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BOUNDARY BEHAVIOR IN STRONGLY DEGENERATE
PARABOLIC EQUATIONS

M. WINKLER

Abstract. The paper deals with the initial value problem with zero Dirichlet

boundary data for

ut = up∆u in Ω × (0,∞)

with p ≥ 1. The behavior of positive solutions near the boundary is discussed and

significant differences from the case of the heat equation (p = 0) and the porous

medium equation (p ∈ (0, 1)) are found. In particular, for p ≥ 1 there is a large

class of initial data for which the corresponding solution will never enter the cone

{v : Ω → R | ∃ c > 0 : v(x) ≥ cdist(x, ∂Ω)}.
Finally, for p > 2 a solution u with u(t) ∈ C∞

0 (Ω) ∀ t ≥ 0 is constructed.

Introduction

This paper is concerned with nonnegative solutions of

ut = up∆u in Ω × (0,∞),

u|∂Ω = 0,

u|t=0 = u0,(0.1)

where p ≥ 1 and Ω is a bounded domain in R
n with C2-boundary. Here 0 6≡ u0 ∈

C0(Ω̄) is assumed to be nonnegative with u0|∂Ω = 0.
Due to the degeneracy in (0.1), we expect that diffusive effects are weakened in

regions where u is small which should primarily affect the behavior of u near the
boundary of its support.

To explain this, let us recall the well-known fact that in case of the heat equation
(p = 0) all nontrivial nonnegative solutions of (0.1) become positive in all of Ω
instantaneously; in fact, the strong maximum principle even states that

u(t) ∈ K ∀ t > 0,(0.2)
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where the cone K is defined by

K := {v : Ω → R | ∃ c > 0 : v(x) ≥ c dist(x, ∂Ω)∀x ∈ Ω}.
This is no longer true in the weakly degenerate case p ∈ (0, 1), where the PDE in
(0.1) transforms into the porous medium equation vt = ∆vm via the substitution
u = avm with m = 1

1−p > 1 and a = m
1
p . Then, (0.2) is to be replaced with

∃ t0 ≥ 0 : u(t) ∈ K ∀ t > t0,(0.3)

and it depends on the behavior of u0 near ∂Ω whether or not t0 can be chosen
equal to zero ([BP], [Fr], [Ar]). As to the strongly degenerate case p ≥ 1, however,
it has been shown in [Win2] that suppu(t) ≡ const. for all t ≥ 0 (cf. also [LDalP]
and [BU]), so that u(t) will never enter K if suppu0 is a compact subset of Ω.

The properties (0.2) and (0.3) have been widely used as a powerful tool in the
description of the qualititive properties of solutions to (0.1) as well as to a large
class of related semilinear and quasilinear problems with additonal source or sink
terms, including various topics such as stability, convergence rates or localization
of blow-up points (see [Li], [AP] or [FMcL1], for instance).

In [Win4], the reader may find an example of how the absence of (0.3) may
influence the asymptotics of solutions to ut = up∆u + up+1, p ∈ [1, 3) (in domains
with a special size): Namely, there it is shown that whenever u0 is such that u

enters K at some time then u(t) approaches a positive equilibrium as t → ∞,
while there are other initial data for which u(t) remains outside K and for which
u(t) → 0 as t → ∞.

The main objective of the present work will be to find conditions on positive
initial data which either enforce or rule out (0.3). To illustrate our results as
transparently as possible, let us assume that

u0(x) ∼ (dist(x, ∂Ω))α near ∂Ω

for some α > 1. (Note that the statements in the following sections are in part
actually much sharper.)

• If p ∈ [1, 2) and
• α < 1

p−1 (∞ if p = 1) then there is t0 > 0 such that u(t) ∈ K ∀ t ≥ t0
(Corollary 2.3);

• α ≥ 1
p−1 then u(t) 6∈ K for all t ≥ 0 (Lemma 2.1).

• If p > 2 then u(t) ∼ (dist(x, ∂Ω))α continues to hold for all t ≥ 0, so
that u(t) 6∈ K for all t ≥ 0 (Corollary 4.2).

Actually, we shall see that for p > 2 even superpolynomial boundary decay of
u0 can be inherited by the solution. As a consequence (and as the second topic
of this work), we will present in Theorem 4.4 a somewhat ‘strange’ solution of
(0.1) which has a property that seems to be fairly uncommon in the context of
quasilinear parabolic equations:
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• If p > 2 then (0.1) has a classical solution u 6≡ 0 with

u(t) ∈ C∞
0 (Ω) ∀ t ≥ 0.

1. Some preliminaries

Unless otherwise stated (and this will be the case only in Theorem 4.4), we will
assume

u0 ∈ C0(Ω̄), u0|∂Ω = 0 and u0 > 0 in Ω.

For such initial data, we obtain a unique classical solution to (0.1). For a proof of
this fact, we refer to Theorem 1.2.2 in [Win1]; a similar reasoning can be found
in [Wie2] or in [FMcL2].

Lemma 1.1. Problem (0.1) admits a unique positive classical solution u which
can be obtained as the C0(Ω̄ × [0,∞))) ∩ C2,1(Ω × (0,∞))-limit of a decreasing
sequence of solutions uε, ε = εj ↘ 0, of

∂tuε = up
ε∆uε in Ω × (0,∞),

uε|∂Ω = ε,

uε|t=0 = u0,ε,(1.1)

where (u0,ε)ε=εj↘0 ⊂ C1(Ω̄) is any decreasing sequence of functions with
u0,ε|∂Ω = ε and max{u0 + ε

2 , ε} ≤ u0,ε ≤ u0,ε + 2ε.

As a consequence of uniqueness, it follows that if u0 ≤ v0 in Ω then the cor-
responding solutions u and v of (0.1) satisfy u ≤ v in Ω × (0,∞). For a version
of the parabolic comparison principle appropriate for degenerate problems of the
above type, we refer to [Wie2]. The following useful semi-convexity estimate is
also well-known (cf. [Ga], [Win2] or also [Ar]).

Lemma 1.2. i) We have
ut

u
≥ − 1

pt
in Ω × (0,∞).

ii) Suppose that, additionally, u0 ∈ C2(Ω̄). Then there is C > 0 such that
ut

u
≥ −C in Ω × (0,∞).(1.2)

Proof. We only prove ii), since the proof of i) can be accomplished by a simpli-
fied version of this (see [Win2] for details). First, we mollify vε := (u0− ε

4 )+ in R
n

to a function wε with compact support in Ω satisfying max{u0 − ε
2 , ε} ≤ wε ≤ u0.

As ∆vε ≥ infΩ ∆u0 ≥ −c for sufficiently small ε > 0 in the sense of distributions
on R

n, we also have ∆wε ≥ −c, so that u0,ε := wε + ε is in C∞(Ω̄) and fulfils
u0,ε|∂Ω = ε as well as u0 + ε

2 ≤ u0,ε ≤ u0 + 2ε. Since u0,ε is constant near ∂Ω, the
compatibility condition of first order for (1.1) is valid (that is, u0ε∆u0,ε|∂Ω = 0) so
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that z := ∂tuε

uε
≡ up−1

ε ∆uε is in C0(Ω̄×[0,∞))∩C2,1(Ω×(0,∞)). By differentiation
of (1.1),

zt = pz2 + up−1
ε (2∇uε · ∇z + uε∆z) in Ω × (0,∞);

as z ≥ 0 on ∂Ω and z ≥ −c‖uε‖p−1
L∞(Ω) ≥ −C at t = 0, we obtain from parabolic

comparison that z ≥ −C in Ω × (0,∞). �

As a simple consequence of Lemma 1.2 i), we note that

u(t0) ∈ K for some t0 > 0 implies u(t) ∈ K ∀ t ≥ t0.

2. The case 1 ≤ p < 2

Lemma 2.1. Suppose p ∈ [1, 2) and∫
Ω

u1−p
0 = ∞ if p > 1,

∫
Ω

ln u0 = −∞ if p = 1.

Then

u(t) 6= K for all t > 0.

Proof. Assume u(t0) ∈ K for some t0 > 0. Then, if p ∈ (1, 2),
∫
Ω u1−p(t0) < ∞.

Dividing (1.1) by up and integrating, we obtain∫
Ω

u1−p
ε (t0) −

∫
Ω

u1−p
0ε = −(p − 1)

∫ t0

0

∫
∂Ω

∂Nuε,

where the right hand side is nonnegative since uε ≥ ε in Ω×(0,∞) by comparison.
But the monotone convergence theorem implies that the left hand side tends to
−∞ as ε → 0, a contradiction. The proof in the case p = 1 is similar. �

In both the radial and the one-dimensional case the previous lemma is comple-
mented by

Lemma 2.2. Suppose ∫
Ω

u1−p
0 < ∞ if p > 1,

∫
Ω

ln u0 > −∞ if p = 1,

and assume that either Ω is a ball and u0 is radially symmetric in Ω, or that n = 1.
Then there exists t0 > 0 such that

u(t) ∈ K for all t ≥ t0.



DEGENERATE PARABOLIC EQUATIONS 133

Proof. We only prove the case 1 < p < 2, since the proof for p = 1 runs along the
same lines. Let us start with the radial case and hence we may assume Ω = BR(0)
for some R > 0. We first briefly outline a proof of the well-known fact that
u(t) → 0 uniformly as t → ∞ (cf. [Win3]): Let e1 ∈ C2(B̄R(0)) solve −∆e1 = 1
in BR(0), e1|∂BR(0) = 1, and let y(t) denote the solution of y′ = −yp+1 in (0,∞)
with y(0) = ‖u0‖L∞(BR(0)). Then, as e1 ≥ 1 in BR(0), v(x, t) := y(t)e1(x) satisfies

vt − vp∆v = y′e1 + yp+1ep
1

≥ (y′ + yp+1)e1 = 0 in BR(0) × (0,∞),

so that comparison yields u ≤ v in BR(0) × (0,∞), whence indeed u(t) → 0
uniformly in BR(0) as t → ∞.
In particular, this together with the hypothesis implies the existence of t0 > 0
such that ∫

Br(0)

u1−p(t0) ≥
∫

BR(0)

u1−p
0 + 1 ∀ r ∈

(R

2
, R

)
.

Dividing (0.1) by up and integrating, we see that z(r) :=
∫ t0
0

∫
∂BR(0)

u fulfils

z′(r) =
∫ t0

0

∫
∂Br(0)

∂Nu +
n − 1

r

∫ t0

0

∫
∂Br(0)

u

= − 1
p − 1

∫
Br(0)

u1−p(t0) +
1

p − 1

∫
Br(0)

u1−p
0 +

n − 1
r

z(r)

≤ − 1
p − 1

+
2(n − 1)

R
z(r) ∀ r ∈

(R

2
, R

)
,

from which it follows, since z(R) = 0, that

z(r) ≥ c0(R − r) ∀ r ∈
(R

2
, R

)

for some c0 > 0. Consequently, for any r ∈ (R
2 , R) there exists tr ∈ ( t

2 , t0) such
that

u(r, tr) ≡ 1
rn−1ωn

∫
∂Br(0)

u(tr) ≥ c2(R − r)

with c2 = 2c0
Rn−1ωnt0

, where ωn denotes the area of the unit sphere in R
n. Now

Lemma 1.1 i) shows that

u(r, t0) ≥
( tr

t0

) 1
p

u(r, tr)

≥ 2−
1
p c2(R − r) ∀ r ∈

(R

2
, R

)
,

which implies the claim.
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In the one-dimensional case, we make use of the result just proved and take
advantage of the fact that ∂Ω contains only two points. We may assume Ω =
= (−2a, a) for some a > 0. Let ṽ0(x) := u0(x) for x ∈ [0, a] and ṽ0(x) := u0(−x)
for x ∈ [−a, 0). Then ṽ0 is continuous and symmetric in [−a, a], ṽ0(±a) = 0 and
ṽ0 > 0 in (−a, a). From u0 > 0 in [−a, 0] it is clear that v0 := ηṽ0 ≤ u0 in [−a, a]
for some small η > 0. Consequently, the solution v of vt = vpvxx in (−a, a)×(0,∞),
v(±a, t) = 0, v|t=0 = v0, lies below u. But since

∫ a

−a
v1−p
0 = 2η1−p

∫ a

0
u1−p

0 < ∞,
it follows from what we have shown before that v(x, t0) ≥ c(a−x) for some t0 > 0
and all x ∈ (0, a). A similar argument near x = −a and Lemma 1.2 i) complete
the proof. �

Corollary 2.3. Suppose that

u0(x) ≥ c0(dist(x, ∂Ω))α in Ω for some α ∈
(
1,

1
p − 1

)
(resp. α ∈ (1,∞)

if p = 1) and some c0 > 0. Then there is t0 > 0 such that

u(t) ∈ K for all t ≥ t0.

Proof. Due to the smoothness of ∂Ω there is R > 0 with the property that
for all x ∈ Ω with dist(x, ∂Ω) < R there exists x0 = x0(x) ∈ Ω such that
dist(x, ∂Ω) = dist(x, ∂BR(x0)). (Indeed, let R be small enough such that to
each x with dist(x, ∂Ω) < R there corresponds exactly one y = y(x) ∈ ∂Ω with
|x − y| = dist(x, ∂Ω). Then for any such x, the point x0(x) := y(x) + R x−y(x)

|x−y(x)|
satisfies the above requirements.)
Let x ∈ Ω with dist(x, ∂Ω) < R be given and let x0 := x0(x). Then v

(x)
0 (z) :=

:= c0(R − |z − x0|)α is positive in BR(x0), vanishes on ∂BR(x0) and is sym-
metric with respect to x0. Since evidently v

(x)
0 ≤ u0 in BR(x0), Lemma 2.2

together with the comparison principle yields t0 > 0 and c1 > 0 such that
u(z, t0) ≥ c1dist(z, ∂BR(x0)) holds for all z ∈ BR(x0). In particular, u(x, t0) ≥
≥ c1dist(x, ∂BR(x0)) = c1dist(x, ∂Ω). But t0 and c1 are the same for all x due to
the fact that for different x, the functions v

(x)
0 are transferred into each other by

a spatial shift. Therefore the proof is complete. �

3. The case p > 2

The crucial step for the proof of ‘conservation of boundary decay’ in the case p > 2
is done in

Lemma 3.1. Let d0 := maxx∈Ω dist(x, ∂Ω) and suppose ϕ ∈ C1([0, d0]) ∩
∩ C2((0, d0)) is an increasing function with ϕ(0) = 0 and such that

ϕp−1ϕ′′ is nondecreasing,(3.1)

ϕ′ ≤ cϕ′′ in (0, d0) for some c > 0 and(3.2)
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lim
d↘0

ϕ(d)
dpϕ′′(d)

= +∞.(3.3)

Then for all c1 > 0 and T > 0 there is c′1 > 0 such that under the assumption

u0 ≤ c1ϕ(dist(x, ∂Ω)) in Ω,(3.4)

the solution u of (0.1) satisfies

u ≤ c′1ϕ(dist(x, ∂Ω)) in Ω × (0, T ).(3.5)

Before proving this lemma, let us give an example which particularly shows
that even very fast boundary decay of u0 can be inherited by the solution.

Corollary 3.2. i) For any α > 1, from

u0(x) ≤ c1(dist(x, ∂Ω))α

it follows that

u(x, t) ≤ c′1(c1, T )(dist(x, ∂Ω))α in Ω × (0, T ).

ii) For any α ∈ (0, p−2
2 ) there is A(α, Ω) > 0 such that for all A > A(α, Ω),

u0(x) ≤ c1e
−A(dist(x,∂Ω))−α

implies

u(x, t) ≤ c′1(c1, T )e−A(dist(x,∂Ω))−α

in Ω × (0, T ).

Proof. It is easily verified that ϕ(d) := dα fulfils the assumptions of Lemma 3.1,
which proves i). To check the same for ϕ(d) := e−Ad−α

, we compute

ϕp−1(d)ϕ′′(d) = αA[αA − (α + 1)dα]d−2α−2e−pAd−α

,

ϕ′′(d)
ϕ(d)

=
αA − (α + 1)dα

dα+1
,

whence (3.1) and (3.2) hold with A > A(α, Ω) and A(α, Ω) large enough. Further-
more,

ϕ(d)
dpϕ′′(d)

=
d2α+2−p

αA[αA − (α + 1)dα]
→ +∞ as d → 0,

since p > 2α + 2. �

Proof. (of the lemma). We first observe that as ϕ ∈ C1, (3.4) implies u0(x) ≤
≤ cdist(x, ∂Ω) and hence

u(x, t) ≤ c2dist(x, ∂Ω) in Ω × (0, T ),(3.6)

which easily follows from comparison of u with the stationary supersolution e of
(0.1), where −∆e = 1 in Ω and e|∂Ω = 0.
We now follow a barrier-type technique as demonstrated in a slightly different
setting in [FMcL2] and in [Wie1] for ϕ(s) = s. On Ω′ := BR+d(x0)∩Ω, d > 0 to
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be specified later, with x0 the center of a ball BR(x0) touching ∂Ω from outside
at y ∈ ∂Ω, introduce the function w(x) := ϕ(ξ), ξ := |x − x0| − R. Due to (3.1)
and (3.2),

wp−1∆w = ϕp−1(ξ)
(
ϕ′′(ξ) +

n − 1
|x − x0|ϕ

′(ξ)
)

≤ cϕp−1(d)ϕ′′(d) =: %(d).(3.7)

Letting y(t) satisfy y′ = %(d)yp+1, that is, y(t) = (y−p
0 −p%(d)t)−

1
p with y0 := y(0),

we see that y exists on (0, Ty) with Ty = (p%(d)yp
0)−1. In order to compare u in

Ω′ × (0, T ) with v(x, t) := y(t)w(x), we observe that by (3.7),

vt − vp∆v = w · (y′ + wp−1∆w · yp+1) ≤ 0.

At t = 0, we have

u0(x) ≤ c1ϕ(dist(x, ∂Ω)) ≤ c1ϕ(|x − x0| − R) = c1w(x),

while if |x − x0| = R + d, (3.6) implies that for d small enough, u(x, t) ≤ c2d.
Hence, u ≤ v on the parabolic boundary if y0 := max{c1,

c2d
ϕ(d)}, so that y0 ≤ c d

ϕ(d) .
Consequently, using (3.7), we estimate

Ty ≥ c
ϕp(d)

δpϕp−1(d)ϕ′′(d)
= c

ϕ(d)
dpϕ′′(d)

.

By assumption (3.3), we can now fix d > 0 small enough such that Ty > T , so
that the comparison principle yields u(x, t) ≤ cϕ(ξ) on Ω′ × (0, T ) and thus the
claim follows. �

4. A C∞
0 -solution

We start with a simple consequence of Lemmata 1.2 and 3.1 that provides a
two-sided estimate for u near the boundary. This will be necessary in Lemma 4.3,
where, roughly speaking, for a suitably rescaled equation the lower bound will be
used to control the ellipticity constant, while the upper bound ensures that the
rescaled function is a bounded solution.

Corollary 4.1. Let ϕ meet the conditions of Lemma 3.1 and suppose that

c0ϕ(dist(x, ∂Ω)) ≤ u0 ≤ c1ϕ(dist(x, ∂Ω)) in Ω

for positive constants c0, c1. Then for all T > 0 there are c′0, c
′
1 > 0 such that

c′0u0(x) ≤ u(x, t) ≤ c′1u0(x) in Ω × (0, T ).

Proof. Integrating (1.2) and using Lemma 3.1, we immediately obtain
e−CT u0(x) ≤ u(x, t) ≤ cϕ(dist(x, ∂Ω)) ≤ c

c0
u0. �

Without further comment, we state the following immediate consequence of
Corollaries 4.1 and 3.2.
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Corollary 4.2. i) From

c0(dist(x, ∂Ω))α ≤ u0(x) ≤ c1(dist(x, ∂Ω))α, α > 1,

it follows that

c′0(dist(x, ∂Ω))α ≤ u(x, t) ≤ c′1(dist(x, ∂Ω))α in Ω × (0, T ).

ii) For α ∈ (0, p−2
2 ) and A > A(α, Ω) > 0,

c0e
−A(dist(x,∂Ω))−α ≤ u0(x) ≤ c1e

−A(dist(x,∂Ω))−α

, 0 < α <
p − 2

2
implies

c′0e
−A(dist(x,∂Ω))−α ≤ u(x, t) ≤ c′1e

−A(dist(x,∂Ω))−α

in Ω × (0, T ).

In order to establish a connection between the boundary decay and regularity
up to ∂Ω, we introduce a positive function δ : Ω → R

+ such that for some κ > 1
1
κ

sup
|x−z|<δ(x)

u0(z) ≤ u0(x) ≤ κ inf
|x−z|<δ(x)

u0(z);(4.1)

note that these inequalities are satisfied if we set for instance

δ(x) := sup
{
η > 0 | 1

κ
sup

|x−z|<η

u0(z) ≤ u0(x) ≤ κ inf
|x−z|<η

u0(z)
}
, x ∈ Ω.

For certain types of boundary behavior, however, we can choose δ much more
conveniently:
i) If c0(dist(x, ∂Ω))α ≤ u0(x) ≤ c1(dist(x, ∂Ω))α holds for some α > 0, then it
is easily verified that we may choose δ(x) := cd(x) with suitably small c > 0 and
κ > c1

c0
.

ii) In view of Theorem 4.4 we also consider the case

c0ϕ(dist(x, ∂Ω)) ≤ u0(x) ≤ c1ϕ(dist(x, ∂Ω)) with ϕ(d) = e−Ad−α

, A, α > 0.

We claim that we may use

δ(x) = c(dist(x, ∂Ω))1+α for some small c > 0.

Indeed, observe that for d > 0 the equations 1
eA ϕ(d + η−(d)) = ϕ(d) =

= eAϕ(d − η+(d)) are solved by η−(d) = [(1 − dα)−
1
α − 1]d and η+(d) =

[1 − (1 + dα)−
1
α ]d, respectively. Both expressions equal 1

αd1+α + O(d1+2α) as
d → 0, hence η±(d) ≥ cd1+α for d ≤ d1, d1 > 0 small.

Now if d(x) ≤ d1 and |z−x| < η−(d(x)) (where we have abbreviated d(x) :=
:= dist(x, ∂Ω)) then u0(z) ≤ c1ϕ(d(x)) ≤ c1ϕ(d(x) + η−(d(x))) ≤ c1e

Aϕ(d(x)) ≤
≤ c1eA

c0
u0(x); similarly we obtain for |z − x| < η+(d(x)) that u0(z) ≥ c0ϕ(d(x)) ≥

≥ c0ϕ(d(x)− η+(d(x))) ≥ c0
eA ϕ(d(x)) ≥ c0

c1eA u0(x). Thus, it follows that in fact an
admissible choice is δ(x) = cd1+α(x).
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Lemma 4.3. Let δ be a function satisfying (4.1). Suppose that the solution u

of (0.1) obeys a two-sided estimate

c0u0(x) ≤ u(x, t) ≤ c1u0(x) in Ω × (0, T )(4.2)

with constants 0 < c0 < c1. Assume furthermore that u0 ∈ C2m+β(Ω̄) and
∂Ω ∈ C2m+β for some m ∈ N and some β > 0. Then for all |σ| + 2k ≤ 2m, we
have

|Dσ
x∂k

t u(x, t)| ≤ cδ−|σ|−2k(x)u1+kp
0 (x) in Ω × (0, T ).(4.3)

Consequently, if in addition δ−2m(x)u0(x) → 0 as dist(x, ∂Ω) → 0 then u ∈
C2m,m(Rn × [0, T ]), where u has been extended by zero outside Ω.

Proof. Fix x0 ∈ Ω and let

v(y, s) :=
1

u0(x0)
· u

(
x0 + δ(x0)y, δ2(x0)u

−p
0 (x0)s

)
, (y, s) ∈ B1(0) × (0, Tx0),

where Tx0 := δ−2(x0)up(x0)T . Clearly,

Dσ
y ∂k

t v(y, s) = δ|σ|+2k(x0)u−1−kp(x0)Dσ
x∂k

t u(x, t) for σ ∈ N
n
0 and k ∈ N0,

so that v again satisfies vs = vp∆v ≡ ∇ · (vp∇v) − pvp−1|∇v|2. As

1
κ

c0 ≤ c0u0(x0 + δ(x0)y)
u0(x0)

≤ v(y, s) ≤ c1u0(x0 + δ(x0)y)
u0(x0)

≤ κc1,

Theorems V.1.1 and III.12.1 in [LSU] provide a uniform interior estimate

‖v‖
C2m+θ,m+ θ

2 (B̄1/2(0)×[0,Tx0 ])
≤ c

for some θ > 0, which in the original coordinates in particular means that the
quantities

δ|σ|+2k(x0)u
−1−kp
0 (x0)

∣∣∣Dσ
x∂k

t u(x, t)
∣∣∣, |σ| + 2k ≤ 2m,

are all bounded in Bδ(x0)/2(x0) × (0, T ), uniformly with respect to the choice of
x0. We may now set x = x0 to obtain (4.3). �

Theorem 4.4. Suppose p > 2 and BR(0) ⊂ Ω for some R > 0. Then there
exists a nontrivial classical solution u of (0.1) with the property

u(t) ∈ C∞
0 (Ω) with suppu(t) ≡ BR(0) ∀t ∈ (0, T ).

Proof. Choosing α ∈ (0, p−2
2 ) and A > A(α, Ω) (cf. Corollary 3.2), we

define u to be the positive solution in BR(0) × (0, T ) evolving from u0(x) :=
:= e−A(r−|x|)−α

, x ∈ BR(0), extended by zero to all of Ω. Then u0 ∈ C∞
0 (Ω)

and c0ϕ(dist(x, ∂BR(0))) ≤ u0(x) ≤ c1ϕ(dist(x, ∂BR(0))) holds in BR(0) for
c0 = c1 = 1 and ϕ(d) := e−Ad−α

. By Corollary 4.2, c′0u0(x) ≤ u(x, t) ≤ c′1u0(x).
Now the assertion follows, because due to our above considerations we may choose
δ(x) = c(dist(x, ∂BR(0)))1+α in Lemma 4.3 for some c > 0. �
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