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DISTRIBUTION CHARACTERIZATION IN A PRACTICAL
MOMENT PROBLEM

H. C. JIMBO

ABSTRACT. We investigate a problem connected with the evaluation of the asymp-
totic probability distribution function (APDFs) given from a set of finite order
moments by applying the Gram-Schmidt process with the aid of computer algebra.
By selecting weighting (discrete or continuous) function of similar shape to desired
(APDFs), orthogonal polynomial series are obtained that are stable at high order
and allow accurate approximation of tail probabilities.

1. INTRODUCTION

Many mathematicians have investigated the problem of moments, which consists
of determining a probability density function from a set of its moments, since the
pioneering work of Tchebycheff and Stieltjes during the 19" century [13]. Since
then a variety of techniques for approaching the problem have been developed.
In 2000 [5], [6] have introduced a new technique “factorial behaviors based” to
characterize the distribution of some classes of discrete functions or processes. In
the present paper a method of extending the existing technique using orthogonal
polynomial expansion is presented. This is of potential use to practitioners since
it constitute part of an alternative approach to the Monte Carlo technique for
probability risk analysis; it also has application as a method for predicting the
probability of extreme events, for fitting distribution to large data sets. The
need to develop alternative to Monte Carlo and other simulation technique has
been noted by several authors [4], [2], [15]. While the simplicity of simulation
techniques are desirables, there are lacking in terms of efficiency. It may take
thousand of simulations and consequently many hours of computer time in order
to achieve a high level of accuracy, especially in a fat tail distribution [13]. An
alternative to the histogram produce by the Monte Carlo simulation is an accurate
form of probability density function of frequency distribution. In general most
probabilistic calculations are too complicated for exact PDF’s to be determined.
However for simple problems implicitly those that involve implicit calculations,
it often possible to calculate the moment of the PDF. The remaining step is the
determination of the PDF, which require solution to real or practical problem of
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moments. One of the difficulties with this step is that there exist no unique PDF
for a given set of moments. However from a practical stance, this difficulty can
be overcome just by increasing the constraint on the PDF by accounting a greater
number of moments. Nevertheless most of the existing techniques generally only
make use of a few lower order moments (often not more than four) in forming the
probability function. The main contribution of this paper is the demonstration of
a technique that incorporates informations given by high order moments by the
use of discrete and continuous weigh functions. Many authors support the idea
that a better approximation to a distribution can be archive by using a weighting
function, which closely resembles to the desired PDF. But this is true only for the
continuous case. If the chosen weighing function is discrete then the discussion is
opened.

2. BACKGROUND

In a strict sense, the problem of moments is concerned with the question of whether
a set moment uniquely determines a PDF. Stuart and Ord [7] state that: “in it full
generality the problem of moments consider a set of constants and inquires whether
they can be the moments of a distribution.” However, it is added that for statistical
purposes a more pertinent question is: “given that the set of constants are the
moments of a distribution, can any other distribution have the same set?”. An
important result due to Carlman [2] is that a distribution on the range [—o0, +00]
can be determined uniquely by its moments p,., if the series
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converges.

Similar results exist for functions on the range [0, +oo]or alternatively in terms
of absolute moments [15]. Godwin [3] roughly interprets these results as meaning
that the moment must not be too large or the distribution must not be too spread
out. Several examples of functions, which cannot be uniquely determined from
their full set of moments, have been demonstrated in the literature. Many of
these see little applications, although the lognormal distribution is an exception
[2]. Nevertheless, there are at least two reasons why the closure problem may
not be of practical application. Firstly, many randomly distributed quantities
encountered in practice have finite range and a probability distribution with finite
range can be uniquely determined from it full set of moments. Secondly, as Stuart
and Ord point out, ”if two distributions have a certain number of moment in
common, they will bear some resemblance to each other“ In practice full (infinite)
set of moment will never be attainable and the question of uniqueness does arises.
However the infinite number of PDFs, which may be obtained from a finite set of
moments become increasable similar as the number of given moments increases.
Approximation of a distribution function by another function possessing even just
the same four lower moments is often found remarquably good.
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Several techniques have been developed for establishing a PDF from a set of
moments. Most of the methods are discussed in detail by Elderton, Johnson and
Ord [9], other insightful reviews are given by Wallace [16] and Springer [14]. The
Pearson family of distributions often provides reasonable approximation to a PDF,
base on just the first four moments. The traditional alternative is the use of series,
which are expressed in term of Tchebycheff-Hermite polynomials; and its coeffi-
cients are determined by orthogonalization. Other orthogonal polynomials such as
Jacobi or Laguerre polynomials have also been used to approximate PDF’s. Other
methods of approximation include Burr’s [1] general system for fitting cumulative
distribution functions; a step function method due to Von Mises [2] and a further
distribution system proposed by Perk [10]. Of the methods describe above, no
single one is indisputably recognized as being the best way o approximating a
PDF. In general most of the method work reasonably well, although it has been
found that difference between approximating functions are greater for more skewed
PDF’s [13].

Orthogonal polynomials have featured in several of the methods above and
they have useful properties for approximating functions in general. According to
Weistrass theorem, for any function on the range [a,b] there exist an algebraic
polynomial, which converges to that function as the order of approximation in-
creases [12]. Orthogonal polynomial are usually are particularly useful since they
are inexpensive to compute. They also possess the property of minimum least
squares estimate of the ratio of the objective function of the square root of the
weighting function at a given order. Nevertheless, there are some limitations to
the use of orthogonal polynomials as approximating functions. Firstly, to obtain
a very high degree of accuracy an excessive number of polynomials may sometime
be required. Secondly, convergence is not guaranteed to be uniform. So while
orthogonal polynomials may be used to give good approximation to PDF’s, they
may not necessary produce series that asymytotically approach the actual PDF.
In the following work, it will be shown that these potential limitations may be
overcome by the choice of the weighting function for the approximation of specific
function.

3. METHOD

We want to determine the frequency distribution f(z), which fits a given set of
moments pf(k), k=1,...,n. Firstly a weighting function that can be discrete or
continuous are established by fitting the lower moment using the Pearson distri-
bution for example, then a family of orthogonal polynomial ¢y (z) is sought such
that:

—+oo
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The equation (1) produces a set of n simultaneous equations formed from the
moments i, (k). This set can be efficiently solved using Mat lab toolbox to give
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the coeflicient of the polynomials. The squared norms h, are also determined
+oo

from g, (k) via: h, = [ w(x)p2(z)dr and the desired PDF is given by the
—o0

approximate solution of:

(2) flz) = Z apw(x)
k=1

where the coefficients ajare determined from the moments ps(k) by:

N
3) =y [ f@ona)ds

Order | Coefficient
1 0
2 0
3 0.80083
4 1.41367
5 1.62130
6 1.61819
7 1.57784
8 1.53637
9 1.41483

10 1.12148

11 0.76986

12 1.00375

13 —1.79600

14 0.69985

15 0.10281

Table 1. Coefficients of orthogonal series for approximating X2 distribution

4. VERIFICATION USING THE CASES STUDIED

The proposed method for fitting a PDF to a given set of moments may be first
verified by using the moments from an exactly known distribution. As a demon-
stration, a x? PDF with shape parameter v = 15, is chosen as the known PDF and
an attempt shall be made to approximate this density function using the non clas-
sical orthogonal polynomials. A lognormal density function is used as weighting
function for the orthogonal expansion since this family of functions is relatively
similar to in shape to y2distribution. The most appropriate lognormal weighting
function is that transformed from a normal function. This weighting function has
the same first two moments as the y? PDF. Using the Gram-Schmidt process a
set of orthogonal polynomials is determined from the moments of the weighting
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Figure 1. Approximation of a x2 distridution (solid line) by a 11th order series expansion based
on the lognormal weighting function.

function. Then using the specifique moments the coefficients a; are determined.
In this case the coefficients demonstrate that the orthogonal expansion is well be-
haved up to 11'h order (Table 1). The 12¢" and 13" order coefficients show slight
increases magnitude, although the associated series expansions are still good.

5. EXAMPLE

To demonstrate the use of general orthogonal series expansion for approximating
PDEF’s three further examples are considered where probabilities of extrem events
are required given only limited data set. For the first example, a PDF is sought
for the result of 40 compressions strength test s conducted by Mathur [8]. Values
indicated that Pearson type 1 distribution is suitable as the weighting function for
this case (Table 2). The type 1 PDF has the form:

(4) w(z) = e (1 + Zl)m (1 + Zz)m

with parameters:

ye = 0.10802; A; = 7.64336; As = 9.16439
my = 1.59333;  may = 2.10940.

For the concrete strength data, the difference between the weighting function
and series expansion is not so significant. Nevertheless, the eight order series does
produce a slightly better fit as can be seen from the moments in Table 2. The
second example is concerned with establishing a density function for a complex
process; the incomplete Gauss process is used for that matter.

z+h

(5) wp(x) = Z Y(n) - ™%

n=x+1
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Moment

Data

Pearson type I

Eighth order series

1

0.25295x 102

0.25444x 1012

0.25295x 102

0.25295x 102

2 0.65029x10° 0.65029% 10° 0.65029x 103
3 0.16981x10° 0.16981x 105 0.16981x10°
4 0.45018x10° 0.45018x 10 0.45018x 109
5 0.12106x 108 0.12106x 108 0.12106x 108
6 0.32997x10° 0.32995x 10 0.32997x10°
7 0.91086x10'° | 0.91071x101° 0.91086x 1010
8

0.25443x 1012

0.25434x10'2

Table 2. Moments about origine for for a concrete strenght data, Perason type 1 distribution,

and 8th orderseries expansion.
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Figure 2. Approximation of a x? distridution (solid line) by a 11th order series expansion based
on the lognormal weighting function.

with parameters: h = 10; p = 11; 0 < z < 11; (a,p) = 1; T: Legendre symbol.

In this case the PDF has a standard exponential form with parameter A = 1
(see [5] for proof).

Let us now consider a much more complicated weighting function to fit our
distribution.

S
For s <a, Q=[] @ — oo, h— oo, 25 —0,

a discrete type of

log Q
k=1
z+t
weighting function w¢(z,p1,...,ps) = > (%) (”P#) is proposed; ()
n=x+1 ’

stands for the Jacobi symbol.
In this last case the PDF has a standard normal distribution. The theoretical
proof of this part can be found in [6].
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Some explanations about our proof.
1. First we compute the 2r-th moment [A,, . ,.(2r)] of our weighting function

x4+t
n -+ ay n -+ ag
w(z,p1, ..., Ds) = Z ( o )( ) )

n=x+1

2. Use the Chinese remainder theorem: x = prlxl +...+Qp;tri(mod Q);

Q=p1...ps.
3. Range z over the complete set of residues modulo p; range x5 over the set
of residues modulo ps and rewrite wy(z,p1,...,Ds)-

4. Partition of A, ,. (2r) = By + By depending on whether 7 is odd or even.
Ap p.(2r)=1-3...-(2r—1)+ O(h™1)

5. Moments estimation : .
Ap,..p,(2r — 1) < h"Q2

6. CONCLUSION

A method of producing probability density functions by choosing appropriate
weighting functions on the one hand and by solving the practical moment problem
using non-classical orthogonal polynomials on the other hand is presented. The
approach which utilizes orthogonal process has potential applications in many area
of probability theory, for example: determining frequency distribution from large
large data sets, for estimating the probability distributions of extreme events given
limited data. The presented examples have shown that stable high order series
expansion may be obtained with moments that closely match those which are
prescribed and a proper choose of the weighting function highly recommended.
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