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ON SUBGROUPOID LATTICES OF SOME FINITE GROUPOID

K. PIÓRO

Abstract. We investigate finite commutative groupoids G = 〈G, ◦〉 such that

g ◦ h 6= g for all elements g, h of G. First, we show that for any such groupoid, its

weak (i.e. partial) subgroupoid lattice uniquely determines its subgroupoid lattice.
Next, we characterize the lattice of all weak subgroupoids of such a groupoid. This

is a distributive finite lattice satisfying some combinatorial conditions concerning
its atoms and join–irreducible elements.

In [5] we proved that for any (total) locally finite unary algebra of finite type
(i.e. with finitely many unary operations), its weak subalgebra lattice uniquely
determines its strong subalgebra lattice. Here we generalize this result for some
finite commutative groupoids. Next, in the second part of this paper, necessary
and sufficient conditions are found for a lattice to be isomorphic to the weak
subgroupoid lattice of such a groupoid. The classical subgroupoids are sometimes
called strong as opposed to the other kind of partial subgroupoids, called weak,
considered in this paper. Recall that a partial groupoid H is a weak subgroupoid
of a (partial) groupoid G iff the carrier of H is contained in the carrier of G, and
for any elements g, h of H, if the product g ◦ h is defined in H, then this is also
define in G and these two products are equal. The lattices of all weak and strong
subgroupoids of a groupoid G are denoted by Sw(G) and Ss(G), respectively. (More
details on various kinds of partial subalgebras and lattices of such subalgebras can
be found e.g. in [3] or [4]; see also [6]).

Theorem 1. Let G = 〈G, ◦〉 be a (total) finite and commutative groupoid such
that

(∗) g ◦ h 6= g for each g, h ∈ G.

Let H = 〈H, ◦〉 be a partial commutative groupoid such that

Sw(H) ' Sw(G).

Then the strong subgroupoid lattice Ss(H) is isomorphic to the strong subgroupoid
lattice Ss(G), and moreover, H is finite, total and satisfies (∗).
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Before the proof observe that for any two elements h1 and h2 of a partial com-
mutative groupoid, if h1 ◦ h2 is defined, then h2 ◦ h1 can be also defined (if this is
not), and it may be done in the exactly one way. More formally, we assume that
the equation x◦ y ≈ y ◦x is strongly valid in H, i.e. if one side is defined, then the
other also is, and they are equal. For more information on various kinds of partial
equations see e.g. [3] or [4].

Note also that the assumption (∗) plays an important role in our proof of this
result, but, at this moment, the author do not know any counterexample which
would show that Theorem 1 is false without this condition.

To prove the above result we apply hypergraph–algebraic language introduced in
[6]. Recall that in this paper we defined the directed hypergraph D(G) representing
a groupoid (or more general, any algebra) G. More precisely, the carrier G of G
is the set of vertices, and directed hyperedges are formed by all directed triples
e = 〈g, h, i〉 such that g ◦ h is defined and equal to i. Then {g, h} is said to be
the initial set of e (denoted by I

D(G)
1 (e)), and i is said to be the final vertex of

e (denoted by I
D(G)
2 (e)). Obviously D(G) contains only edges and 2–edges (i.e.

hyperedges with one– and two–element initial sets). Observe also that if g 6= h
and g ◦ h and h ◦ g are defined, then we have two different 2–edges starting from
{g, h}. But we consider only partial commutative groupoids (i.e. g ◦ h = h ◦ g,
and both sides are defined or not). Thus such two 2–edges have the same initial
set and the same final vertex. Hence, between any two–vertex set and a vertex,
there are none or exactly two 2–edges.

It is easy to see that in D(G), at most one edge starts from any vertex, and at
most two 2–edges start from any two–element set of vertices. Hence, G is total iff
exactly one edge starts (in D(G)) from any vertex, and exactly two 2–edges start
from any two–vertex set.

An edge or 2–edge e is said to be regular iff the final vertex of e does not belong
to the initial set of e. Otherwise e is a loop or a 2–loop, respectively. It is easily
to shown that G satisfies (∗) iff D(G) has not loops and 2–loops.

Proof. Let D = D(G) and K = D(H). It is proved in [6, Corollary 3.14]

Sw(G) ' Sw(H) ⇐⇒ D∗ ' K∗,

where D∗ and K∗ are (undirected) hypergraphs obtained from D and K, respec-
tively, by omitting the orientation of all hyperedges (but not hyperedges them-
selves). More formally, for any (undirected) hyperedge e of D∗, its set of endpoints
consists of the initial set ID

1 (e) of e in D and the final vertex ID
2 (e) of e in D, i.e.

ID∗
(e) = ID

1 (e) ∪
{
ID
2 (e)

}
.

First, D and K have the same number of vertices. In particular, H is a finite
groupoid. Secondly, since G is total, D contains exactly 2 · M ·(M−1)

2 = M · (M − 1)
2–edges, and exactly M edges, where M is the number of all vertices of D. Anal-
ogously, K contains at most M · (M − 1) 2–edges, and at most M edges. Thirdly,
by (∗), D has not loops and 2–loops.

Let D1 and K1 be directed hypergraphs obtained from D and K, respectively,
by omitting all regular 2–edges. Let D2 and K2 be directed hypergraphs consisting
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of all vertices and all regular 2–edges of D and K, respectively. D2 contains all
2–edges of D, so we first obtain D2 has exactly M · (M −1) hyperedges. Secondly,
D1 contains all edges of D, so D1 is the usual directed graph. Moreover, D1 is
a finite total functional directed graph without loops.

The image of a regular 2–edge in D∗ (or K∗) has exactly three endpoints. Con-
versely, since D and K have only edges and 2–edges, each (undirected) hyperedge
of D∗ or K∗ with three endpoints is the image of some regular 2–edge. Hence,
because D∗ ' K∗,

D∗
1 ' K∗

1 and D∗
2 ' K∗

2.

The second isomorphism implies that K2 has M · (M − 1) 2–edges. Thus K2

contains all 2–edges of K. Hence first, K has not 2–loops, and exactly two 2–edge
start from any two–element set of vertices. Secondly, K1 consists of all edges of
K. This fact and the first isomorphism imply that K1 has exactly M edges. Thus
exactly one edge starts from any vertex of K. Further, by the same isomorphism,
K1, thus also K, does not contain loops (because D1 has not loops).

All the above facts imply that H is a finite total groupoid satisfying (∗).

Exactly two 2–edges start from each two–element set of vertices (in D and K),
and moreover, they have the same final vertex. Thus we can replace any such pair
of 2–edges by a single 2–edge to obtain two new directed hypergraphs D and K.
Since D and K have only regular edges and 2–edges, and D∗, K∗ are isomorphic,
we deduce

D
∗ ' K

∗
.

More precisely, since D (and K) contains only regular hyperedges, we have that
2–edges of D (K) and hyperedges of D∗ (K∗) with three endpoints are in the
bijective correspondence, given by ∗. Moreover, for any three–element set W of
vertices, the set F of all undirected hyperedges with W as the endpoint set consists
of all (regular) 2–edges starting from W and ending in W . Hence, first, the number
l of all elements of F is even. Secondly, the analogous set of hyperedges for D

∗

(K
∗
) has exactly l

2 elements. These facts imply that any isomorphism between
D∗ and K∗ induces an isomorphism from D

∗
onto K

∗
.

Note that it is not true for directed hypergraphs with 2–loops. For example,
take M with two vertices and two 2–loops, and N with two vertices and two
regular edges forming a directed cycle. Then M∗ ' N∗. But M

∗
and N

∗
are not

isomorphic, because M contains exactly one hyperedge (which is a 2–loop).
Observe also that we can assume

D
∗

= K
∗
.(1)

It is sufficient to transport (by any isomorphism) the structure of the hypergraph
K

∗
onto sets of vertices and hyperedges of D. In this way we also transport the

structure of the directed hypergraph K onto these two sets.
Let D2 and K2 be directed hypergraphs containing all vertices and all 2–edges of

D and K, respectively. Note that these two directed hypergraphs are constructed
from D2 and K2, respectively, in the same way as D and K. Note also that D1
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and K1 consist of all edges of D and K. Obviously by (1),

D∗
1 = K∗

1 and D
∗
2 = K

∗
2.(2)

Recall (see [2, Chapter 3, Theorem 17]), Ore Theorem: all edges of a finite (undi-
rected) graph can be directed to a form of total functional directed graph iff each
of its connected components contains exactly one cycle. Recall also that for a fi-
nite connected graph with one cycle (v1, . . . , vn) (where v1, . . . , vn are consecutive
vertices of the cycle), at most two such directions exist. More precisely, the edges
in the cycle have to be directed either from vi to vi+1 for i = 1, . . . , n−1 and from
vn to v1, or from vi+1 to vi for i = 1, . . . , n−1 and from v1 to vn. Moreover, other
edges have to be directed towards the cycle. Thus we have exactly two ways (if
the cycle is non–trivial, i.e. has at least two vertices) or exactly one (if the cycle
is trivial).

Since D1 and K1 are finite total functional directed graphs and K∗
1 = D∗

1, the
above facts (applying to each connected component separately) we obtain that
K1 is obtained from D1 by inverting the orientation of some pairwise disjoint
directed cycles (more precisely, each of these cycles belongs to another connected
component).

Since D
∗
2 = K

∗
2, we have that for any 2–edge e,

ID
1 (e) ∪

{
ID
2 (e)

}
= IK

1 (e) ∪
{
IK
2 (e)

}
,

and each of these sets has exactly three elements.
This equality of sets implies, of course, that exactly one of the following two

cases is satisfied:
ID
2 (e) = IK

2 (e) or ID
2 (e) 6= IK

2 (e).

If the first condition holds, then also ID
1 (e) = IK

1 (e). Thus all such 2–edges have
the same orientation in D2 and in K2.

Now take the set F of all 2–edges f which satisfy the second case, i.e. IK
2 (f) 6=

ID
2 (f). Let us denote vf = IK

2 (f) and df = ID
2 (f). Then by the above equality

of sets, vf ∈ ID
1 (f). The second vertex of ID

1 (f) (i.e. different from vf ) we denote
by uf . Applying again the above equality, since ID

1 (f) = {vf , uf}, we obtain
IK
1 (f) = {uf , df}.

Obviously K2 is obtained from D2 by inverting the orientation of all 2–edges
from F according to the set {vf : f ∈ F}, i.e. in this way that for any f ∈ F ,
uf and df form the new initial set and vf forms the new final vertex.

Now we show that F can be divided onto finitely many 2–edge–disjoint subsets
in such a way that each of them forms a sequence (f1, . . . , fn), called the quasicycle,
such that {vfi+1 , ufi+1} = {ufi , dfi}, where fn+1 = f1. Of course, we can assume
that F is non–empty. Our proof is some generalization of one of proofs of Euler
Theorem (see [2, Chapter 11]).

Take an arbitrary 2–edge f1 from F . Then there is a 2–edge f2 of D2 starting
from {uf1 , df1}. f2 has to be contained in F . Otherwise f2 starts from {uf1 , df1}
also in K2, which is impossible, because this set is the initial set of f1 in K2 and
f1 6= f2.
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If {uf2 , df2} = {uf1 , vf1}, then (f1, f2) forms the desired quasicycle. Thus we
can assume that these sets are different. Then first, there is a 2–edge f3 of D2

starting from {uf2 , df2}. By the assumption, f3 6= f1. Moreover, as above it can be
proved that f3 ∈ F . Further, {uf3 , df3} 6= {vf2 , uf2}. To see it assume otherwise
that the equality holds, so also {uf3 , df3} = {uf1 , df1}. But then f1 and f3 are
two different 2–edges starting from {uf3 , df3} in K2, which is impossible.

If {uf3 , df3} = {vf1 , uf1}, then the sequence (f1, f2, f3) is a quasicycle. If not,
then we can repeat the above procedure; and so on. But D is finite, so after
finite steps this construction have to be finished. Thus we obtain a quasicycle
(f1, . . . , fn).

If f1, . . . , fn are all 2–edges of F , then the proof of the fact is complete. If
there is a 2–edge g ∈ F \{f1, . . . , fn}, then in the same way as above we construct
a quasicycle g1, . . . , gk containing g (e.g. g1 = g), and contained in F .

Observe that these two quasicycles are 2–edge–disjoint. To see it assume other-
wise. Let 1 ≤ l ≤ k be the greatest number such that gl is contained in (f1, . . . , fn),
and let 1 ≤ j ≤ n be the natural number such that gl = fj . Take h = gl+1 (if l = k,
then h = g1). Then h 6∈ {f1, . . . , fn}, in particular, h 6= fj . By the definition of
quasicycle, h starts (in D2) from {ugl

, dgl
}, and fj+1 starts (in D2) from {ufj

, dfj
}

(if j = n, then fj+1 = f1). Next, these two sets are equal, because gl = fj . Thus
we obtain two different 2–edges of D2 starting from the same set of two vertices,
which is impossible.

Since F is finite, we can repeat this procedure as many times as needed to
obtain finitely many pairwise 2–edge–disjoint quasicycles containing all 2–edges
from F .

Summarizing, we have shown that directed hypergraph K is obtained from D by
inverting the orientation of some pairwise disjoint cycles c1, . . . , cl, and by inverting
the orientation of some pairwise 2–edge–disjoint quasicycles q1, . . . , qk.

Take a strong subhypergraph M of D. (The usual (weak) subhypergraph M is
called strong iff for any edge or 2–edge e of D, if the initial set of e is contained
in M, then e, thus also the final vertex of e, belongs to M; see Definition 2.4 in
[6]). Then for any cycle or quasicycle p ∈ {c1, . . . , cl, q1, . . . , qk}, p is contained
in M, or p and M are hyperedge–disjoint. Assume that some hyperedge e (or
equivalently, its initial set) of p is contained in M. Then all its endpoints belong
to M. Thus the initial set of the successor of e is contained in M, which implies
that the successor also belongs to M; and so on.

Let p be a quasicycle 2–edge–disjoint with M, and e be a 2–edge of p. Then, in
particular, {ue, ve} is not contained in M. Hence we deduce that {ue, de} is also
not contained in M, because this set is the initial set of the successor of e (in p).

Let M̂ be the weak subhypergraph of K consisting of all vertices and hyperedges
of M. First, M̂ is correctly defined, by (1). Observe that M̂ is just obtained from
M by inverting the orientation of these cycles and quasicycles from the family
{c1, . . . , cl, q1, . . . , qk} which are contained in M. Secondly, using the above facts
it is easy to show that M̂ is a strong subhypergraph of K. Analogously, for any
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strong subhypergraph N of K, the weak subhypergraph N̂ of D consisting of all
vertices and hyperedges of N is a strong subhypergraph of D.

Thus we obtain that the function ϕ, assigning M̂ to each strong subhypergraph
M of D, is a well–defined surjection from the set of all strong subhypergraphs of
D onto the set of all strong subhypergraphs of K. Recall (Proposition 2.7 in [6])
that the set of all strong subhypergraphs forms a complete lattice under (strong
subhypergraph) inclusion ≤s. Recall also (Proposition 2.5 (d) and (e) in [6]) that
for any strong subhypergraphs O,P, O = P iff their vertex sets are equal; O ≤s P
iff the vertex set of O is contained in the vertex set of P. The first fact implies that
ϕ is injective. The second implies that ϕ and its inverse ϕ−1 preserve inclusion
≤s. Hence we deduce that ϕ is an isomorphism between the strong subhypergraph
lattices of D and K. Finally observe that since D is obtained from D by doubling
each 2–edge, the strong subhypergraph lattices of D and D are isomorphic. More
precisely, to each strong subhypergraph M of D, it is sufficient to assign the weak
subhypergraph of D obtained from M by doubling each of its 2–edges. Similarly
as above it can be shown that this function is a lattice isomorphism. Of course,
the analogous result for K and K also holds. This completes the proof of the
theorem, because the subgroupoid lattices Ss(G) and Ss(H) are isomorphic to the
strong subhypergraph lattices of D and K, respectively (Corollary 3.9 in [6]). �

Now necessary and sufficient conditions are found for a lattice to be isomorphic
to the weak subgroupoid lattice for some partial commutative groupoid satisfying
the non–equality x ◦ y 6= x. In [1] it is proved that a lattice L is isomorphic to the
weak subalgebra lattice for some partial algebra iff L is distributive algebraic and

(i) every element is a join of join–irreducible elements,
(ii) any non–zero join–irreducible element contains only a finite (and non–

empty) set of atoms,
(iii) the set of all non–zero and non–atomic join–irreducible elements is an an-

tichain with respect to the lattice ordering of L.

(Recall that an element l of L is join–irreducible iff for any elements k1, k2, l =
k1 ∨ k2 implies l = k1 or l = k2.) Note that a partial algebra is finite iff its weak
subalgebra lattice is finite, because each element forms a weak subalgebra. It is
also easy to see that any finite distributive lattice is algebraic and satisfies (i).
Thus, since only finite groupoids are here considered, we can assume that L is
a finite distributive lattice satisfying (ii) and (iii).

Let G = 〈G, ◦〉 be a partial commutative groupoid, such that g ◦ h 6= g (if g ◦ h
is defined) for any g, h ∈ G, and let H = 〈H, ◦〉 be a weak subgroupoid of G.
Recall first, (see Lemma 3 in [1]), that H is an atom in Sw(G) iff H consists of
exactly one element and the binary operation ◦ is defined nowhere. Secondly, H is
a non–zero non–atomic join–irreducible element in Sw(G) iff there are g1, g2, h ∈ G
such that H = {g1, g2, h} and g1 ◦ g2 is defined and equal to h, and ◦ is defined
(in H) onto this directed pair only. Note also h = g1 ◦ g2 6= g1. These facts imply
that every non–zero non–atomic join–irreducible element in Sw(G) contains two or
three atoms.
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Since we consider commutative groupoids in the strong sense, the weak sub-
groupoid lattice Sw(G) has some additional property yet. More formally, take an
arbitrary non–zero non–atomic join–irreducible element H = 〈H, ◦〉 in Sw(G) con-
taining three atoms. Then H = {g1, g2, h} and g1, g2, h are pairwise different and
g1 ◦ g2 is defined and equal to h. Since g1 ◦ g2 is defined also in G, we obtain that
g2 ◦ g1 is defined (in G) and equal to h. Hence, the weak subgroupoid H = 〈H, ◦〉
such that H = H and ◦ is defined onto exactly one pair 〈g2, g1〉 is a non–zero
non–atomic join–irreducible element in Sw(G). H and H are different (because
their operations are defined onto two different pairs of elements), and H contains
the same three atoms as H. (If H contains two atoms, then the non–equality
g1 ◦ g2 6= h implies g1 = g2, and thus H = H.) Thus we obtain that for any
pairwise different three atoms of Sw(G), the number of all non–zero non–atomic
join–irreducible elements containing these atoms is even.

Summarizing we have the following fact

Proposition 2. If L is a lattice isomorphic to the weak subgroupoid lattice
Sw(G) for some partial finite commutative groupoid G such that g ◦ h 6= g for any
g, h ∈ G, then
(L.1) L is finite and distributive,
(L.2) every non–zero non–atomic join–irreducible element contains exactly two

or three atoms,
(L.3) for any three–element set A of atoms, the number of all non–zero and non–

atomic join–irreducible elements containing A is divided by 2,
(L.4) the set of all non–zero non–atomic join–irreducible elements is an antichain

with respect to the lattice ordering of L.

For any lattice L, by A(L) we denote the set of all atoms of L, next, the set
of all non–zero and non–atomic join–irreducible elements of L containing exactly
two atoms is denoted by I2(L), and I3(L) denotes the set of all non–zero and
non–atomic join–irreducible elements of L containing exactly three atoms.

Now we can formulate and prove our characterization theorem.

Theorem 3. Let a lattice L = 〈L,≤L〉 satisfy (L.1)—(L.4). Then L is iso-
morphic to the weak subgroupoid lattice Sw(G) for some partial finite commutative
groupoid G = 〈G, ◦〉 such that g ◦ h 6= g for each g, h ∈ G iff

(i) For any subset I ⊆ I2(L),

|I| ≤
∣∣{a ∈ A(L) : ∃i∈I a ≤L i}

∣∣.
(ii) For any subset I ⊆ I3(L),

|I| ≤ 2 ·
∣∣{{a, b} ⊆ A(L) : a 6= b and ∃i∈I a ≤L i, b ≤L i

}∣∣.
Moreover, G is total iff the following two additional equalities hold:∣∣I2(L)

∣∣ =
∣∣A(L)

∣∣ and
∣∣I3(L)

∣∣ = 2 ·
∣∣P2

(
A(L)

)∣∣,
where P2

(
A(L)

)
is the family of all two–element subsets of A(L).
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Proof. In the proof of this result we also use hypergraph–algebraic language
from [6]. Recall that a lattice L satisfying the conditions (L.1)–(L.4) can be repre-
sented (see Definition 3.17 in [6]) by the (undirected) hypergraph U(L) consisting
of all atoms of L as its vertices, and all non–zero non–atomic join–irreducible ele-
ments as its hyperedges, and for any hyperedge e, atoms contained in e forms the
endpoint set of e. By (L.2), U(L) has not loops.

By (L.3), for any three-element set W of vertices, the set of all hyperedges
with endpoints in W has an even number of hyperedges. Thus this set (if it is
non–empty) we can divide onto pairwise disjoint two–element sets. Next, any such
two–element set can be replaced by a single hyperedge with W as its endpoints.
Obviously we can apply this procedure to each three–element set of vertices. The
hypergraph such obtained will be denoted by U(L). More formally, in this way
we obtain, in general, many different hypergraphs, but they are isomorphic.

Let U1(L) be the hypergraph obtained from U(L) by omitting all hyperedges
with three endpoints. Note that U1(L) is an usual (undirected) graph with regular
edges (i.e. edges having two different endpoints). Let U2(L) be the hypergraph
consisting of all vertices and all hyperedges with three endpoints of U(L).

Observe first that the conditions (i) and (ii) of Theorem 3 are equivalent, re-
spectively, with the following

(a) Each connected component of the graph U1(L) contains at most one (undi-
rected) cycle.
Moreover,

∣∣I2(L)
∣∣ =

∣∣A(L)
∣∣ iff each connected component of U1(L) has

exactly one cycle.
(b) For any set E of hyperedges of U2(L), |E| is not greater than the number

of all (undirected) pairs {v, w} of vertices such that v and w are arbitrary
endpoints of some hyperedge e from E (i.e. v, w ∈ IU2(L)(e)).
Moreover,

∣∣I3(L)
∣∣ = 2 ·

∣∣P2

(
A(L)

)∣∣ iff the number of all hyperedges of
U2(L) is equal to the number of all (undirected) pairs of vertices.

The equivalence (ii)⇐⇒(b) is trivial.
(i)⇐⇒(a). Of course, the straightforward translation of (i) onto hypergraph

language is the following (similarly as (ii)):
(i′) For any subset F of edges of U1(L), |F | is not greater than the number of

all vertices being endpoints of edges from F .
Moreover,

∣∣I2(L)
∣∣ =

∣∣A(L)
∣∣ iff the number of all edges and the number of

all vertices are equal.
If (a) holds, then by Ore Theorem (see [2], Chapter 3, Theorem 17), all edges of
U1(L) can be directed to a form of functional directed graph D. Thus (i′) also
holds, because from each vertex at most one edge starts. Next, if each connected
component of U1(L) has exactly one cycle, then, by the same result, D is a total
functional directed graph. Thus obviously the number of all edges of D and the
number of all vertices of D are equal.

Now assume that some connected component of U1(L) contains two different
undirected cycles c1 = (u1, . . . , un) and c2 = (w1, . . . , wm) (where u1, . . . , un and
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w1, . . . , wn are consecutive vertices of these cycles). If c1 and c2 have common
edges, say l edges, then they have at least l + 1 common vertices. Thus c1 and c2

together have n + m − l edges, and at most n + m − l − 1 vertices. Hence, (i′)
does not hold. If c1 and c2 are edge–disjoint, then since the cycles belong to one
connected component, there is a path p = (v1, . . . , vk), connecting c1 and c2 and
edge–disjoint with these cycles (we assume here that a single vertex is also a path;
in this case our cycles have a common vertex). Let F be the set of all edges of
c1, c2 and p. Then |F | = n + m + k − 1. On the other hand c1, c2 and p have
together at most n + m + k − 2 vertices, because v1 and vk belongs to c1 and c2,
respectively (if k = 1, then c1 and c2 have at least one common vertex, so they
have together at most n + m− 1 vertices). Thus again (i′) does not hold.

Summarizing we have shown that each connected component of U1(L) contains
at most one undirected cycle. Thus by Ore Theorem, all edges of U1(L) can be
directed to a form of functional directed graph D. If we additionally assume that
the number of all edges of U1(L) is equal to the number of all vertices of U1(L),
then D have to be total (recall that these graphs are finite). Hence, applying again
Ore Theorem, each connected component of U1(L) has exactly one cycle.

We also need the following result from [6, Corollary 3.19(b)]

(WS) L ' Sw(G) ⇐⇒ U(L) ' D(G)∗.

=⇒. For any two–element set W of vertices, if a 2–edge starts from W , then
exactly two 2–edges starts from W , and moreover, these two 2–edges have the
same initial vertex. Thus we can replace each such pair by a single 2–edge to
obtain the new directed hypergraph D. Then (see the second part of the proof of
Theorem 1) for any three–element set W of vertices, the set of all hyperedges of
D(G)∗ with W as the endpoint set has twice more elements than the analogous set
of hyperedges of D∗. Next, for any two–vertex set, sets of edges similarly defined
for D(G)∗ and D∗ are equal. It follows from the fact that each hyperedge of D(G),
thus also of D, is regular. Hence, since D(G)∗ ' U(L),

D∗ ' U(L).

Thus, because D has not loops and 2–loops,

D∗
1 ' U1(L) and D∗

2 ' U2(L),

where D1 and D2 consist of all vertices of D and all edges or 2–edges, respectively.
Since D1 is a functional directed graph (if G in total, then D is also total), by

the first isomorphism and Ore Theorem we obtain (a).
By the definition of D, at most one (if G is total, then exactly one) 2–edge starts

from any two–element set of vertices. Take an arbitrary set E of 2–edges of D2.
Then |E| is equal to the number of all pairs from which starts some 2–edge. This
fact and the second isomorphism implies (b). Next, if G is total, then the number
of all 2–edges of D2 is equal to the number of all (undirected) pairs of vertices.

⇐=. Having (WS), it is enough to direct all hyperedges of U(L) to a form of
finite directed hypergraph D in such a way that D contains only regular edges
and regular 2–edges, and at most one edge starts from any vertex, and at most
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one 2–edge starts from any two–element set of vertices. Because then we can
define a groupoid G = 〈G, ◦〉 in the following way: The carrier G is the set of all
vertices of D. Next, for any g, h ∈ G, g ◦h and h◦g are defined iff some (directed)
hyperedge e starts from {g, h} and then g ◦h and h◦g are equal to the final vertex
of e. It is obvious that G is finite and commutative, and also satisfies g ◦ h 6= g
(since D has only regular edges and 2–edges). Further, D(G) is obtained from D
by doubling each 2–edge. Thus, in the same way as in the proof of =⇒, we obtain
that D(G)∗ ' U(L). Note also that G is total iff exactly one edge (2–edge) starts
from each vertex (two–vertex set) of D.

First, by (a) and Ore Theorem, all edges of U1(G) can be directed to a form
of functional directed graph D1. Secondly, by (L.2) we have that U1(G) has not
loops, which implies that D1 contains regular edges only. Recall also that, if each
connected component of U1(G) contains exactly one cycle, then D1 is total.

Thus now it is sufficient to show that all hyperedges of H = U2(G) can be
directed to a form of directed hypergraph D2 in such a way that

(i) D2 contains regular 2–edges only,
(ii) for any two–element set V , at most one 2–edge starts from V .

We use the induction on the number of hyperedges. If H has not hyperedges, then
it is trivial. Thus we can assume that H has x ≥ 1 hyperedges. We also assume
that our thesis is true for any hypergraph satisfying (b) and having not greater
than x− 1 hyperedges.

Let e be a hyperedge of H, and W be the set of all endpoints of e. Let K be
the hypergraph obtained from H by omitting e. Since K is a weak subhypergraph
of H, and H satisfies (b), we deduce that K also satisfies (b). Hence and by
the induction hypothesis all hyperedges of K can be directed to a form of finite
directed hypergraph C satisfying (i) and (ii).

If there is a pair {v, w} ⊆ W such that none 2–edge of C starts from {v, w},
then we can take this set as the initial set of e and the third vertex of W (different
from v and w) as the final vertex of e. Obviously the directed hypergraph such
obtained satisfies (i) and (ii).

Thus we can assume that for any two different vertices v and w of W , there is
(of course, exactly one) 2–edge of C starting from {v, w}.

Let E0, E1, E2, . . . and U0,U1,U2, . . . be sequences of sets such that E0 = ∅
and U0 is the family of all two–element subsets of W , and for any n ≥ 1, En is
the set of all 2–edges of C starting from elements of Un−1, and Un is the family
of all two–element sets V such that V is contained in the endpoint set of some
hyperedge f from En (i.e. V ⊆ IC

1 (f) ∪ {IC
2 (f)} = IH(f)). It is easy to see that

E0 ⊆ E1 ⊆ E2 ⊆ . . ., which implies U1 ⊆ U2 ⊆ U3 ⊆ . . ..
Hence, since C is finite, Em+1 = Em, thus also Um+1 = Um, for some non–

negative integer m ∈ N. Let E = Em and U = Um. Observe that the assumption
on W implies U0 ⊆ U1, so U0 ⊆ U . Thus, since H satisfies (b) and e 6∈ E, we infer

|E|+ 1 =
∣∣E ∪ {e}

∣∣ ≤ |U|,

so
|E| ≤ |U| − 1.
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Since C satisfies (ii) and the family of initial sets (in C) of all 2–edges from E
is contained in U , this inequality implies that there is a two–element set V =
{v1, v2} ∈ U such that none 2–edge of E starts from V . Hence it follows that there
is not 2–edge of C starting from V . (Otherwise this 2–edge would have to belong
to Em+1, but Em+1 = E.)

Let n be the least number such that V ∈ Un, of course, n ≥ 1 (by the assumption
on W ). By the definition of Un, there is a 2–edge f ∈ En such that v1 ∈ IC

1 (f) and
v2 = IC

2 (f) (or conversely, but it does not matter). First, IC
1 (f) ∈ Un−1. Secondly,

we can change the orientation of f in this way that V forms the new initial set of
f and the second vertex w of IC

1 (f) (different from v1) forms the new final vertex
of f . The directed hypergraph C1 such obtained satisfies (i) and (ii), moreover,
none 2–edge of C1 starts from V1 = {v1, w}, and V1 ∈ Un−1. If n − 1 ≥ 1, then
we can apply the above construction to C1 and V1. Repeating this procedure as
many times as needed we obtain that the orientation of some 2–edges in C can be
changed in such a way that a new directed hypergraph D′

2 also satisfies (i) and
(ii), and additionally, none 2–edge starts from some two–element subset V of W .
Then, it has been shown earlier, V can be taken as the initial set of e and the
vertex of W outside V can be taken as the final vertex of e. Thus we obtain that
all hyperedges of H can be directed to a form of directed hypergraph D2 satisfying
(i) and (ii). This completes the proof of the induction step.

Finally observe that if the number of all 2–edges of D is equal to the number of
all pairs of vertices, then by (ii), exactly one 2–edge starts from each two–vertex
set. �
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