 , . . . , xjn−1 ], xjn , . . . , xj2n−2 ] .

We have already shown that the Jacobi identity implies the identity Φx0(T0) = Tx0 .
Hence

Tx0 =
∑

σ∈S2n−1

uσJ
σ,

for some scalars uσ, where Jσ is the Jacobi identity with variables permuted ac-
cordingly to σ. It is easy to see that Jσ = Φx0(Jτ

1 ) or Φx0(Jτ
2 ) for some τ ∈ S2n−2,

where J1 and J2 are the identities (11) i (12) with possibly permuted variables.
Hence

T0 =
∑

τ

aτ J
τ
1 +

∑
τ

bτ J
τ
2 ,

with scalars aτ , bτ . This completes our proof. �

Other Identities

Let us recall the definition of the Richardson-Nijenhuis bracket. Let A be a vector
space and let AltnA be the set of all skew-symmetric n-linear maps from A to A.
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Definition. We fix a map L ∈ AltlA and define

L[·] : AltnA→ Altn+l−1A,

L[N ](a1, a2, . . . , al+n−1) =
∑

|I| = n, |J| = l − 1,

I ∪ J = {1, . . . , l + n − 1}

(−1)(I,J)L(N(aI), aJ ),

where aI = (ai1 , . . . , aik
) for I = {i1 < i2 < . . . < ik}. The summation is over

all ordered subsets I ⊂ {1, . . . , n+ l − 1} and (−1)(I,J) stands for the sign of the
permutation (1, . . . , n+ l − 1) 7→ (i1, . . . , in, j1, . . . , jl−1).

Definition. Let L (respectively N) be a skew-symmetric l-linear (n-linear)
map from A to A. The Richardson-Nijenhuis bracket [[L,N ]]RN ∈ Altl+n−1 is
defined by

[[L,N ]]RN = (−1)(l−1)(n−1)L[N ] −N [L].

Definition. If t ∈ CS2n−1, we will sometimes write t = ψ(t) for the element in
P 2

n represented by t. For an element t ∈ P 2
n and σ ∈ S2n−1 one can define tσ ∈ P 2

n

by
t
σ = ψ(tbcσ),

where
b =

∑
g∈S{1,...,n}

sgn(g)g, c =
∑

g∈S{n+1,...,2n−1}
sgn(g)g.(13)

We extend the definition of tσ by linearity for all σ ∈ CS2n−1. For example

[[x, y], z]1+(23) = [[x, y], z] − [[y, x], z] + [[x, z], y] − [[y, z], x] =
= 2[[x, y], z] + [[x, z], y] − [[y, z], x].

Notice that this definition is correct, i.e. tσ does not depend on the choice of the
representant t ∈ CS2n−1 but on t̄.

The following lemma will be useful in determining the simple modules generated
by an identity.

Lemma 2. Let

du =

 ∑
g∈S{1,...,u,n+1,...,n+u−1}

sgn(g)g

 ·
n∏

i=u+1

(1 + (i, n+ i− 1)),

du ∈ CS2n−1, u ∈ {1, . . . , n}, b, c as in (13). Then
1. The element φ(du) = dubc generates the module isomorphic to [2n−u12u−1].
2. The module generated by an identity T ∈ P 2

n contains the module [2n−u12u−1]
if and only if T du 6= 0.

Proof.
1. In fact du = T and φ(T ) = dubc, where T is the linearization of the identity
(7). Since φ is a monomorphism, the thesis follows from Theorem 1 (3).
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2. We already know that

CS2n−1φ(P 2
n) =

n⊕
u=1

CS2n−1dubc .

For non-isomorphic simple modules M,N ⊂ CS2n−1 we haveM·N={mn|m∈M ,
n ∈ N} = 0. Write

φ(T ) =
n∑

u=1

tudubc

for some tu ∈ CS2n−1. Notice du · du is a scalar multiple of du, so

dibcdjbc = 0

for i 6= j and is nonzero for i = j (apply trace map). Hence

[2n−u12u−1] ⊂MT ⇐⇒ tudubc 6= 0 ⇐⇒ tudubcdubc 6= 0,

because CS2n−1dubc = CS2n−1tudubc, so

CS2n−1tudubcdubc = CS2n−1dubcdubc = CS2n−1dubc.

The last condition is equivalent to

φ(T )dubc 6= 0 ⇐⇒ tbcdubc 6= 0,

where t = T ⇐⇒ ψ(tbcdu) 6= 0 (since ψ is iso on the image of φ) ⇐⇒ T du 6= 0.
�

Let (A,ω) be an n-algebra with ω being skew-symmetric. Now we are going to
deal with n-algebras (see [Ga]) satisfying identity

[ωa1,...,an−k
, ω]RN = 0.(14)

Let us denote T = ωa1,...,an−k
[ω] and U = ω[ωa1,...,an−k

], T, U ∈ P 2
n .

Theorem 6.

1. The S2n−1-module generated by T is equal to one generated by U . They are
isomorphic to ⊕n

i=k [2n−i12i−1].
2. The S2n−1-module generated by [ωa1,...,an−k

, ω], i.e. by (−1)(k−1)(n−1)T − U ,
is isomorphic to ⊕n

i=k [2n−i12i−1] if k is even and to ⊕n
i=k+1 [2n−i12i−1] if k is

odd.

Proof.
1. Expanding (14) we have

(−1)(k−1)(n−1)T − U =

=(−1)(k−1)(n−1)
∑

sgn(x . . .)ω(ω(x1, . . . , xn), xn+1, . . . , xn+k−1, a1, a2, . . . , an−k)

−
∑

sgn(x . . .)ω(ω(x1, . . . , xk, a1, . . . , an−k), xk+1, . . . , xn+k−1),
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where the above sums range over
(
n+k−1

n

)
and

(
n+k−1

k

)
permutations in x’s.

Consider the Young diagram for λu = [2n−u12u−1]:

1 n+ u

2 n+ u+ 1
...

...
n− u 2n− 1

n− u+ 1
...

n+ u− 1

Let us think of x’s as of the numbers 1, 2, . . . , n + u − 1 and a’s as of the
numbers n+ u, . . . , 2n− 1.

As we have already seen (see proof of Theorem 1 part 3.), ψ(aλubλu) ∈ P 2
n is

non-zero, hence it must generate the module [2n−u12u−1]. Moreover ψ(bλk
) is T

up to a nonzero scalar. By Theorem 4 we have:

CS2n−1bλk
=

n⊕
u=k

CS2n−1aλubλu .

By applying ψ we get the thesis for the identity (T).
The proof for U is the same. All we only change is considering x’s as the

numbers 1, 2, . . . , k, n + 1, n + 2, . . ., i.e. the positions which x’s occupy. Once
again by considering the Young diagram with the numbers 1, 2, . . . , k, n + 1,
n+2, . . . in the first column we will achieve ψ(bλ) is U up to a sign and the same
decomposition to the simple modules is valid.

2. Consider the permutation changing a’s with some of x’s, moving the element
ω(ω(x1, . . . , xn), xn+1, . . . , xn+k−1, a1, a2, . . . , an−k) to the element
ω(ω(x1, . . . , xk, a1, . . . , an−k), xn+1, . . . , xn+k−1, xk+1, . . . , xn+k−1). The sign of
this permutation in x’s is (−1)(n−k)(k−1), which is equal to (−1)(n−1)(k−1) if
and only if k is odd. One can check that T dk = (−1)(n−k)(k−1)Udk 6= 0, so
((−1)(k−1)(n−1)T − U)dk = 0 ⇐⇒ k is odd.

For u > k, it is easy to see that T du is not proportional to Udu , since af-
ter symmetrization by the element

∏n
i=u+1(1 + (i, n + i − 1)) one gets differ-

ent number of a’s in the interior bracket when applying to T and U . Hence
((−1)(k−1)(n−1)T − U)du 6= 0. The thesis follows from the pervious lemma.

�

We are going to deal with the generalization of n-algebras proposed in [V].

Theorem 7.
1. The S2n−1-module generated in P 2

n by the element

ωa1,...,ar [ωar+1,...,ak
](15)
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(k ≤ n − 1) is isomorphic to ⊕n
i=n−k [2n−i12i−1], i.e. is isomorphic to one

generated by ωa1,...,ak
[ω].

2. The S2n−1-module generated in P 2
n by the element

[ωa1,...,ar , ωb1,...,bs ]
RN(16)

(r + s ≤ n− 1) is isomorphic to one generated by

[ωa1,...,ar,b1,...,bs , ω]RN .(17)

Corollary 1. The classes of skew-symmetric n-algebras satisfying (16) and (17)
are identical.

Proof.
1. Expanding the expression ωb1,...,bs [ωa1,...,ar ] we get

Z =
∑

sgn(x . . .)ω(ω(x, . . . , a1, . . . , ar), x, . . . , b1, . . . , bs).

Let us consider the partition λ = [(s + 2)12r−112n−1−2r−s] and the Young
diagram

Yλ =

x1 a1 b1 b2 . . . bs

x2 a2

...
...

... ar

...
x2n−1−r−s

and the elements aλ,bλ ∈ CS2n−1. We will always write some symbols in-
stead of the places these symbols occupy. For example, in the above diagram
x1, . . . , xn−r, xn−r+1, . . . , xn correspond to the numbers 1, . . . , n − r, n + 1,
n + 2, . . .. It is easily seen that ψ(bλ) = m · Z for some 0 6= m ∈ R , where
ψ is the map defined in (10). By Theorem 4

CS2n−1bλ '
⊕

τ

Kτ ′,λ′Vτ '
n⊕

i=n−r−s

mi[2n−i12i−1] ⊕
⊕

µ

Vµ

where all mi’s are greater or equal 0 and none of Vµ is isomorphic to [2n−i12i−1]
for some i. Therefore ψ(CS2n−1bλ) ⊆⊕n

i=n−r−s[2
n−i12i−1] ⊆ Pn

2 . We want to
establish the equality. Let us consider

Z̃i,j =
∑

sgn(x . . .)sgn(a . . .)ω(ω(x, . . . , a, . . . , a︸ ︷︷ ︸
i

), x, . . . , a, . . . , a︸ ︷︷ ︸
j

).

where the number of a’s is i and j respectively, in the interior and exterior bracket.
The summation is taken over all permutation of x’s and a’s. It is obvious that
if i ≤ r and j ≤ s and an n-algebra satisfies Z = 0 then also Z̃i,j = 0, so the
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inclusion MZ̃i,j
⊆ MZ holds between the modules generated by these identities.

The module MZ̃i,j
corresponds to the Young diagram

Yµ =

x1 a1

x2 a2

...
...

... ai+j

...
x2n−1−i−j

It is not difficult to see that ψ(aµbµ) 6= 0 in Pn
2 , so ψ(aµbµ) generates the

module [2n−u12u−1], where i+ j = n− u. Hence [2n−u12u−1] ⊆MZ̃i,j
⊆MZ for

n− u = i+ j ≤ r + s and we are done.

2. Write

z = (−1)rs
∑

sgn(x . . .) x . . .︸︷︷︸
n−r−s

a1 . . . ar x . . .︸︷︷︸
s

x . . .︸︷︷︸
n−1−r−s

x . . .︸︷︷︸
r

b1 . . . bs ,

z̃ = (−1)rs
∑

sgn(x . . .) x . . .︸︷︷︸
n−r−s

x . . .︸︷︷︸
r

b1 . . . bs x . . .︸︷︷︸
n−1−r−s

a1 . . . ar x . . .︸︷︷︸
s

,

z, z̃ ∈ CS2n−1 and the summations are taken over all permutations in x’s.
We easily see that z = mZ and mZ̃ = z̃ = mωa1,...,ar [ωb1,...,bs ], 0 6= m ∈ R.
Note also that z̃ = εzπ, where π =

∏n
i=n−r−s+1(i, n+ i− 1) and

ε = (−1)r(n−1−r−s)+s(n−1−s).
We claim that Zdn−r−s = ε Z̃dn−r−s .
Let H = {g ∈ S2n−1 : g has x’s on positions i and n+ i− 1 for some

i ∈ {n− r − s+ 1, . . . , n}}.
Let w = zbc, b, c as in (13), and v be the image of w under the canonical

restriction linear map CS2n−1 → CH . We will show that ψ(vdn−r−s) = 0.
Let ∅ 6= I ⊂ {n− r − s+ 1, . . . , n}

HI = {g ∈ S2n−1 : {i : n− r − s+ 1 ≤ i ≤ n, g has x’s on positions i

and n+ i− 1} = I},
and wI be the image of w (or v) under the canonical linear map CS2n−1 → CHI .
Note that wI (i, n+i−1) = −wI for any i ∈ I, since the transposition (i, n+i−1)
only changes the positions of x’s and wI is antisymmetric in x’s. Moreover,
for any i ∈ {n − r − s + 1, . . . , n}, (i, n + i − 1) dn−r−s = dn−r−s. Hence
ψ(wIdn−r−s) = ψ(wI (i, n+i−1) dn−r−s) = −ψ(wIdn−r−s), so ψ(wIdn−r−s) = 0
and ψ(vdn−r−s) = 0 since v is a linear combination of wI ’s, in fact v =

∑
I wI .

Hence mZdn−r−s = ψ((w− v)dn−r−s). The support of w− v has to have x’s on
the positions 1, 2, . . . , n− r− s, n+1, n+2, . . . , 2n− 1− r− s and the positions i
and i+n−1 are occupied by exactly one of x’s for any i ∈ {n− r− s+1, . . . , n}.
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The last sentence remains true if we repeat above reasoning with the element ε z̃
instead of z.

Now, the element
∑

g∈S{1,...,u,n+1,...,n+u−1} sgn(g)g, u = n − r − s, changes
only positions of x’s. The element e =

∏n
i=u+1(1 + (i, n + i − 1)) has the same

effect on w − v as on the analog element constructed starting from ε z̃, because
π e = e. Hence ψ(zbcdn−r−s) = ψ(ε z̃bcdn−r−s), so Zdn−r−s = ε Z̃dn−r−s as we
have claimed.

Comparing ε with (−1)(n−1−r)(n−1−s) occurring in the bracket [ωa..., ωb...]RN

one find that they agree if and only if n − r − s is odd. Hence [2n−u12u−1] ⊂
M[ωa...,ωb...]RN ⇐⇒ n− r − s is even, where n− u = r + s.

For u < r+ s one can verify that Z̃dn−u and Zdn−u have different support and
thus are not proportional, so [2n−u12u−1] ⊂M[ωa...,ωb...]RN . Thus, from part (1),
M[ωa...,ωb...]RN = N ⊕⊕n

i=n−r−s+1 [2n−i12i−1] where N = [2r+s12n−2r−2s+1] if
n − r − s is even and zero otherwise. This coincides with the thesis of part 2.
and Theorem6. �

Expansion map

We are going to finish the paper with the proof of the conjecture 2 of [B].
Let

ε : P 2
n → Ass(x1, . . . , x2n−1),

ε([[xi1 , xi2 , . . . , xin ], xj1 ,... , xjn−1 ]) = ε([xj0 , xj1 ,... , xjn−1 ]) =

=
∑

σ∈S({0,...,n−1})
sgn(σ) xjσ(0)xjσ(1) · · ·xjσ(n−1) ,

where
xj0 =

∑
σ∈S({1,...,n})

sgn(σ) xiσ(1)xiσ(2) · · ·xiσ(n)

and Ass(x1, . . . , x2n−1) is the free associative algebra generated by x1, . . . , x2n−1.
The map ε is called expansion map.

Theorem 8. ker ε is an S2n−1-submodule of P 2
n and

ker ε =

{
0 if n is odd
[12n−1] if n is even

Proof. We will examine the coefficient at xs1 · · ·xsixt1 · · ·xtn−ixsi+1 · · ·
· · ·xs2i−1xt′1 · · ·xt′n−i

in the expression ε(T ), whereT is T ′ in (9). We changed
the set of indices from {1, . . . , 2n − 1} to {s1, s2, . . . , s2i−1, t1, t2, . . . , tn−i, t′1,
t′2, . . . , t

′
n−i}.

The non-vanishing coefficient at x1 · · ·x2n−1 appears only in the expressions of
the form ε̃([x1, . . . , xn])xn+1 · · ·x2n−1, x1ε̃([x2, . . . , xn+1])xn+2 · · ·x2n−1, . . . ,
. . . , x1 · · ·xn−1 ε̃([xn, . . . , x2n−1]), where

ε̃([xi1 , xi2 , . . . , xin ]) =
∑

σ∈S({1,...,n})
sgn(σ) xiσ(1)xiσ(2) · · ·xiσ(n) .
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In (9) the interior bracket has always i variables xs’s. In the case i < n, only in
one of the following sequences

x1, . . . , xn; x2, . . . , xn+1; . . . ;xn, . . . , x2n−1

there are exactly i variables of xs’s, namely in the first of them. So we are only
concerned at the items in (9) for which [xσ(s1), . . . , xσ(si), y1,..., yn−i] = [x1, . . . , xn],
so {xσ(s1), . . . , xσ(si)} = {1, 2, . . . , i}. It happens i!(i− 1)! times with the constant
contribution (= 1) to the coefficient at x1 · · ·x2n−1 when evaluated on ε. It implies
that

ε([2n−i12i−1]) 6= 0 for i < n.

Let now i = n. Now the needed coefficient is a sum of n numbers a, where a is
the contribution of∑

sgn(σ)[[xσ1 , xσ2, . . . , xσ(n)], xσ(n+1), . . . , xσ(2n−1)]

with the summation taken over all σ ∈ S2n−1 such that σ({1, 2, . . . , n}) =
= {k + 1, k + 2, . . . , k + n}. Then the contribution is constant and equals to
a = (−1)kn!(n − 1)!. So the total contribution is zero if and only if 2|n. Hence
ε([12n−1]) 6= 0 only for even n. �
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