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ON A CLASS OF DENSITIES OF SETS
OF POSITIVE INTEGERS

M. MAČAJ, L. MIŠÍK, T. ŠALÁT and J. TOMANOVÁ

Abstract. A method proposed by R. Alexander in his paper published in Acta

Arithmetica XII (1967) enables to obtain various densities of set of positive integers,

including asymptotic and logarithmic ones. In our paper some properties of the
above mentioned densities are studied and certain earlier results on the asymptotic

and logarithmic density are strengthened.

Introduction and notations

In what follows we assume that cn > 0 (n = 1, 2, . . . ) and
∞∑

n=1
cn = +∞. If A ⊆ N,

we put

hn(A) =
1
sn

n∑
k=1

χA(k)ck (n = 1, 2, . . . ), wheresn = c1 + · · ·+ cn (n = 1, 2, . . . )

and χA is the characteristic function of A, i.e. χA(k) = 1 if k ∈ A and χA(k) = 0
otherwise.

We set

(1) h(A) = lim
n→∞

hn(A)

whenever the limit on the right-hand side exists.
Observe that the set functions hn (n = 1, 2, . . . ) defined on the set 2N are

σ-additive, while the function h is additive and defined on the class Sh of all
A ⊆ N for which the limit on the right-hand side of (1) exists.

Taking cn = 1, cn = 1/n (n = 1, 2, . . . ) the function h will mean the asymp-
totic density d, the logarithmic density δ, respectively (Sh will mean Sd, Sδ

respectively) (see [11, pp. 246–249], [6, pp. 21–22, 32–35]). It is well-known that
Sd ⊆ Sδ [6, p. 34].

We shall use the concept of Baire’s metric space. Denote by P the set of all
infinite sequences of natural numbers (we identify the sequence a1 < a2 < · · · <
an < . . . and the set {a1, a2, . . . , an, . . . }). If A = (an), B = (bn) belong to
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P, the distance between A and B will be defined by ρ(A,B) = 0 if A = B, i.e.
an = bn for all n and by ρ(A,B) = 1/min {n : an 6= bn} otherwise. The metric
space (P, ρ) is complete (see [10, p. 95], [15]).

Further we recall the concept of porosity of sets in a metric space in consent
with [15] and [17].

Let (Y, d) be a metric space, let y ∈ Y and r > 0. Denote by B(y, r) the ball
in Y , i.e. B(y, r) = {x ∈ Y ; d(x, y) < r}. If M ⊆ Y , then for y ∈ Y we set

γ(y, r,M) = sup{t > 0 : (∃z ∈ Y )(B(z, t) ⊆ B(y, r)) ∧ (B(z, t) ∩M = ∅)}.
If such a t does not exist, we put γ(y, r,M) = 0. The numbers p̄(y, M) =

lim
r→0+

sup γ(y,r,M)
r , p(y, M) = lim

r→0+
inf γ(y,r,M)

r are called the upper and lower

porosity of M at y, respectively.
If p̄(y, M) = p(y, M) = p(y, M), then the number p(y, M) is called the porosity

of M at y.
The numbers p̄(y, M), p(y, M) and p(y, M) belong to the interval [0, 1].
A set M ⊆ Y is called porous (very porous) at y if p̄(y, M) > 0 (p(y, M) > 0).
If c > 0, then M is called c-porous (very c-porous) at y provided that p̄(y, M) ≥

c (p(y, M) ≥ c).
A set M ⊆ Y is called strongly porous at y if p(y, M) = 1 (i.e. if p(y, M) = 1).
A set M ⊆ Y is called porous, very porous, c-porous, very c-porous and strongly

porous in Y if it is porous, very porous, c-porous, very c-porous and strongly porous
at every y ∈ Y , respectively.

A set M ⊆ Y is called σ-porous (σ-very porous) in Y if M =
∞⋃

n=1
Mn and each

of the sets Mn (n = 1, 2, . . . ) is porous (very porous) in Y .
A set M ⊆ Y is called σ-c-porous, σ-very c-porous and σ-strongly porous in Y

if M =
∞⋃

n=1
Mn and each of the sets Mn (n = 1, 2, . . . ) is c-porous, very c-porous

and strongly porous in Y , respectively.
If a set M is porous in Y , then it is nowhere-dense in Y .
Every σ-porous set is a set of the first Baire category in Y .
Consequently, both the porosity and the σ-porosity are useful tools to describe

the structure of nowhere-dense sets and of sets of the first Baire category more
precisely.

1. The basic properties of measures h, hn

The measures h, hn can be viewed as an application of the following summability
method to the sequences of numbers 0’s and 1’s.

The method defined by the matrix

C =



c1/s1

c1/s2, c2/s2

...
c1/sn, c2/sn, . . . , cn/sn

...


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is said to be (C) method (see [4, pp. 72–73] [13, p. 4]). It is obvious that the
matrix C satisfies the conditions of regularity (see [13, p. 69]) and it belongs to
the large class of triangular matrices studied in [9].

According to the known Steinhaus theorem (see [4, p. 93], [13, p. 78], [16])
there exists a sequence of 0’s and 1’s which is not summable by the method (C).
Such a sequence is the characteristic function of a set from P. Then there is a set
A ∈ P such that χA is not summable by the method (C) and so A /∈ Sh.

Sufficient conditions for the existence of a non-convergent sequence of 0’s and 1’s
which is summable by a matrix method were given in [1] (the considered sequence
contains infinitely many 0’s and 1’s and so, it is a characteristic function of a set
A ∈ P).

Set

ank =
ck

sn
1 ≤ k ≤ n,

ank = 0 k > n.

The sufficient conditions mentioned above are of the form:
∞∑

k=1

|ank| < +∞ n = 1, 2, . . . ,(a)

lim
n→∞

max
1≤k≤n

|ank| = 0.(b)

Since
n∑

k=1

(ck/sn) = 1 for all n, (a) is fulfilled.

The condition (b) says

lim
n→∞

max
1≤k≤n

ck

sn
= 0,(2)

which can be written as

max
1≤k≤n

ck = o(sn) (n →∞)

((2) holds for instance if the sequence (cn)∞n=1 is bounded).
We shall show that condition (2) is equivalent to a seemingly stronger condition

lim
n→∞

cn

sn
= 0.(3)

Proposition 1.1. For every sequence (cn)∞n=1, cn > 0, such that
∞∑

n=1
cn = +∞,

conditions (2) and (3) are equivalent.

Proof. We have obviously max {ck, k ≤ n} ≥ cn. But, then (2) implies (3).
If the sequence (cn)∞n=1 is bounded, then both limits from conditions (2) and

(3) are equal to zero.
Thus, we can suppose that the sequence (cn)∞n=1 is not bounded. Denote by

i(n) the largest index of the maximal element of the finite sequence c1, . . . , cn (then
ci(n) = max{ck; k ≤ n}). Since the sequence (cn)∞n=1 is not bounded, i(n) →∞ as
n →∞ holds.
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Now
0 ≤

ci(n)

sn
≤

ci(n)

si(n)

and (3) implies (2). �

We shall summarize our previous considerations.

Theorem 1.1. Let cn > 0 (n = 1, 2, . . . ) and
∞∑

n=1
cn = +∞. Then the

following statements are true:
(i) there is a set A ∈ P such that A ∈ P\Sh.
(ii) If (3) is valid, then there exists an A ∈ P such that N\A is infinite and

A ∈ Sh.

Corollary. If the assumption of (ii) holds, then T & Sh where T denotes the
set of all A ∈ 2N such that A or N\A are finite sets.

It is well-known that the set of values of the asymptotic density d, the loga-
rithmic density δ as well, fill the interval [0,1] (i.e. d(Sd) = [0, 1], δ(Sδ) = [0, 1]).
In this connection we shall show that the density h possesses the same property
provided that the sequence (cn)∞n=1 satisfies (3). In the first place we prove the
following auxiliary result.

Lemma 1.1. a) If lim
n→∞

(cn/sn) = 0, then for every A ⊆ N we have

lim
n→∞

hn(A)− hn−1(A) = 0.

b) If there exists A ⊆ N such that 0 < h(A) < 1, then lim
n→∞

(cn/sn) = 0.

Proof. From definition of h directly follows that for every A ⊆ N we have

hn(A)− hn−1(A) = (χA(n)− hn−1(A))
cn

sn
.(4)

This implies (a). For (b) the existence of h(A) implies that lim
n→∞

hn(A) −
hn−1(A) = 0 which is impossible, assuming lim sup

n→∞
(cn/sn) > 0 on the right-hand

side of (4). �

Theorem 1.2. The values of the measure h fill the interval [0, 1] if and only if
lim

n→∞
(cn/sn) = 0.

Proof. 1) Necessarily follows from Lemma 1.1.
2) We shall show that for every v ∈ [0, 1] there is a set B ∈ Sh such that

h(B) = v.
If v = 0, v = 1, then it suffices to choose B = ∅ or B = N respectively.

Suppose 0 < v < 1. We shall construct the set B in the form B =
∞⋃

n=1
(an, bn]∩N

where an, bn ∈ N , an < bn < an+1. If the intervals (a1, b1], . . . , (an, bn] such that
hbn

(B) > v are given, then we choose (an+1, bn+1] such that
han+1(B) <v ≤ han+1−1(B),

hbn+1−1(B) ≤v < hbn+1(B).
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By Lemma 1.1(a) we have han
(B) → v , hbn

(B) → v. Since the sequence hx(B)
is monotonous on intervals [an, bn] and [bn + 1, an+1 − 1] we get hn(B) → v. �

The previous Theorem 1.2 will be strengthened in the following theorem. Recall
that the density h is said to have Darboux property provided that for each A ⊆ N
with h(A) > 0 and each t ∈ [0, h(A)] there exists a set B ⊆ A such that h(B) = t
(see [7]).

Theorem 1.3. The density h has the Darboux property if and only if
lim

n→∞
(cn/sn) = 0.

Proof. 1) Necessarily follows from Theorem 1.2.
2) Suppose that (3) holds. Let A = {a1 < a2 < · · · < an < . . . } ⊆ N be such

that h(A) = a ∈ [0, 1]. Let b ∈ [0, a]. We will find a set B ⊆ A such that h(B) = b.
If a = 0, then any subset B of A has zero density.
Thus we can suppose that a > 0. Now let us take the sequence dn = can ,

n = 1, 2, . . . and consider the density h′ based on this sequence. Since a > 0 the
sequence (dn) also satisfies (3). Hence, by Theorem 1.2 there exists a set I ⊆ N
such that

h′(I) =
b

a
.

We now show, that for the set B = AI = {an, n ∈ I} ⊆ A, h(B) = b holds:

hn(B) =

n∑
k=1

χB(k)ck

sn
=

n∑
k=1

χB(k)ck

n∑
k=1

χA(k)ck

·

n∑
k=1

χA(k)ck

sn
.

Now, for n →∞ the first factor converges to h′(I), while second one converges
to h(A). Thus h(B) = h′(I) · h(A) = (b/a) · a = b. �

2. Structure of the space (P, ρ) from the standpoint
of the behaviour of the sequence (hn(A))∞n=1 , A ∈ P

In this part of the paper we shall be concerned with the behaviour of the sequence
(hn(A))∞n=1, where A ∈ P. We shall deduce certain general and in a certain sense
definite result, which enables us to judge the magnitude of the system Sh (Sd, Sδ

specially) from topological point of view.
Although the densities h we defined in the first part depend on the choice of

series
∞∑

n=1
cn, a general result can be proved (Theorem 2.1) for a wide class of

these series. We note that from Theorem 1.1 given in [14] it follows that Sh ∩ P
is the set of the first Baire category in the space P. Next theorem improves this
assertion.

We recall that a number t ∈ R is said to be a limit point of a sequence (an)∞n=1

(an ∈ R, n = 1, 2, . . . ) provided that there exists a sequence n1 < n2 < . . . such
that ank

→ t (k → ∞). Denote by (hn(A))′n where A ∈ P, the set of all limit
points of the sequence (hn(A))∞n=1.
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First we shall prove an auxiliary result concerning the set (hn(A))′n.

Proposition 2.1. If lim
n→∞

(cn/sn) = 0, then for every A ⊆ N, the set of all

limit points of (hn(A))∞n=1 is connected, i.e. forms an interval.

Proof. Follows from Lemma 1.1(a) and the following theorem of [3]:
If (tn)∞n=1 is a sequence in a metric space (X, ρ) satisfying

i) any subsequence of (tn)∞n=1 contains a convergent subsequence, and
ii) lim

n→∞
ρ(tn, tn−1) = 0,

then the set of all limit points of (tn)∞n=1 is connected in (X, ρ). �

Theorem 2.1. Let cn > 0 (n = 1, 2, . . . ) and
∞∑

n=1
cn = +∞. Let (cn)∞n=1

satisfies lim
n→∞

(cn/sn) = 0. Then the set of all A ∈ P with

(5) (hn(A))′n = [0, 1]

is residual in the space P.

Corollary. The sets Sh ∩P, Sd ∩P and Sδ ∩P are of the first Baire category
in the space P.

Proof of Theorem 2.1. Put

D = {A ∈ P : (hn(A))′n = [0, 1]}.

Since the set of all limit points of a sequence is closed we have

(6) D =
⋂

Dt

t∈Q∩[0,1]

,

where Q is the set of all rational numbers and Dt = {A ∈ P : t ∈ (hn(A))′n}.
The set Dt can be expressed in the form

(7) Dt =
∞⋂

k=1

∞⋂
j=1

∞⋃
n>j

Dt,k,n,

where

Dt,k,n = {A ∈ P : |hn(A)− t| < 1
k
}.(7’)

For fixed t, k, n the set Dt,k,n is evidently open in P. Hence Dt is a Gδ-set (see
(7)).

It is easily to see that every set of the form {A ∈ Sh ∩ P; h(A) = t} where
t ∈ [0, 1] is dense in P. This shows that also Dt is a dense set in P.

Consequently, the set Dt is a dense Gδ-set in P. Therefore the set Dt is residual
in P (see [8, p. 49]) and so, the set D = ∩Dt

t∈Q∩[0,1]
is residual in P, too. This ends

the proof of Theorem 2.1. �
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Next result completes Theorem 2.1.

Theorem 2.1∗. The set P\D is dense in the space P and is of the first Baire
category in P.

Remark. From the fact that d, δ are special kinds of density h and both satisfy
condition (3) it follows that Sd∩P and Sδ∩P are dense, of the first Baire category
in the space P and so, their complements are residual sets in P.

By the definition of Baire’s metric it can be easily seen that each of sets
S1 = {A ∈ P : lim

n→∞
suphn(A) < 1},

S0 = {A ∈ P : lim
n→∞

inf hn(A) > 0}

is a set of the first Baire category, dense in the space P.
This suggests to investigate the porosity character of them. In this connection

we introduce

Tm = {A ∈ P : lim
n→∞

suphn(A) < 1− 1
m
} m = 2, 3, . . . ,

Tm,p = {A ∈ P : ∀
n≥p

hn(A) < 1− 1
m
} p = 1, 2, . . . .

It can be easily shown that the following lemma holds.

Lemma 2.1. The following statements are true:

S1 =
∞⋃

m=2

Tm(i)

Tm ⊆
∞⋃

p=1

Tm,p m = 2, 3, . . . .(ii)

We shall study the porosity character of the set Tm,p (m ≥ 2) at points A ∈ P
for which

lim
n→∞

suphn(A) = 1(8)

holds (i.e. at points of the set P\S1).
From (8) we obtain that there is a sequence n1 < n2 < · · · < nk < . . . with the

property

lim
k→∞

hnk
(A) = 1.(9)

Construct the ball B(A, δ) (δ > 0) and choose k ∈ N such that 1/nk < δ. Then
B(A, 1/nk) ⊆ B(A, δ). Owing to (9) there is k0 ∈ N such that for every k > k0,
hnk

(A) > 1− 1/m holds. Hence, the intersection of B(A, 1/nk) and the set Tm,p

is empty (we can already assume that nk > p). But, then p̄(A, Tm,p) = 1 and by
Lemma 2.1 the set S1 is σ-1-porous at A. So we get

Theorem 2.2. The set S1 is σ-1-porous at every point of the set P\S1.
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Now we shall deal with the porosity character of the set S0. Set

T ′m = {A ∈ P : lim
n→∞

inf hn(A) >
1
m
} m = 2, 3, . . . ,

T ′m,p = {A ∈ P : ∀
n≥p

hn(A) >
1
m
} p = 1, 2, . . . .

It can be easily checked that the following lemma holds.

Lemma 2.2. The following statements are true:

S0 ⊆
∞⋃

m=2

T ′m(i)

T ′m ⊆
∞⋃

p=1

T ′m,p m = 2, 3, . . . .(ii)

Theorem 2.3. The set S0 is σ-strongly porous in the space P.

Proof. We shall determine the porosity character of the set T ′m,p where m, p are
fixed.

Let A = (an)∞n=1 the an arbitrary point of P, 0 < δ < 1. Choose a v ∈ N such
that 1/v < δ ≤ 1/(v − 1) (v ≥ 2). We can already suppose that δ > 0 is so small
that v ≥ p.

Choose D = (dn)∞n=1 where

dn = an n = 1, 2, . . . , v.

Then irrespective of the rest terms of D we have

D ∈ B(A,
1
v
) ⊆ B(A, δ).

Set t = av. Since st/st+r → 0 (r →∞) there is an r ∈ N such that
st

st+r
<

1
m

.(10)

Take
dv+i = t + r + i i = 1, 2, . . . .

According to (10) and definition of D we get

ht+r(D) =
1

st+r

(
t∑

k=1

ckχD(k) +
t+r∑

k=t+1

ckχD(k)

)
<

1
m

.(11)

By the choice of v and from (11) we obtain that D does not belong to T ′m,p.
Construct the ball B(D, 1/(v + 1)) ⊆ B(A, δ). If E ∈ B(D, 1/(v + 1)), then E

and D have the first v + 1 terms in common and so, B(D, 1/(v + 1)) ∩ T ′m,p = ∅.
Hence, γ(A, δ, T ′m,p) ≥ 1/(v + 1) and by the choice of δ we get

γ(A, δ, T ′m,p)
δ

≥ v − 1
v + 1

→ 1 (δ → 0+).

In this way p(A, T ′m,p) = 1 (i.e. the set T ′m,p is strongly porous in P) and by
Lemma 2.2 we get the assertion of Theorem 2.3. �
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Corollary. The set S0 is dense, of the first Baire category in the space P.

Acknowledgement. The authors are thankful to the reviewer for his valuable
remarks and suggestions which led to the improvement of the original version of
the paper.
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