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ON THE HEREDITARY k-BUCHSBAUM PROPERTY FOR
IDEALS I AND in(I)

E. BENJAMIN and H. BRESINSKY

1. Introduction

For undefined subsequent terminology, we refer to [5]. Throughout I ⊆
K[x0, . . ., xn] = Rn+1 will be a homogeneous polynomial ideal in the polynomial
ring Rn+1 over an infinite field K. Let m = (x0, . . ., xn). Y = {y0, . . ., yd} is
a system of parameters (s.o.p) for I if dim(I) = Krull-dim(I) = d + 1 and (I, Y )
is m-primary. For k ≥ 0, Y is said to be an mk-weak sequence for I if

(i) I : y0 ⊆ I : mk,
(ii) (I, y0, . . ., yi−1) : yi ⊆ (I, y0, . . ., yi−1) : mk, 1 ≤ i ≤ d.

(For k = 0,m0 = Rn+1.)

Definition 1.1. I is said to be k-Buchsbaum (k-Bbm), if for every s.o.p
Y = {y0, . . ., yd} ⊆ m2k for I, the system Y is an mk-weak sequence for I. If k = 0
then I is also said to be Cohen-Macaulay or perfect.

Remark 1.2. It suffices for a single s.o.p to be as in Definition 1.1. For this
and other equivalent definitions see [6] and the fundamental paper by Trung [11].

Definition 1.3. Let Tn+1 ⊆ Rn+1 be the set of terms (i.e. monomials with
coefficient 1). An admissible term order < on Tn+1 satisfies:

(i) 1 ≤ t, t ∈ Tn+1,
(ii) t1 < t2 implies tt1 < tt2, t ∈ Tn+1.

From now on all term orders will be admissible. For 0 6= p(x) ∈ Rn+1, in(p(x))
is the largest nonzero term of p(x). For the ideal I ⊆ Rn+1, in(I) is the ideal
generated by all in(p(x)), p(x) ∈ I.

Definition 1.4. A Gröbner basis G = {G1, . . ., Gs} ⊆ I for I is a generating
set for I such that (in(G1), . . ., in(Gs)) = in(I).

Remark 1.5. For an algorithm to obtain G from a generating set of I see [4]
or [2].
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By a now classical result in [1], for any term order <, in(I) perfect implies I
perfect and if < is the reverse lexicographical term order, then the converse is
obtained if x0 < x1 < . . .xd are the smallest linear terms and form a s.o.p for I.
For almost all term orders the converse implication fails (see the discussion in [3]).
However as a generalization of the first implication, it was shown in [7], that if
in(I) is k1-Bbm, then, for any term order <, I is k2-Bbm for some k2. The main
purpose of this paper is to investigate how k1 and k2 are related, in particular if
for a fixed k1, k2 can grow without bound.

This can indeed happen; in general ”almost anything“ can occur and thus per-
fect ideals I are once again true to their nomenclature. In conclusion we discuss
some upper bounds for k2 and its relation to the multiplicity e(Rn+1/I) defined
by the Hilbert polynomial. In the sequel ki, i ∈ {1, 2} will denote strict Buchs-
baumness, i.e. ki is minimal.

2. Comparisons of k1 and k2

Our examples and constructions are mostly for ideals I with dim(I) = 1. We start
with an easy but useful Lemma.

Lemma 2.1. Assume I ⊆ Rn+1 is an ideal, J ⊆ Rn+1 is a monomial ideal and
< a term order. Then in(I : J) ⊆ in(I) : J.

Proof. Let F ∈ I : J, m = in(F ) ∈ in(I : J), m̄ ∈ J, a monomial. Since
in(m̄) = m̄, we have m̄m = in(m̄F ) ∈ in(I), thus m ∈ in(I) : m̄. From this the
claim follows. �

We first give an example such that k1 − k2 can become arbitrarily large.

Example 2.2. Let I(r) = (x0x
r
1 − xr+1

2 , xr
0) ⊆ R3, r ≥ 2, x1 > x2, x0 > x2.

Then in(I(r)) = (x0x
r
1, x

r
0, x

r−1
0 xr+1

2 , xr−2
0 x

2(r+1)
2 , . . ., x0x

(r−1)(r+1)
2 , x

r(r+1)
2 ) and

{x1} is a s.o.p for I(r) and in(I(r)). Similarly, in(I(r)) : xr
1 = in(I(r)) : xr+1

1 ,
r minimal, in(I(r)) : xr

1 = (x0, x
r(r+1)
2 ). x0(xα0

0 xα1
1 xα2

2 ) ∈ in(I(r)) iff α0 ≥ r − 1
or α1 ≥ r or α0 + 1 ≥ r− j and α2 ≥ j(r + 1), 1 ≤ j ≤ r− 1. Therefore in(I(r)) is
k1-Bbm, r2−1 ≤ k1 ≤ (r−1)+(r)+(r2−1)−2 = r2 +2r−4. But I(r) is k2-Bbm
with k2 = 0, which is immediate by using reverse lexicographical term order with
x1 the smallest linear term (see [5, Proposition 15.12]). For r = 1, k1 = k2 = 0.

Proposition 2.3. For an ideal I ⊆ R2 = K[x0, x1] assume:
(i) x1 > x0 for some term order,
(ii) without loss of generality (since K is infinite), {x1} is a s.o.p for I and

in(I),
(iii) in(I) is 1-Bbm. Then I is 0-Bbm or 1-Bbm

Proof. By hypothesis

in(I) : m ⊆ in(I) : x1 ⊆ in(I) : x2
1 ⊆ in(I) : m,

thus in(I) : x1 = in(I) : x2
1 = in(I) : m. Let

F = xn−r
1 xr

0 + ar+1x
n−r−1
1 xr+1

0 + · · ·+ anxn
0 ∈ I : x1, 0 ≤ r ≤ n.
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Then xn−r
1 xr

0 ∈ in(I : x1) ⊆ in(I) : x1. Thus

xr
0 ∈ in(I) : xn−r+1

1 = in(I) : x1,

from which x1x
r
0 ∈ in(I). Therefore either

a) F ≡ 0 mod I or
b) F ≡ Axn

0 mod I, A 6= 0 (≡ denotes reduction of F by a Gröbner basis
of I).

Assume b). Since I ⊆ I : x1 and F ∈ I : x1, xn
0 ∈ I : x1, we get

xn
0 ∈ in(I : x1) ⊆ in(I) : x1 = in(I) : m,

it follows that xn+1
0 ∈ in(I) (otherwise xn+1

0 /∈ (I)). Hence x0F ∈ I, thus I : x1 ⊆
I : m.

Next let F = xn−r
1 xr

0 + ar−1x
n−r−1
1 xr+1

0 + . . . + anxn
0 ∈ I : x2

1. As before
x1x

r
0 ∈ in(I) and either a) F ≡ 0 mod I or b) F ≡ Axn

0 mod I, A 6= 0, and
xn+1

0 ∈ I. In both cases x1F ∈ I (for b)) since x1x
r
0 ∈ in(I) and xn+1

o ∈ I), hence
I : x2

1 ⊆ I : x1, thus I is either 0-Bbm or 1-Bbm. �

We obtain next a family of ideals I(n), n ≥ 2 such that:
(1) {z} is a s.o.p for I(n) and in(I(n)).
(2) in(I(n)) : z = in(I(n)) : z2 = in(I(n)) : m, thus in(I(n)) is 1-Bbm (even

Bbm by Proposition 2.12, Chapter I in [10]).
(3) I(n) : z = I(n) : z2 ⊆ I(n) : mn, n minimal, thus I(n) is strictly n-Bbm.

We assume x1 > x2 > . . . > xn and for notational convenience we set z = x0.
s-polynomials are the successor polynomials of a Gröbner algorithm. m or m̄ will
be monomials, ∂xk

(m) is the degree of m with respect to xk, ∂(m) its degree.

Theorem 2.4. Let

I(n)=(z(x1 + . . . + xn),M1(n), . . .,Mh(n), . . .,Mn(n)),

be an ideal of Rn+1, where

Mh(n) = {m ∈ Rn+1 : z|/m, xj |/m, 1 ≤ j ≤ h− 1, xh|m, ∂(m) = h + 1},
for 1 ≤ h ≤ n. Then I(n) satisfies the conditions (1), (2), and (3).

Proof. By construction of I(n), the (1) is obtained. If m ∈ in(I(n)), then z2|/m,
thus in(I(n)) : z = in(I(n)) : z2. in(I(n)) : z = in(I(n)) : m iff m ∈ in(I(n)) : z
implies (x1, . . ., xn)m ⊆ in(I(n)). We show that the monomial sets Mi(n) have
enough monomials to satisfy this requirement. Since M1(n) is as claimed, we
assume it to be true for Mj(n), 1 ≤ j ≤ i − 1. Assume m ∈ in(I(n)) : z, ∂(m) =
i + 1. If xj |m, 1 ≤ j < i, j minimal, then, by construction, for some m̃ ∈ Mj(n),
m̃|m, thus m is as required. It remains to be shown that xi|m otherwise. Assuming
inductively that the monomials Mj(n), 1 ≤ j ≤ i − 1, are obtained from nonzero
polynomials zmj(xj+xj+1+. . .+xn), xh|/mj , 1 ≤ h < j, it follows that also modulo
reduction the ith nonzero s-polynomials are of the form zmi(xi + . . .+xn), xh|/mi,
1 ≤ h < i, from which the claim. Therefore (2). By construction of Mi(n) and the
point (2), if zxd

n ∈ in(I(n)) is of smallest degree, then d = n. We induct on n to
show that such a monomial exists. For n = 2 it is true. Assume it true for n ≥ 2
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and note that (I(n + 1), xn+1) = (I(n), xn+1). Therefore in(I(n + 1), xn+1) =
in(I(n), xn+1) = (in(I(n)), xn+1) ⊇ in(I(n)).

By induction hypothesis zxn
n ∈ in(I(n)), thus zxn

n ∈ in(I(n + i), xn+1), hence
zxn

n ∈ in(I(n+1)). From the proof of (2) we get zxn(xn +xn+1) ∈ I(n+1). Since
xnxn

n+1 ∈ Mn(n + 1), zxn+1
n+1 ∈ in(I(n + 1)), thus Mn+1(n + 1) = {xn+2

n+1}, which
implies (3). �

Remark 2.5. (0) It is possible to show that every monomial m ∈ Mi(n) is
actually obtained from a zm ∈ in(I(n)).

(1) If Mn is replaced by Mn+k1 = {xn+1+k1
n }, k1 ≥ 1, then for the resulting ideal

I(n, k1), in(I(n, k1)) is strictly k1-Bbm and I(n, k1) is strictly (n+k1)-Bbm.
(2) For Rn+d = K[z, x1, . . ., xn, y1, . . ., yd−1] and I(n) as in Theorem 2.4,

dim(I(n)) = d and (2) and (3) of Theorem 2.4 apply to I(n).

For the next family of 1-dimensional ideals I(k), k ≥ 1, we restrict ourselves to
three variables, x, y, z for notational convenience. We obtain in(I(k)) has k1 = 1,
i.e. is 1-Bbm, and I(k) is strictly k2-Bbm, k2 = k + 1. We do not obtain the
results of Remark 2.5 (1) in this case.

Theorem 2.6. Let k ≥ 1,
P0(k) = z(x2k+1 + x(2k+1)−1y + . . . + xy2k + y2k+1) and I(k) = (P0(k),Mk),
Mk = {x2k+2, x2k+1y, x(2k+1)−1y3, . . ., xk+1y2k+1, xy2k+2, y2k+3}. Assume x > y.
Then:

1. {z} is a s.o.p for I(k) and in(I(k)).
2. in(I(k)) : z = in(I(k)) : z2 = in(I(k)) : m, thus k1 = 1.
3. I(k) is strictly k2-Bbm, and k2 = k + 1.

Proof. For m and m̃ in Mk, we write m < m̃ if ∂y(m) < ∂y(m̃) (or equivalently
∂x(m) > ∂x(m̃)). We proceed inductively by different steps of a Gröbner algorithm
with → denoting “reduces to” and s(F1, F2) the successor polynomial of F1, F2.

Step (1): s(P0(k), x2k+2)→P1(k) = z(x(2k+1)−1y2 + . . . + x2y2k + xy2k+1),
s(P0(k), m = x2k+1y) → zy2k+2, thus s(P0(k), m̃ > m) → 0 since y2k+3 ∈ Mk.

Step (2): s(P1(k), P0(k))→0,
s(P1(k),m=x(2k+1)−1y3) → P2(k)=z(x(2k+1)−2y4 + . . . + x2y2k+1), thus
s(P1(k), m̃ > m) → 0. s(P1(k), m̂ = x2k+1y) → 0, thus s(P1(k), m̃ < m̂) → 0.

Step (i), 2 ≤ i < k: Assume for j ≤ i we have obtained polynomials
Pj(k) = z(x(2k+1)−jy2j + x(2k+1)−(j+1)y2j+1 + . . . + xjy2k+1) such that for j < i

(i) s(Ph(k), Pj(k)) → 0, h < j, h 6= j.
(ii) s(Pj(k), x(2k+1)−jy2j+1 = m) → Pj+1(k)

s(Pj(k), m̃ > m) → 0, s(Pj(k), m̃ < m) → 0.

For i > j ≥ 0, i ≥ j + 1, thus 2i > j + 1 or 2i− j − 1 > 0.
Therefore

s(Pj(k), Pi(k)) = y2i−2jPj(k)− xi−jPj(k)

= z(x2i−j−1y2k+2 + . . . + xjy2k+1+2(i−j)) → 0
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(Note this remains true for i = k.)

s(Pi(k),m = x(2k+1)−iy2i+1) = zxiy2k+2 + Pi+1(k) → Pi+1(k),

thus s(Pi(k), m̃ > m)→0.

s(Pi(k), m̂ = x(2k+1)−i+1y2i−1) = zx(2k+1)−iy2i+1 + Pi+1(k) → 0,

thus s(Pi(k), m̃ < m̄) → 0. This completes the induction.
To finish the proof we calculate first s(Pk(k),m), for m ∈ Mk, where

Pk(k) = z(x(2k+1)−ky2k + xky2k+1). Since

s(Pk(k),m = xk+1y2k+1) = zxky2k+2 → 0,

we get s(Pk(k), m̃ > m) → 0.
Similarly

s(Pk(k), m̂ = x2k+2y2k−1) = zxk+1y2k+1 → 0,

implies s(Pk(k), m̃ < m̂)→0.
Therefore

in(I(k)) ={zx2k+1, zx(2k+1)−1y2, . . ., zxk+1y2k, zy2k+2, x2k+2, x2k+1y,

x(2k+1)−1y3, . . ., xk+1y2k+1, xy2k+2, y2k+3}.

This implies conditions 1. and 2. Also I(k) : z = I(k) : z2 = (P0(k)/z,Mk).
By [7], I(k) : z2 ⊆ I(k) : mk2 . Since yk(P0(k)/z) → xk+1y2k + . . . + y3k, but
xk+1y2k 6∈ in(I(k)), k2 > k. k2 = k + 1 is readily verified. �

3. Upper bounds for k2 .

We assume as before < is a term order, I ⊆ Rn+1 = K[x0, . . ., xn] is a homogeneous
ideal, dim(in(I)) = dim(I) = 1, the field K is infinite and therefore without loss of
generality {x0} is a s.o.p for I and in(I). Under these assumptions xδi

i ∈ in(I), δi ≥

1, δi minimal, 1 ≤ i ≤ n. Let K = [
n∑

i=1

(δi − 1)] + 1. Let δ0 be minimal such that

I : xδ0
0 = I : xδ0+1

0 and let ν = (ν1, . . ., νl), νi ≤ νi+1 be the degree vector of I : xδ0
0 .

Assume I = (G), G = {G1, . . ., Gl} is a Gröbner basis of I for the term order <

and let F
Gi→H denote ”Gi reduces F to H“ (reduction is on the initial term).

An elementary but useful bound for k2 follows from:

Theorem 3.1. Assume in(I) is k1-Bbm, k1 ≥ 1. Let L = K + (k1 − 1) − ν1.
Then J = mL(I : xδ0

0 ) ⊆ I.

Proof. Let F ∈ J, then ∂(F ) = degree (F ) ≥ K + k1 − 1 ≥ K. Let in(F ) =
xα0

0 m, x0|/m.
(i) α0 = 0. Since xδi

i ∈ in(I), there exists Gj ∈ G such that F
Gj→F ′,

in(F ) > in(F ′), ∂(F1) = ∂(F ) ≥ K + k1 − 1 ≥ K.
(ii) α0 > 0. If α0 < k1, then ∂(m) ≥ K, therefore as in (i) F

Gi→F ′,
in(F ) > in(F ′), ∂(F ) = ∂(F ′) ≥ K + k1 − 1 ≥ K.
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If α0 ≥ k1, then, since

m ∈ in(I : xδ0
0 ) : xα0

0 ⊆ in(I) : xδ0+α0
0 = in(I) : xk1

0 = in(I) : xk1+1
0

= in(I) : mk1 = in(I) : mk1+1

(since in(I) is k1-Bbm), xk1
0 m ∈ in(I), thus F

Gi→F ′, in(F ) > in(F ′), ∂(F ) =
∂(F1) ≥ K + k1 − 1 ≥ K. From this F ∈ I. �

Corollary 3.2. Under the hypothesis of Theorem 3.1, k2 ≤ L. In particular if
k1 = 1, then k2 ≤ L = K− ν1.

Proof. This follows immediately from Theorem 3.1. �

Definition 3.3. e(Rn+1/I) will denote the multiplicity as defined by the Hilbert
polynomial.

An important result due to Macaulay is e(Rn+1/I) = e(Rn+1/in(I)). By [8] if
in(I) is 1-Bbm and dim(in(I)) = 1, then k2 ≤ e(Rn+1/I) = e(Rn+1/in(I)). (The
proof uses the fact that [H0

m(Rn+1/I)]n = [H0
m(Rn+1/in(I)]n = 0 for n ≤ 0, n

denoting the nth graded piece of the 0th local cohomology module H0
m(. . .), and

k2 ≤ a(H0
m(Rn+1/I)) ≤ a(H0

m(Rn+1/in(I))) ≤ e(Rn+1/(in(I)) by Lemma 3.1 in
[8], a(. . .) denoting the last nonzero graded piece.) We will improve on this bound
in the sequel. Presently we relate the multiplicity to the bound L of Corollary 3.2.

Lemma 3.4. Assume Q0 6= (x1, . . ., xn) ⊆ Rn+1 is a (x1, . . ., xn)-primary
monomial ideal with {x0} a s.o.p.

Let Q0 = (xα1
1 , . . ., xαn

n ,M), αi ≥ 1, 1 ≤ i ≤ n, and m ∈ M implies
m = xβ0

0 xβ1
1 . . .xβn

n , βi < αi, 1 ≤ i ≤ n. Then, if l(. . .) denotes length, we have:

(i) l((x1, . . ., xn)/Q0) ≥
n∑

i=1

(αi − 1),

(ii) l(x1, . . ., xn/Q0) =
u∑

i=1

(αi − 1) iff xixj ∈ Q0, i 6= j, 1 ≤ i, j ≤ n.

Proof. (i) Lowering the exponent in xαi
i by one, results in a proper inclusion,

thus (i).

(ii) ⇐ . For
n∑

i=1

(αi − 1) = 1, Q0 ⊂ (x1, . . ., xn) is a saturated chain. Let
n∑

i=1

(αi − 1) = h + 1, h ≥ 1. Without loss of generality assume δ1 ≥ 2. Consider

Q0 ⊂ (Q0, x
δ1−1
1 ) = Q1. xixj ∈ Q0, i 6= j, 1 ≤ i, j ≤ n, implies if m 6∈ Q0 and

m 6= xδ1−1
1 , then

m = x
δj−βj

j , 1 ≤ βj , 2 ≤ j ≤ n, or m = xδ1−β1
1 , 2 ≤ β1,

thus Q0 ⊂ Q1 is saturated, from which the implication by induction.
⇒ . Suppose without loss of generality that x1x2 6∈ Q0, thus α1 ≥ 2 and α2 ≥ 2.
But then

(Q0, x
2
1) ⊂ (Q0, x

2
1, x1x2) ⊂ (Q0, x1),

which constradicts the hypothesis. �
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Assume {x0} is a s.o.p for in(I) and in(I) is strictly k1-Bbm, i.e.

in(I) : xk1
0 = in(I) : xk1+1

0 = in(I) : mk1 = in(I) : mk1+1

and k1 is minimal. Let in(I) = (xδ1
1 , . . ., xδn

n ,M), 1 ≤ δi, 1 ≤ i ≤ n, and for
m ∈ M , m = xβ0

0 xβ1
1 . . .xβn

n , β0 ≤ k1, βi < δi, 1 ≤ i ≤ n. Then in(I) = (Q0 =
(xδ1

1 , . . ., xδn
n ,M |x0=1)) ∩Q1, Q1 = Rn+1 or a trivial component.

Definition 3.5. Let

D(k1) = {m : m = xβ0
0 x

δj−εj

j , 1 ≤ β0, εj ≤ k1, εj < δj , εj maximal,

1 ≤ j ≤ n, m ∈ M}.

Define σ(k1) =
n∑

j=1

εj . Put εj = 0, if εj does not occur in D(k1).

Theorem 3.6. e(Rn+1/I) ≥ K− σ(k1).

Proof. Let in(I) = Q0 ∩Q1 be a primary decomposition with Q0 (x1, . . ., xn)-
primary (thus unique), Q1 either the trivial component or Rn+1. By [9] (see also
the monomial construction there) and Lemma 3.4

e = e(Rn+1/in(I)) = 1 + l((x1, . . ., xn)/Q0)

≥ 1 +
n∑

j=1

[(δi − εi)− 1] = 1 +
n∑

j=1

(δi − 1)− σ(k1) = K− σ(k1).

�

Corollary 3.7. For k1 = 1, n fixed, e − k2 increases beyond bound with
increasing ν1.

Proof. For k1 = 1, L of Corollary 3.2 is K− ν1. By Theorem 3.6

e = e(Rn+1/I) ≥ (K− ν1) + (ν1 − σ(1)) ≥ k2 + ν1 − σ(1).

Since σ(1) ≤ n, e− k2 ≥ ν1 − n, we get the claim. �

Example 3.8. Let I(m,m, p) = (xm−1
1 (xp

1 + xp
0), x0(x

p
1 + xp

0), x2, . . ., xn−1),
p ≥ 1, n ≥ 2, m ≥ 2. Assume x1 > x0. It follows readily that in(I(m,n, p)) =
(xp+m−1

1 , x0x
p
1, x2, . . ., xn−1), therefore {x0} is a s.o.p for I(m,n, p) and

in(I(m,n, p)). in(I(m,n, p)) : x0 = (xp
1, x2, . . ., xn−1) = in(I(m,n, p)) : x2

0 ⊆
in(I(m,n.p)) : mm−1, (m− 1) minimal. I(m,n, p) : x0 = (xp

1 + xp
0, x2, . . ., xn−1) =

I(m,n, p) : x2
0 ⊆ I(m,n, p) : mm−1, (m − 1) minimal. Thus k1 = k2 = m − 1.

Also always e = e(Rn/I(m,n, p)) = p. Therefore, since m and p are independent
parameters, in general there is no relationship between e and k1, k2. We calculate
next L of Corollary 3.2. We consider two cases:

(i) n > 2. Then L = K + k1 − ν1 − 1 = (p + m − 1) + (m − 1) − 1 − 1 =
(p− 1) + 2m− 3 ≥ k2 = m− 1. For m = 2 and k1 = k2 = 1, L = p = e.

(ii) n = 2. Then L = (p + m− 1) + (m− 1)− p− 1 = 2m + 3 ≥ m− 1.
For m = 2, thus k1 = k2 = 1, L = 1 ≤ p = e, thus the difference between L and e
becomes arbitrarily large with increasing p.
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Example 3.9. The ideals I(k) of Theorem 2.6 are as in Corollary 3.7.

For I(n) in Theorem 2.4, n is not fixed. We therefore investigate for k1 = 1
another relation between k2 and e(Rn+1/in(I)) = e (from now on). For this we
separate monomials m into:

(i) m ∈ in(I).
(ii) m 6∈ in(I), but m ∈ in(I) : x0 ({x0} a s.o.p for in(I) and I).
(iii) m 6∈ in(I) : x0.

Note that a monomial m such that m ∈ in(I) : x0 and x0|m implies m ∈ in(I).

Definition 3.10. A monomial m as in (ii) is called an obstruction.

Lemma 3.11. If m = xα1
1 · . . . · xαi

i · . . . · xαn
n , αi ≥ 1, is an obstruction, then

xα1
1 · . . . · xαi−1

i · . . . · xαn
n 6∈ in(I) : x0.

Proof. xα1
1 · . . . ·xαi−1

i · . . . ·xαn
n ∈ in(I) : x0 implies x0x

α1
1 · . . . ·xαi−1

i · . . . ·xαn
n ∈

in(I), thus xα1
1 · . . . · xαi

i · . . . · xαn
n ∈ in(I), a contradiction.

In what follows, in(I) = Q0 ∩Q1,Q0 (x1, . . ., xn)-primary, Q1 a trivial compo-
nent. Note : (i) in(I) : x0 = Q0. (ii) If Q1 = Rn+1, then in(I) is perfect, which,
since k1 = 1, is not the case. �

Lemma 3.12. (i) 1 6∈ in(I) : x0.
(ii) m an obstruction and xi|m,xj |m, i 6= j implies m/xi 6= m/xj are not in

in(I) : x0.
(iii) xαi

i , αi ≥ 2, such that xαi−1
i is the only monomial of degree αi − 1 not in

in(I) : x0, implies xαi
i is the only monomial of degree αi not in in(I) and

k2 ≤ αi + 1− ν1.

Proof. (i) is true since {x0} is a s.o.p for in(I). (ii) follows from Lemma 3.11.
(iii) Let m̃ 6= xαi

i be of degree αi. xi|m̃ implies m̃/xi 6= xαi−1
i , thus m̃/xi ∈

in(I) : x0, hence xim̃/xi = m̃ ∈ in(I). xi|/m̃, then for some xj 6= xi m̃/xj 6= xαi−1
i ,

thus, as before, xjm̃/xj = m̃ ∈ in(I). Consider

m ∈ in(mαi+1−ν1(I : xδ0
0 = I : xδ0+1

0 ))∩K[x1, . . ., xn] ⊆ in(I : xδ0
0 ) ⊆ in(I) : xδ0

0

= in(I) : x0, ∂(m) = αi + 1,

thus of minimal degree. By the above and since k1 = 1, we get m ∈ in(I); thus
in(mαi+1−ν1(I : xδ0

0 )) ⊆ in(I) since if m ∈ in(I) : x0 and x0|m, then m ∈ in(I).
Therefore k2 ≤ αi + 1− ν1. �

Theorem 3.13. For k1 = 1, k2 ≤ e/2 if 2 ≤ ν1 and, k2 ≤ (e + 2)/2 if
ν1 = 1.

Proof. For k2 = 0, the bounds obviously are correct. Let k2 = 1. If ν1 = 1, the
bound is correct. If 2 ≤ ν1 and in(I) : x0 = Q0 6= (x1, . . ., xn), the bound is correct.
If Q0 = (x1, . . ., xn) = in(I) : x0 and ν1 ≥ 2, then all quadratic monomials, except
x2

0, are in in(I). Therefore, I : x0 ⊆ I, by reduction with a Gröbner basis in (I),
thus k2 = 0 which contradics k2 = 1.
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Assume k2 ≥ 2. We consider the obstructions of lowest degree in

in(mρ(I : xδ0
0 )) ⊆ in(I : xδ0

0 ) ⊆ in(I) : xδ0
0 = in(I) : x0, 0 ≤ ρ ≤ k2 − 1.

Starting with ρ = 0, we obtain obstructions m0 of degree d0, giving rise to mono-
mials m̃0 6∈ in(I) : x0 of degree d0− 1. Since m(m0) ⊆ in(I), we obtain a sequence
of monomials m̃ 6∈ in(I) : x0 of degrees d0 − 1 < d1 − 1 < · · · < dk2−1 − 1.
Possibilities for a single such monomial, by Lemma 3.12 are:

(i) d0 = ν1 = 1,m0 = 1,
(ii) xαi−1

i = x
dk2−1−1
1 .

If ν1 ≥ 2, we can add the monomial 1 to the possibility (ii), thus 2k2 ≤ e (the
count starts at 0). If ν1 = 1, we obtain 2(k2−1) ≤ e, which finishes the proof. �

Example 3.14. For I and in(I) as in Theorem 3.13, if 2 < e, then k2 < e. We
give two examples with e = k2 = 1 and e = k2 = 2.

1. If m = 2, p = 1, n > 2 in Example 3.8, then k1 = k2 = e = 1 = ν1.
2. Let n = 2 for I(n) of Theorem 2.4. Then I(2) = (z(x1 + x2), M1 =
{x2

1, x1x2}, M2 = {x3
3}), in(I(2)) = (zx1, zx2

1, x
2
1, x1x2, x

3
2). Therefore

ν1 = k1 = 1 and k2 = e = 2.
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