
Acta Math. Univ. Comenianae
Vol. LXXII, 2(2003), pp. 253–259

253

HOMOMORPHISMS OF TRIANGLE GROUPS WITH LARGE
INJECTIVITY RADIUS

M. ABAS

Abstract. We prove a new upper bound on the smallest order o(l, m, n; r) of a
finite group that is a homomorphic image of a triangle group T (l, m, n) with injec-

tivity radius at least r.

1. Introduction

Triangle groups T (l,m, n) = 〈a, b, c|al = bm = cn = abc = 1〉 play an important
role in the theory of Riemann surfaces. In the theory of maps and hypermaps
[3], [4], the groups T (l,m, n) appear as groups of orientation preserving auto-
morphisms of universal hypermaps of type (l,m, n). Each such hypermap can be
visualized in form of a trivalent tesselation of a simply connected surface, where
a 2l-gon, a 2m-gon and a 2n-gon meet at each vertex.

The groups T (l,m, n) are known to be residually finite [3]. Closely related to
residual finiteness is the concept of injectivity radius which we introduce now. For
any u ∈ T (l,m, n) we have u = u1u2 . . . uk where ui ∈ {a, b, c}. The smallest k
with this property will be denoted by |u|; if u is the unit element of T (l,m, n)
then we set |u| = 0. Let ϕ : T (l,m, n) → H be a group homomorphism. We say
that the homomorphism ϕ has injectivity radius at least r if ϕ(u) 6= 1H for all
non-identity elements u ∈ T (l,m, n) such that |u| ≤ r.

The main purpose of this article is to present a bound for the smallest order
o(l,m, n; r) of a finite group that is a homomorphic image of a triangle group
T (l, m, n) with injectivity radius at least r and to improve an earlier result on
o(2,m, n; r) of [6], [7].

2. Auxiliary results related to polynomial rings over the integers

Let Z be the ring of integers and let g(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be
a polynomial in n variables over Z. To simplify the notation we will write
~x = (x1, x2, . . . , xn), g(~x) ∈ Z[~x] and ~h = (h1(x1), h2(x2), . . . , hn(xn)). We define
the norm ||g(~x)|| of a polynomial g(~x) ∈ Z[~x] as the largest absolute value of all
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its coefficients. Obviously we have the inequality

(1) ||f(~x) + g(~x)|| ≤ ||f(~x)||+ ||g(~x)||

for all f(~x), g(~x) ∈ Z(~x). Further, for any f(~x) ∈ Z[~x] we define w(f), the width
of f(~x), as the number of non-zero coefficients of f(~x). It is easy to see that

(2) ||f(~x)g(~x)|| ≤ min{w(f), w(g)} · ||f(~x)|| · ||g(~x)||.

Let g(~x) ∈ Z[~x] be a polynomial. Denote by deg(h(x)) the degree of the polynomial
h(x) (over one variable) and by δi(g) the degree of the polynomial g(~x) with respect
to xi.We say that a polynomial h(x) ∈ Z[x] is monic if its leading coefficient is 1.
In the following Lemma we show a relationship between norms of remainders and
norms of divisors and dividents.

Lemma 1. Let g(~x) ∈ Z[~x] and let hi(xi) ∈ Z[xi] < Z[~x] (that is, Z[xi] is
a subring of Z[~x]); let ki = δi(g), di = deg(hi(xi)) and let the polynomials hi(xi)
be monic. Let g(~x) = q1(~x)h1(x1) + q2(~x)h2(x2) + · · ·+ qn(~x)hn(xn) + r(~x), where
δi(r) < di for all i ∈ {1, 2, . . . , n}. If λi = max{0, ki − di + 1}, then

||r(~x)|| ≤ ||g(~x)||(1 + ||h1(x1)||)λ1(1 + ||h2(x2)||)λ2 . . . (1 + ||hn(xn)||)λn .

Proof. We present an argument for two variables; the proof for n variables
is similar. Let g(x1, x2) = q1(x1, x2)h1(x1) + r1(x1, x2), where δ1(r1) < d1 and
let r1(x1, x2) = q2(x1, x2)h2(x2) + r(x1, x2), where δ2(r) < d2 (and, obviously,
δ1(r) < d1). If k1 < d1, then q1(x1, x2) = 0, λ1 = 0 and r1(x1, x2) = g(x1, x2).
For k1 ≥ d1 we continue by induction on k1. Let us write g(x1, x2) in the form
g(x1, x2) = x1

k1b0(x2) + x1
k1−1b1(x2) + · · · + bk1(x2); in this notation b0(x2)

will be called the leading term of g(x1, x2) with respect to x1. Let g′(x1, x2) =
g(x1, x2)−b0(x2)x1

k1−d1h1(x1). It is easy to check that ||g′(x1, x2)|| ≤ ||g(x1, x2)||·
(1 + ||h1(x1)||). By the division algorithm (recall that h1(x1) is monic) we have
g′(x1, x2) = q1

′(x1, x2)h1(x1) + r1(x1, x2) for some q1
′(x1, x2) ∈ Z[x1, x2]. Now,

let k1
′ = δ1(g′). If k1

′ < d1, then q1
′(x1, x2) = 0 and

||r1(x1, x2)|| = ||g′(x1, x2)|| ≤ ||g(x1, x2)||(1 + ||h1(x1)||)

≤ ||g(x1, x2)||(1 + ||h1(x1)||)k1−d1+1
.

Using the inductive hypothesis (for d1 ≤ k1
′ ≤ k1 − 1), we have ||r1(x1, x2)|| ≤

||g′(x1, x2)||(1 + ||h1(x1)||)k1
′−d1+1

. Furthermore, with the approximation for the
norm ||g′(x1, x2)|| we obtain

||r1(x1, x2)|| ≤ ||g(x1, x2)||(1 + ||h1(x1)||)k1
′−d1+2

≤ ||g(x1, x2)||(1 + ||h1(x1)||)k1−d1+1
.

In the same way we can see that if r1(x1, x2) = q2(x1, x2)h2(x2) + r(x1, x2), then
||r(x1, x2)|| ≤ ||r1(x1, x2)||(1 + ||h2(x2)||)λ2 and consequently

||r(x1, x2)|| ≤ ||g(x1, x2)||(1 + ||h1(x1)||)λ1(1 + ||h2(x2)||)λ2 .

�
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Let the quotient ring Z[ξ] be a ring obtained by adding a root ξ of a poly-
nomial h(x) ∈ Z[x] to Z; so Z[ξ] = Z[x]/h(x), where h(x) is a monic polyno-
mial over Z with positive degree. Inductively, we define the quotient ring Z[~ξ] =
Z[ξ1, ξ2, . . . , ξn−1, ξn] as a ring obtained by adding a root ξn of a polynomial hn(xn)
to Z[ξ1, ξ2, . . . , ξn−1]. In all our applications the monic polynomial hn(xn) will be-
long to Z[xn] and hence our quotient rings Z[~ξ] will be more restrictive than usual.
We will simply write Z[~ξ] = Z[~x]/~h, where ~h = (h1(x1), h2(x2), . . . , hn(xn)). Now
we give a bound on the norm ||f(~ξ)g(~ξ)|| of the product f(~ξ)g(~ξ).

Lemma 2. Let hi(xi) ∈ Z[xi] be monic polynomials of degrees di > 0 and
let si = 1 + ||hi(xi)||. Furthermore, let Z[~x]/~h = Z[~ξ], let f(~ξ), g(~ξ) ∈ Z[~ξ] be
arbitrary polynomials and let w = min{w(f), w(g)}. Then

||f(~ξ)g(~ξ)|| ≤ w

(
n∏

i=1

si
di−1

)
||f(~ξ)|| · ||g(~ξ)||.

Proof. Again, we present the proof for two variables. Let f(ξ1, ξ2) and g(ξ1, ξ2)
be members of Z[ξ1, ξ2]. We want to find the unique r(x1, x2) with δ1(r) < d1 and
δ2(r) < d2 such that

f(x1, x2)g(x1, x2) = q1(x1, x2)h1(x1) + q2(x1, x2)h2(x2) + r(x1, x2);

then r(ξ1, ξ2) = f(ξ1, ξ2)g(ξ1, ξ2). Since h1(x1) has degree d1, the polynomials
f(x1, x2) and g(x1, x2) have degrees at most d1−1; therefore δ1(fg) ≤ 2d1−2 and
similarly δ2(fg) ≤ 2d2 − 2. From the definitions of norms, Lemma 1 and equation
(2) we have

||f(ξ1, ξ2)g(ξ1, ξ2)|| = ||r(ξ1, ξ2)|| = ||r(x1, x2)|| ≤

≤ ||f(x1, x2)g(x1, x2)||(1 + ||h1(x1)||)(2d1−2)−d1+1(1 + ||h2(x2)||)(2d2−2)−d2+1 ≤

≤ ws1
d1−1s2

d2−1||f(x1, x2)|| · ||g(x1, x2)|| =

= ws1
d1−1s2

d2−1||f(ξ1, ξ2)|| · ||g(ξ1, ξ2)||.

�

For the rest of this article we need to extend the concepts of norm and width
over to matrices in SLq(Z[~ξ]). If A ∈ SLq(Z[~ξ]) is a matrix with entries Ajk =
Ajk(~ξ) ∈ Z[~ξ], we define the norm ||A|| and the width w(A) as the maximum of
||Ajk(~ξ)|| and w(Ajk(~ξ)), respectively. In the next Lemma we present a result for
products in SLq(Z[~ξ]).

Lemma 3. Let Z[~ξ] = Z[~x]/~h, where hi(xi) are monic polynomials of degrees
di, and let si = 1 + ||hi(xi)||. Let A,B ∈ SLq(Z[~ξ]) be any matrices and let
w = min{w(A), w(B)}. Then

||AB|| ≤ qw(
n∏

i=1

si
di−1)||A|| · ||B||.
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Proof. Let j, k be arbitrary indices and let C be the product C = AB. For
Cjk(~ξ) ∈ Z[~ξ]) we have Cjk(~ξ) =

∑q
l=1 AjlBlk. Further, let wl be the minimum of

{w(Ajl(~ξ)), w(Blk(~ξ))}. If we repeatly apply the inequality (1) and Lemma 2, we
obtain the following result:

||Cjk(~ξ)|| = ||
q∑

l=1

Ajl(~ξ)Blk(~ξ)|| ≤
q∑

l=1

||Ajl(~ξ)Blk(~ξ)|| ≤

≤
q∑

l=1

wl(
n∏

i=1

si
di−1)||Ajl(~ξ)||||Blk(~ξ)|| ≤ qw(

n∏
i=1

si
di−1)||A|| · ||B||.

Therefore for the norm of the product ||AB|| it holds that

||AB|| ≤ qw(
n∏

i=1

si
di−1)||A|| · ||B||.

�

We generalize the above result to arbitrary products in the next Lemma.

Lemma 4. Let Z[~ξ] = Z[~x]/~h where hi(xi) are monic polynomials with positive
degrees di, and let si = 1 + ||hi(xi)||. Let A1, A2, . . . , Ar be any set of r matrices
in SLq(Z[~ξ]), all of width ≤ w. Then

||A1 ·A2 · . . . ·Ar|| ≤

(
qw

n∏
i=1

si
di−1

)r−1

· ||A1|| · ||A2|| · . . . · ||Ar||.

Proof. Using induction on r ≥ 3 we apply Lemma 3 to A and B (here A =
A1 · A2 · . . . · Ar−1 and B = Ar). From the assumptions of Lemma 4 it fol-
lows that min{w(A), w(B)} ≤ w. For the norm of product AB we have ||AB|| ≤
qw(

∏n
i=1 si

di−1)||A|| · ||B||. Furthermore, we obtain

||A|| = ||A1 ·A2 · . . . ·Ar−1|| ≤

(
qw

n∏
i=1

si
di−1

)r−2

||A1|| · ||A2|| · . . . · ||Ar−1||.

The required result is obtained by combining the last two inequalities. �

The next theorem gives a construction of homomorphisms of hyperbolic triangle
groups into finite groups of order less than Cr and with injectivity radius at least
r. Here, the number C depends only on the hyperbolic type. The statement of
Theorem 5 also makes use of the fact that there exist faithful representations of
triangle groups in special linear groups; an explicit example will be given later in
Section 3.

Theorem 5. Let Z[η, ζ, ξ] = Z[x, y, z]/(h1(x), h2(y), h3(z)), where h1(x) ∈
Z[x], h2(y) ∈ Z[y], h3(z) ∈ Z[z], are monic polynomials of degree d1, d2, d3 > 0;
let s1 = 1 + ||h1(x)||, s2 = 1 + ||h2(y)|| and let s3 = 1 + ||h3(z)||. Assume that
we have a faithful representation θ : T (l,m, n) → SLq(Z[η, ζ, ξ]) of the triangle
group T (l,m, n) = 〈a, b, c|al = bm = cn = abc = 1〉. Further, let all the matrices
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θ(a), θ(b) and θ(c) have norm ≤ t and width ≤ w. Then, for any positive integer
r there exists a faithful representation of T (l,m, n) with injectivity radius at least
r in a finite group H such, that

(3) |H| < (qwts1
d1−1s2

d2−1s3
d3−1)

q2d1d2d3r
.

Proof. Let θ : T (l,m, n) → SLq(Z[η, ζ, ξ]) be a faithful representation of the
triangle group T (l,m, n) = 〈a, b, c|al = bm = cn = abc = 1〉 and let r be a natural
number. Further, let Sr be the set of all non-identity elements u of T (l,m, n)
which can be written as words of lenghts at most r in symbols a, b and c. For
every u in Sr, we can express the matrix θ(u) as a product of at most r matrices
from SLq(Z[η, ζ, ξ]) and every such matrix has norm ≤ t and width ≤ w. From
Lemma 4 (for n = 3) it follows that for each u ∈ Sr we have:

(4) ||θ(u)|| ≤ (qws1
d1−1s2

d2−1s3
d3−1)

r−1
tr.

Let φp : Z → Zp be the standard ring epimorphism. This epimorphism extends
in an obvious way to the ring epimorphism φp,x : Z[x, y, z] → Zp[x, y, z], and also
to the ring epimorphism

φp,h : Z[x, y, z]/(h1(x), h2(y), h3(z)) → Zp[x, y, z]/(φp,x(h1(x), h2(y), h3(z))).

As h1(x), h2(y) and h3(z) are monic, we can construct the epimorphism φp,h in
the following way. Let Z[η, ζ, ξ] and Zp[η̃, ζ̃, ξ̃] be the rings obtained by adjoining
roots η, ζ, ξ of the polynomials h1(x), h2(y) and h2(z), respectively, to Z, and roots
η̃, ζ̃, ξ̃ of the polynomials φp,x(h1(x)), φp,x(h2(y)) and φp,x(h3(z)), respectively, to
Zp. The mapping φp,h : Z[η, ζ, ξ] → Zp[η̃, ζ̃, ξ̃] is the unique epimorphism which
sends η to η̃, ζ to ζ̃ and ξ to ξ̃, and whose restriction to Z is φp. It is easy to see
that φp,h extends to a group homomorphism

(5) Φp,h : SLq(Z[η, ζ, ξ]) → SLq(Zp[η̃, ζ̃, ξ̃]).

We need to specify the value of p in (5). Let p be a prime number such that
(qws1

d1−1s2
d2−1s3

d3−1)r−1
tr < p < (qwts1

d1−1s2
d2−1s3

d3−1)r
. (It was proved by

Chebyshev that if n > 1, then there exists a prime number p between n and
2n; this theorem is known as Bertrand’s postulate.) We claim that the group
H = SLq(Zp[η̃, ζ̃, ξ̃]) together with the representation ϑ = Φp,hθ : T (l,m, n) →
SLq(Zp[η̃, ζ̃, ξ̃]) has the required properties. To prove this, it is sufficient to show
that for any non-identity element u ∈ Sr, the matrix ϑ(u) is never the identity
matrix in SLq(Zp[η̃, ζ̃, ξ̃]). Since θ is faithful and u ∈ Sr, the image θ(u) of an
element u is not the identity matrix in SLq(Z[η, ζ, ξ]). Further, by the inequality
(4) and by our choice of the number p, the image Φp,h(θ(u)) of u cannot be
the identity matrix in SLq(Zp[η̃, ζ̃, ξ̃]) (because θ(u) is not the identity matrix in
SLq(Z[η, ζ, ξ]) and the coefficients of θ(u) are all in absolute value smaller than
p). Therefore, the representation ϑ is faithful and it has injectivity radius at least
r. In each matrix H in SLq(Zp[η̃, ζ̃, ξ̃]) we have q2 elements. Each such element
is a polynomial in η̃, ζ̃, ξ̃ with width less than d1d2d3, and for each of the d1d2d3
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coefficients we have p choices. Thus, for the order of the group H we have

|H| = |SLq(Zp[η̃, ζ̃, ξ̃])| < pq2d1d2d3 < (qwts1
d1−1s2

d2−1s3
d3−1)

q2d1d2d3r
.

�

3. Quotients of triangle groups and injectivity radius

In this section we present a result for homomorphisms of triangle groups in finite
groups with injectivity radius at least r with help of Chebyshev polynomials. Let
l,m, n ≥ 2 be natural numbers such that 1/l + 1/m + 1/n < 1. Further, let
η = 2 cos (π/l), ζ = 2 cos (π/m) and ξ = 2 cos (π/n). Next, let the matrices A, B
and C be given by

A =

 1 ξ ηξ + ζ
0 −1 −η
0 η η2 − 1

 , B =

 ζ2 − 1 0 ζ
ηζ + ξ 1 η
−ζ 0 −1

 and

C =

 −1 −ξ 0
ξ ξ2 − 1 0
ζ ζξ + η 1

 .

Then, the assignment a 7→ A, b 7→ B and c 7→ C extends to a faithful representa-
tion of the hyperbolic triangle group T (l,m, n) = 〈a, b, c|al = bm = cn = abc = 1〉
in SL3(Z[η, ζ, ξ]) [5]. If Tk(x) = cos (k arccos x) is the k−th Chebyshev polynomial
and if Pk(x) = 2Tk(x/2), then the polynomial Pk(x) is monic and has integer coef-
ficients. It is easy to verify that η, ζ and ξ are roots of the polynomials Pl(x) + 2,
Pm(x) + 2 and Pn(x) + 2, respectively. Let h1(x) = Pl(x) + 2, h2(x) = Pm(x) + 2
and h3(y) = Pn(y) + 2. We see that the norm and width of the matrices A,B
and C are t = 1 and w = 2. For the norm of the polynomial Pk(x) we have the
inequality ||Pk(x)|| ≤ 2k−1. It follows that s1 = 1 + ||h1(x)|| ≤ 1 + 2l−1 < 2l,
s2 = 1 + ||h2(x)|| ≤ 1 + 2m−1 < 2m and s3 = 1 + ||h2(y)|| ≤ 1 + 2n−1 < 2n.
Theorem 5 (for q = 3, d1 = l, d2 = m, and d3 = n) then implies the following
upper bound on the smallest order o(l,m, m; r) of a homomorphic image of the
triangle group T (l,m, n) in a finite group with injectivity radius at least r.

Theorem 6. Let 1/l + 1/m + 1/n < 1. Then for every r ≥ 1 there exists
a homomorphic image of the triangle group T (l,m, n) in a finite group of order at
most Cr with injectivity radius at least r, where

C = C(l,m, n) < 2[(l2+m2+n2)−(l+m+n)+3]9lmn.

In [6], the author derived an upper bound on the order o(2,m, n; r) of a homo-
morphic image of the triangle groups T (2,m, n) with injectivity radius at least r.
We note that in [6], the problem is studied in the terminology of r-locally faithful
representations. Using extensions of the ring Z by a single algebraic element, it
was shown in [6], that o(2,m, n; r) < C̃r where C̃ = C̃(m,n) < 272(mn)3 .

Multiple extensions of the ring Z used for constructions of homomorphic images
of T (2,m, n) clearly yield better results. In particular, setting l = 2, ||h1(x)|| =
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||P2(x) + 1|| = 1, s1 = 1 and d1 = 2 in the discussion preceding Theorem 6 we
obtain:

Corollary 1. Let 1/m + 1/n < 1/2. Then for every r ≥ 1 the triangle group
T (2,m, n) has an r−locally faithful representation in a finite group of order at
most Cr where

C = C(m,n) < 2[(m2+n2)−(m+n)+5]18mn.

For example, if n = m, then the ratio of the estimates from [6] and Corollary 1
is C

C̃
= 218m2(−4m4+2m2−2m+5) which is asymptotically 2−72m6

for large m.

We conclude with an application of our results to regular hypermaps. For basic
concepts regarding hypermaps and representations of their embeddings on surfaces
we refer to [1]. In particular, we will use the description of surface embeddings of
hypermaps via associated cubic maps as introduced in [2].

We say that a hypermap M on a surface S has planar width larger than r if
every non-contractible simple closed curve on S intersects the associated cubic
map of M in more than r points.

The interesting problem of constructing regular hypermaps of arbitrarily large
planar width turns out to be equivalent to constructing quotients of triangle groups
by homomorphisms of arbitrarily large injectivity radius. On the group theory
level this is equivalent to the fact that triangle groups T (l, m, n) are residually
finite, which means that the intersection of all normal subgroups of T (l,m, n) of
finite index is trivial. While residual finiteness as such does not provide any upper
bounds, the result of Theorem 6 can be used for estimating the number of elements
(hypervertices, hyperedges or hyperfaces) of a regular hypermap with planar width
larger than r.
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