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NON-ORIENTABLE BIEMBEDDINGS OF STEINER TRIPLE
SYSTEMS OF ORDER 15

G. K. BENNETT, M. J. GRANNELL and T. S. GRIGGS

Abstract. It is shown that each possible pair of the 80 isomorphism classes of

Steiner triple systems of order 15 may be realized as the colour classes of a face
2-colourable triangulation of the complete graph in a non-orientable surface. This

supports the conjecture that every pair of STS(n)s, n ≥ 9, can be biembedded in a

non-orientable surface.

1. Introduction

It is well known that the complete graph Kn has a triangulation in an orientable
surface if and only if n ≡ 0, 3, 4 or 7 (mod 12) and in a non-orientable surface if and
only if n ≡ 0 or 1 (mod 3), n 6= 3, 4, 7, [11]. In either case the set of faces forms
a twofold triple system of order n, TTS(n) for short, i.e. a collection of triples
(the triangles) which have the property that every pair (the edges) is contained
in precisely two triples. We say that the twofold triple system is embedded in
the surface. From a design theoretic perspective a natural question to ask is
which TTS(n)s can be so embedded? The answer is straightforward. Let V
be the base set upon which the TTS(n) is defined. For each x ∈ V , define a
neighbourhood graph Gx. The vertex set of Gx is V \ {x} and two vertices y, z
are joined by an edge if {x, y, z} is a triple of the system. Clearly Gx is a union
of disjoint cycles. A TTS(n) occurs as a triangulation of a surface if and only if
every neighbourhood graph Gx, x ∈ V , consists of a single cycle, [5]. When this
condition is not satisfied, sewing together the triangles of the TTS(n) results in
a pseudo-surface. If the triples of the TTS(n) can be cyclically ordered so that
every ordered pair of distinct elements of V is contained in precisely one cyclically
ordered triple then the surface is orientable.

In any triangulation of Kn, the number of faces around each vertex is n − 1.
Hence if n − 1 is even, i.e. if n ≡ 3 or 7 (mod 12) in the orientable case and if
n ≡ 1 or 3 (mod 6) in the non-orientable case, it may be possible to colour each
face using one of two colours, say black or white, so that no two faces of the same
colour are adjacent. We say that the triangulation is (properly) face 2-colourable.
Such triangulations in an orientable surface are known to exist for all n ≡ 3 or
7 (mod 12), [11], [12]. Surprisingly, for non-orientable surfaces the spectrum of
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n for which there exists a face 2-colourable triangulation of Kn has only recently
been determined. Additional constructions given in [11] show that these exist for
n ≡ 3 (mod 6), n ≥ 9. A recent paper, [7], proves the corresponding existence
result for n ≡ 1 (mod 6), n ≥ 13.

Given a face 2-colourable triangulation of Kn, the set of faces of each colour
class forms a Steiner triple system of order n, STS(n) for short, i.e. collection of
triples which have the property that every pair is contained in precisely one triple.
We say that each STS(n) is embedded, and that the pair of STS(n)s is biembedded
in the surface. It has been known for over 150 years, [9], that an STS(n) exists if
and only if n ≡ 1 or 3 (mod 6), see also [4]. We are led to the following questions.

1. Which STS(n)s can be so embedded in an orientable (respectively non-
orientable) surface? In particular, in the non-orientable case can every
STS(n) be embedded?

2. Which pairs of STS(n)s can be embedded in an orientable (respectively
non-orientable) surface?

The latter question needs clarification. Clearly an arbitrary pair of labelled
STS(n)s will not, in general, be biembeddable; they may for example have a com-
mon triple. But this is not the spirit of the question. The triples of one of the
Steiner triple systems can be thought of as being fixed and forming the black
triangles of a possible biembedding. The question is then whether there exists
a permutation of the points of the other STS(n) so that the resulting triples form
the white triangles.

Both questions appear to be very difficult to answer; they may in fact be well
beyond current methods. Further, it seems difficult even to make a reasonable
conjecture. In this paper we will be interested mainly in the second question and
the non-orientable case. However we first review the relevant results about Steiner
triple systems and what is known in the orientable case.

2. Orientable biembeddings

The numbers of non-isomorphic STS(n)s for n = 3, 7, 9, 13 and 15 are known;
there are 1, 1, 1, 2 and 80 respectively, [10]. Indeed the number of non-isomorphic
STS(19)s has also recently been determined; there are altogether 11,084,874,829
of them, [8]. The case n = 3 is trivial; there is a unique biembedding of the system
with itself in the sphere, with automorphism group S3 of order 6. The case n = 7
is less trivial, but well-known; there is a unique biembedding of the system with
itself in the torus, with automorphism group AGL(1, 7) of order 42. We include as
automorphisms all mappings that either exchange the colour classes or reverse the
orientation. The next case to consider is n = 15. Using the standard numbering
of the STS(15)s as in [10], it is known that there exist orientable biembeddings
of the systems ]1, ]76 and ]80 with themselves, [2]. These are the only three of
the 80 STS(15)s to have an automorphism of order 5 and the biembeddings can
be obtained from index 3 current graphs. System ]1 is the point-line design of the
projective geometry PG(3, 2) and it was shown in [1] that, up to isomorphism,
there is precisely one orientable face 2-colourable triangular embedding of K15 in
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which both the black and the white systems are isomorphic to system ]1. The only
other result that appears to be known is that there is no orientable biembedding
of system ]1 with system ]2 (the STS(15) obtained from system ]1 by a Pasch
switch i.e. replacing any Pasch configuration: {a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}
with its “opposite”: {x, y, z}, {x, b, c}, {a, y, c}, {a, b, z}), [3]. Hence, in answer to
question 2, not every pair of STS(n)s, n ≡ 3 or 7 (mod 12), can be biembedded
in an orientable surface although much further investigation is needed before any
reasonable conjecture can be framed. In the next section we turn our attention to
the non-orientable case.

3. Non-orientable biembeddings

As with the orientable situation, the case n = 3 is trivial. There is no non-
orientable biembedding of the system with itself. It is also well-known that there
is no biembedding of the STS(7) with itself in the Klein bottle (the surface with
non-orientable genus = 2). For n = 9, there is a unique biembedding of the system
with itself in a non-orientable surface of genus 5. The automorphism group is
C3 × S3 of order 18. Permutations of odd order stabilize the colour classes and
those of even order exchange the colour classes, [6]. Recently, two of the present
authors and M. Knor have enumerated the face two-colourable triangulations of
K13, [6]. One of the two STS(13)s has a cyclic automorphism and we denote this
system by C. The other STS(13) is non-cyclic and may be obtained from C by
a Pasch switch as described above; we denote this system by N . Summarizing
the results from [6] there are 615 non-isomorphic biembeddings of C with C,
8,539 non-isomorphic biembeddings of C with N and 29,454 biembeddings of N
with N . However the only known non-orientable results for STS(15)s are that
there are three non-isomorphic biembeddings of system ]1 with system ]1, and
five non-isomorphic biembeddings of system ]1 with system ]2, [1], [3]. Clearly
therefore, a systematic investigation of the biembeddability of all 80 systems would
be of considerable interest. In this paper we report our result that every pair of
STS(15)s can be biembedded in a non-orientable surface. As a consequence of this
we believe that there is now sufficient evidence to state the following conjecture.
Conjecture Every pair of STS(n)s, n ≥ 9, can be biembedded in a non-orientable
surface.

4. Methodology

The algorithm for determining whether a pair of STS(15)s, say A and B, can
be biembedded in a non-orientable surface is essentially straightforward. First,
representations of systems A and B on the same base set V are chosen; in practice
the listings given in [10] on the set {1, 2, . . . , 15} were used. System A is now
held fixed with its triples forming the black triangles of a possible biembedding.
Permutations of the base set V are then considered in turn and applied to system
B. If Π is any such permutation, we test whether the triples of system Π(B) can
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System Permutation System Permutation

1 12436785CBDE9AF 41 124365BADE978CF
2 1243678C5BE9ADF 42 124367E5CDB9A8F
3 12436785CBDE9AF 43 1243685ADE7B9CF
4 1243678D59EACBF 44 124367A9D5E8BCF
5 1243678BCA9E5DF 45 124367D5A8BEC9F
6 124368C7EAD5B9F 46 1243659DBE8C7AF
7 1243678CEA9DB5F 47 124365DACE98B7F
8 1243678EDACB95F 48 124365B9DCA8E7F
9 1243678EDACB95F 49 1243678ADE5C9BF
10 1243679EDACB58F 50 12436785D9BECAF
11 124367CBDE8A95F 51 124367BADC9E85F
12 1243679A5CED8BF 52 124365CDA9E87BF
13 1243678BCED9A5F 53 12436785ADBEC9F
14 1243678AEB5D9CF 54 1243658DA9E7CBF
15 124367A59ED8CBF 55 12436587BEA9CDF
16 124368D5AE9BC7F 56 124365BCA9E87DF
17 124368B5DE9AC7F 57 124368D5CB9E7AF
18 124367EC9B8D5AF 58 1243658DA9E7CBF
19 124367C85EDA9BF 59 1243658CBAED79F
20 1243679DA5E8CBF 60 1243659C7BDEA8F
21 124367ABD8E59CF 61 12436789B5DCEAF
22 1243678B5C9EADF 62 1243659EBDA8C7F
23 1243678DAECB95F 63 1243679D5BEA8CF
24 124369DCE78A5BF 64 12436589DEC7BAF
25 124369DCEA578BF 65 1243659C7AEDB8F
26 124369A8E5DB7CF 66 124367CD95AE8BF
27 124368CBD5E97AF 67 1243658E97ABCDF
28 12436789D5ECABF 68 1243658E7AD9CBF
29 124367B8D9ECA5F 69 1243658E7CA9BDF
30 124365CB8DEA79F 70 124365AD9EB78CF
31 124367A9DE5BC8F 71 1243659EBADC78F
32 1243659BED78ACF 72 124367EDB5C9A8F
33 1243659EBAD7C8F 73 124365AC9ED78BF
34 12436789ED5CABF 74 124365CDA9EB87F
35 124367C9DA8BE5F 75 124367C5A8DE9BF
36 124367BE8ADC95F 76 1243659ADB8E7CF
37 124365CDABE978F 77 124365C9EAD78BF
38 124365BDA97EC8F 78 1243685EAC9B7DF
39 1243678D9B5ECAF 79 1243658E7CAB9DF
40 12436785D9ECABF 80 12436589DCBEA7F

Table 1. Representative permutations that yield
a biembedding of each STS(15) with itself
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form the white triangles. This is easily done as described in the Introduction.
The pair of systems A and Π(B) can be biembedded if and only if, when they
are considered as a TTS(15), every neighbourhood graph Gx, x ∈ V , consists of a
single cycle.

Each permutation is recorded as a linear array Π(1),Π(2), . . . ,Π(15) and in
this representation the permutations are considered in lexicographical order. An
elementary observation is that if system A can be biembedded with system Π(B)
then their sets of triples are disjoint. Consequently, any permutation which results
in a common triple can be rejected. In practice, the first 50,000 permutations
without a common triple were stored and then tested as described above. In all
but one case a biembedding was found and the search terminated. In the remaining
case,(system ]1 with system ]4), it was necessary to take a second and a third batch
of 50,000 permutations before a biembedding was found. However, in comparison
with 15! possible permutations these are small batches and the implication is that
there are many biembeddings of each pair.

5. Results

It is both inappropriate and infeasible to list here (80×81)/2 = 3240 biembeddings,
representing the pairs of STS(15)s. These are available from the authors, and will
appear in the first author’s Ph.D. thesis. However, as a representative sample we
give the biembeddings of each of the 80 systems with itself. In order to do this we
take the representation of each system as given in [10] as the black system and
specify the permutation which is applied to this to give the white system. The
permutations Πi, 1 ≤ i ≤ 80 are recorded as linear arrays Πi(1),Πi(2), . . . ,Πi(15)
and are given in the Table 1 below. For succinctness, we write 10 = A, 11 = B,
12 = C, 13 = D, 14 = E, 15 = F.
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