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A GENERALIZATION OF BAIRE CATEGORY IN A
CONTINUOUS SET

B. KING

Abstract. The following discusses a generalization of Baire category in a con-

tinuous set. The objective is to provide a meaningful classification of subsets of
a continuous set as “large” or “small” sets in linearly ordered continuous sets. In
particular, for cardinal number κ, the continuous ordered set κ2∗ a subset of the

set of dyadic sequences of length κ is discussed. We establish that this space, and
its Cartesian square is not the union of cf(κ) many nowhere dense sets. Further
we provide comparative results between Baire category in R and “generalized Baire

category” in κ2∗ as well as some of the significant differences concerning Baire cat-
egory in R and κ-category in κ2∗. For example we have shown that a residual set
in κ2∗ need not contain a perfect set and that there exist perfect sets of cardinality

|<κ2∗|.

1. Introduction

The goal of this paper is to discuss a generalization of Baire category in an ordered
continuous set and its Cartesian square. By a continuous set, we are referring
to a linearly ordered Dedekind complete set, a set for which every partition into
nonempty initial and remainder parts produces a unique element. (We will use the
terms continuous set and Dedekind complete set interchangeably.) The underlying
concept of Baire category in R, the set of real numbers, is that it classifies subsets
of R as either “large” (second category) or “small” (first category). Our goal
is to generalize the notion of Baire category to other linearly ordered continuous
sets. Fundamental to the success of this generalization is the assumption of certain
prescribed properties on our continuous set. Two principles one would want to
establish in a generalization, would be:

(a) that a nonempty open set is classified as “large”, and
(b) that a “large” set M is somewhere “everywhere large” (there exists some

open set for which every open subset intersects M in a set classified as “large”).
In addition to developing this generalization of Baire category, we provide ex-

amples of sets which satisfy our generalization of a “Baire set”, and discuss the
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similarities and differences between this “generalized Baire set” and the set of real
numbers R.

2. Definitions and Notation

Terminology and notation will be consistent with that which is used in Jech [5].
The power of ordinal number κ will be denoted by |κ|. An ordinal number κ may
be referred as a cardinal number if for all ordinals β with β < κ we have |β| < |κ|.
At the same time we may use ωα to denote the smallest ordinal of power ℵα. For
cardinal κ, let κ+ denote the successor cardinal to κ. For limit ordinal κ, cf(κ)
will denote the smallest ordinal with which κ is cofinal with (i.e. there exists an
increasing sequence of ordinals {κξ}ξ<cf(κ) such that κ = lim

ξ<cf(κ)
κξ). A ordinal

number κ is said to be a regular ordinal provided κ = cf(κ). For ordinals ν, κ we
will use κν to denote the set of all sequences of length κ formed from terms in ν
(i.e. (xξ)ξ<κ such that xξ is an ordinal less than ν). In particular, κ2 will denote
the set all dyadic sequences of length κ. We will let 2κ denote the power of the
set κ2.

Let (C,<) denote a linear ordered Dedekind complete set, throughout this paper
we will assume that C has the order topology. Let C2 denote the Cartesian square
of C and give C2 the product topology. For each x ∈ C, the character of x,
denoted by char(x), is the ordered pair (λ, τ) where λ is the smallest ordinal for
which the initial segment determined by x, i.e. the set {y ∈ C : y < x} is cofinal
with λ, and τ is the smallest ordinal for which the remaining segment determined
by x. Hence {y ∈ C : x < y} is coinitial with τ . When the char(x) is (λ, τ), then
λ may be referred to as the left character of x, and τ as the right character of x.

An ordered set M is said to be an ηα-set if M is cofinal and coinitial with
cardinals ≥ ωα, and for every pair A,B of neighboring subsets either A or B is
of power ≥ ωα. Historically Hausdorff [3] described the ηα-set as a generalization
of the set of rational numbers, which has been called the η-set. Of course if a
continuous set contains an ηα-set, then for all x, char(x) = (λ, τ) where at least
one of λ, τ ≥ ωα.

2.1. Previous work in generalizing Baire category

In literature there exists several generalizations of Baire category. In [1], Folley
defined the notion of ωα-category in a continuous set C. His work is based on the
assumption of an ordered continuous set containing a dense ηα-subset of cardinality
ωα.

In [4], Heckler discussed his notion of “ωα-category” called “*-category” in a
topological space T = (T,O). The weight of T (denoted by wt(T )), is the least
cardinal λ such that O admits a basis of cardinality λ. A set is called an f-set if
it is the union of wt(T ) many nowhere dense sets. Otherwise it is called an s-set.
However, without making any cardinal assumptions, if one was to use the weight
of a space, in classifying sets as “large” and “small”, it is possible that the space
itself could be classified as an f -set (“small”).
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In [7], Milner and Prikry discussed their notion of “ωα-category” called µ-
category in a partially ordered set (P,<). The depth of a partially ordered set P is
the smallest ordinal number γ such that P does not contain a reverse well-ordered
subset of length γ. Here they defined a set to be of the first (second) µ-category if
it is (is not) the union of fewer than µ many nowhere dense sets. A set C has the
µ-Baire property if every open set of C is of the second µ-category. Milner and
Prikry established that if ν ≥ ω, and κ ≥ 2 then νκ, the lexicographically ordered
set consisting of sequences of length ν with terms in κ, is a cf(ν)+-Baire set.

3. Definition of ωα category

We define the notion ωα-category for a topological space T as follows: M is said
to be a set of first ωα-category if it is the union of at most ωα many nowhere dense
sets. M is said to be a set of second ωα-category if it is not a set of first ωα-
category. Thus if M is a set of first ωα-category, and τ ≥ α then M is a set of first
ωτ -category. Consequently if one wants to use “ωα-category” to classify subsets as
“large” or “small”, then one would want to choose the most efficient α. Efficiency
will be measured along the lines when both (a) and (b) can be achieved. We say T
is an ωα-Baire space if every open subset of T is a set of second ωα-category. In an
ωα-Baire space, a subset M is called an ωα-residual set if its complement M̃ is a
set of first ωα-category. In an ωα-Baire space, a subset M is said to be everywhere
of second ωα-category in open set O, if for all nonempty open set U ⊂ O, U ∩M
is a set of second ωα-category.

To ensure that when using ωα-category as a means of classifying subsets of C
and C2 as “large” or “small” sets that properties (a) and (b) are realized, we will
assume that continuous set C is ωα-good, where we define ωα-good as follows.

Definition 3.1. Let ωα be a regular ordinal and C a linearly ordered Dedekind
complete set. Then C has the ωα-good property provided:

(i) for each x ∈ C char(x) = (λ, τ) implies that λ ≥ ωα and/or τ ≥ ωα, and
(ii) there exists a set Q ⊂ C, such that Q is a set of first ωα-category, and there

exists a system of open sets U such that U =
⋃

ξ<ωα

Uξ where

(ii-1) for each ξ < ωα, O1, O2 ∈ Uξ if O1 6= O2 then O1 ∩O2 = ∅, and
(ii-2) for all x ∈ C \Q, the set {O ∈ U : x ∈ O} forms a basis for the open sets

containing x.

Observe that if C possesses a dense ηα-subset, then C possesses property (i).
The following argument demonstrates that the the set of real numbers R is ω0-good.
Let Q be any subset of R of the first category. The set of rational intervals, open
intervals with rational end points, is a countable collection of open intervals. Thus
we can represent the set of rational intervals as U =

⋃
ξ<ω Uξ, where for each ξ,

Uξ contains only one rational interval. It immediately follows that (ii-1) and (ii-2)
hold and so R is ω0-good.
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Now suppose C possesses property (ii). Define

U (2) =
⋃

µ<ωα

 ⋃
ξ<ωα

{O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}

 .

Note U (2) can be written as the union of ωα many collections, i.e.

U (2) =
⋃

τ<ωα

U (2)
τ

where for each τ there exists ξ, µ < ωα such that

U (2)
τ = {O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}.

Now for all U1, U2 ∈ U (2) if U1 6= U2 then U1 ∩ U2 = ∅. Further, if N is nowhere
dense in C, and A is any subset of C, then both N × A and A ×N are nowhere
dense in C2. Therefore if B is a set of first ωα-category in C, and A is any subset
of C then both B×A and A×B are sets of first ωα-category in C2. Thus the set
Q(2) = (Q × C) ∪ (C × Q) is a set of first ωα-category in C2. Consequently, for
each ζ ∈ C2 \ Q(2), the collection {U ∈ U (2) : ζ ∈ U} forms a basis for the open
sets which contains ζ. And so we find that C2 possesses property (ii).

4. ωα category in ωα-good sets

We assume throughout this section that C is ωα-good. The theorems in this
section, unless explicitly stated otherwise, are valid for both the linear space C
and its Cartesian square C2.

Theorem 4.1. Let C be ωα-good, then every nonempty open set of C and of
C2 is a set of second ωα-category. Thus both C and C2 are ωα-Baire sets.

The above result implies that an ωα-residual set is everywhere dense. This result
Theorem 4.1 is established for an ordered space in each of the versions [1, 3, 7].
In each case the proof is pretty much the same, and analogous to the proof of the
Baire category version performed in R. What is essential in the linear case is that
no point has character (τ, γ) where both τ and γ are less than ωα.

The next two theorem are essentially results by Folley. Although Folley as-
sumed the existence of an ordered continuous set containing a dense ηα-subset of
cardinality ωα, it is clear that property (i) of ωα-good is the only assumption that
is required in Folley’s argument to establish these results. We state these results
and omit the proofs. Again they are stated for both C and C2.

Theorem 4.2. [1] Let λ be a cardinal number less than ωα, then the union of
λ many nowhere dense sets is a nowhere dense set.

Theorem 4.3. [1] Let C be an ωα-good set then the cardinality of an ωα-residual
set of C is greater than or equal to 2ωα .

By an isomorphism between two ordered sets, we are referring to a 1-1 map
f : A −→ B between the two ordered sets A and B, such that for all a1, a2 ∈ A
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with a1 < a2 we have f(a1) < f(a2). The next result is explicitly stated for sub-
sets A of the linear space C. The Baire category in R version of this result was
established in [6]. We provide the proof to the generalization, but this proof is
merely a generalization of the proof in [6].

Theorem 4.4. [6] Let C be an ωα-good set. If A is a set of first ωα-category
such that A is a dense subset of open set O, then every subset of C isomorphic to
A ∩O is a set of first ωα-category.

Proof. Let B ' A ∩ O, and f a isomorphism mapping A ∩ O onto B. Thus
B =

⋃
ξ<ωα

f(Aξ), where Aξ is nowhere dense. So we are left to show f(Aξ) is
nowhere dense. Let U be a nonempty open set. Then there exists an open interval
I ⊂ U . If |I ∩ f(Aξ)| ≤ 1, then we are done, so assume b1, b2 ∈ I ∩ f(Aξ) with
b1 < b2. Thus a1 < a2, where f(ai) = bi. As Aξ is nowhere dense, there exists an
open subset of (a1, a2) ⊂ O which does not intersect Aξ. Since A is dense in O,
there exists an interval (a3, a4) with end points in A which is a subset of this open
set. Thus (a3, a4)∩Aξ = ∅, and (a3, a4) ⊂ (a1, a2). Let b3 = f(a3) and b4 = f(a4).
Then (b3, b4) ⊆ (b1, b2) ⊂ I which is a subset of U . Further f(Aξ) ∩ (b3, b4) = ∅.
Therefore B is of first ωα-category. �

Of course this result holds true for sets of first category in R. The property that
A is dense is required as we illustrate. Consider (0, 1) ⊂ R. Let C ⊂ (0, 1) be
a Cantor set. Then there exists an isomorphism h such that the interval (0, 1) =
h(C1) where C1 ⊂ C. Obviously C1 is of 1st category (since it is nowhere dense),
but C1 is isomorphic to (0, 1), a set of 2nd category.

The following result is true for ωα-category in both C and C2. We will provide
a proof only for the linear space C, the proof for C2 is analogous to what is done
here. What is essential in the following proof is property (ii).

Theorem 4.5. Let C be an ωα-good set. If A is a set of the second ωα-category,
then there exists an open set O such that A is everywhere of second ωα-category
in O.

Proof. Suppose the contrary. Since Q is a set of first ωα-category, it intersects
the set A in a set of first ωα-category, so we may assume without loss of generality
that A ∩Q = ∅.

For each ξ < ωα, let Kξ = {O ∈ UC,ξ : A ∩ O is a set of first ωα-category }.
Thus, for all O ∈ Kξ, A∩O =

⋃
ξ<ωα

AO
ξ where AO

ξ is nowhere dense. Let τ < ωα.
Set

Aτ =
⋃

O∈Kτ

(A ∩O) =
⋃

O∈Kτ

 ⋃
ξ<ωα

AO
ξ

 =
⋃

ξ<ωα

( ⋃
O∈Kτ

AO
ξ

)
.

We find that for each ξ < ωα, the set
⋃

O∈Kτ
AO

ξ is nowhere dense. For if U is any
nonempty open set, and U ∩

⋃
O∈Kτ

AO
ξ 6= ∅, then U ∩AO1

ξ 6= ∅ for some O1 ∈ Kτ .
As AO1

ξ is nowhere dense, there exists open set V ⊂ U ∩O1 such that V ∩AO1
ξ = ∅.

Now V is an open subset of U ∩ O1 such that V ∩
⋃

O∈Kτ
AO

ξ = ∅. Thus Aτ is
a set of first ωα-category.
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Let N = A \
(⋃

τ<ωα
Aτ

)
. Since

⋃
τ<ωα

Aτ is a set of first ωα-category, we must
have that N is of second ωα-category. If there would exist an open set U such
that N is everywhere of second ωα-category in U , then A would be everywhere of
second ωα-category in U . So we assume that for each open set U , there exists an
open subset U1 ⊂ U such that N ∩ U1 is of first ωα-category. We will show that
this assumption implies that N is nowhere dense.

Let U be a nonempty open set such that U ∩ N 6= ∅ and let ζ ∈ U ∩ N .
As N ⊂ (C \ Q), there exists O1 ∈ UC such that ζ ∈ O1 ⊆ U . Since N is not
everywhere of second ωα-category in O1, there exists a nonempty open set U1 ⊆ O1

such that U1 ∩N is a set of first ωα-category. As our goal is to establish that N
is a nowhere dense set, so we will assume the case that U1 ∩N is nonempty. Let
ζ1 ∈ U1 ∩ N . Then since ζ1 6∈ Q, there exists U2 ∈ UC such that ζ1 ∈ U2 ⊆ U1.
Now U2 ∩A = (U2 ∩ (A \N))∪ (U2 ∩N). Thus U2 ∩A is a set of first ωα-category.
Consequently there exists a ξ < ωα, such that U2 ∈ Kξ. Hence U2 ∩ A ⊆ (A \N)
contrary to the fact ζ1 ∈ U2 ∩N . And so we find that U1 ∩N = ∅, implying that
N is nowhere dense.

As N is nowhere dense, the set A = (A \ N) ∪ N is a set of first ωα-category
which is a contradiction. Consequently we find that there must exist an open set
O such that A is everywhere of second ωα-category in O. �

5. ωα-category in a continuous set consisting of dyadic sequences

Definition 5.1. For ordinal number κ, we will use κ2 to represent the lexico-
graphically ordered set consisting of all dyadic sequences of length κ. Let κ2∗ =
{f ∈ κ2 : f = (fξ)ξ<κ such that there exists a τ < κ with fτ = 0, and τ ′ < κ such
that fτ ′ = 1 and for all ξ with fξ = 0 there exists ξ′ with ξ < ξ′ < κ and fξ′ = 0 }.

If κ is a limit ordinal then κ2∗ is a continuous set without the first and the last
element. Let <κ2∗ denote all dyadic sequences of length < κ which have a final
term that is 1. Then <κ2∗ is a dense subset of κ2∗. Further κ2∗ possesses property
(i), where ωα = cf(κ). Thus the Dedekind completion of <κ2∗ is κ2∗. Of course
ω2∗ is isomorphic to the set of real numbers R, and <ω2∗ is isomorphic to the set
of rational numbers.

We will assume that κ is an initial ordinal number, i.e. κ is a cardinal number.
For such an assumption, due to Harzheim [2], we have the following:

1. |κ2∗| = 2κ,
2. |<κ2∗| =

∑
ξ<κ 2ξ,

3. every pair of intervals in κ2∗ determined by end points in <κ2∗ are isomor-
phic,

4. <κ2∗ is an ηcf(κ)-set,
5. every element of <κ2∗, as a member of κ2∗, has character (cf(κ), cf(κ)), and
6. every gap in <κ2∗ has character (λ, τ) where both λ and τ ≤ κ, and is

occupied by an element of κ2∗.
Let Qκ = {f ∈ κ2∗ : f has character different than (cf(κ), cf(κ))}, then Qκ is a
dense subset of κ2∗, and of cardinality

∑
ξ<κ 2ξ. Observe that |Qκ| = |<κ2∗|.
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Hausdorff [3] has shown that any two ηα-sets of cardinality ℵα are isomorphic.
Hence their Dedekind completions are isomorphic, as well. Further an ηα-set is
a universal set for the cardinal ℵα, i.e. for each ordered set B of cardinality ≤ ℵα,
an ηα-set contains a subset isomorphic to B. In addition, it has been established
that every ηα-set contains a subset isomorphic to <ωα2∗. Thus Folley’s assumption
of a continuous set containing an ηα-set of cardinality ℵα is equivalent to assuming
that he was working in the ordered space ωα2∗, for regular α, and assuming that
|<ωα2∗| = ℵα.

An ordered set M is said to be κ-free if it contains neither a subset of type
κ nor κ∗. If the ordered set M is κ-free, then the depth ρ of M is such that
ρ < κ. Harzheim in [2] has established that <κ2∗ is the union of κ many κ-free
sets. Thus <κ2∗ =

⋃
ξ<κ Hξ where each Hξ is κ-free. Further, by examining

Harzheim’s construction of this decomposition, using the fact that the union of
less than κ many κ-free sets is itself a κ-free set, and by observing that for all
β < κ, <β2∗ ⊂ <κ2∗, we find that by taking appropriate unions we may assume
that the sets Hξ satisfy the following properties:

1. Hξ is an infinite set without the first and the last element, and there exists
a regular ordinal β, with ξ ≤ β < κ such that Hξ is a β-free set,

2. for all a, b ∈ Hξ, |(a, b) ∩Hξ| = |Hξ|,
3. for all ξ < µ < κ, Hξ is a subset of Hµ, and
4. for all ξ, µ with ξ < µ < κ and every partition {I,R} of Hξ into initial

and remainder parts, there exists a c ∈ Hµ such that I < c < R, (one may
choose I or R to be empty).

Observe that if β < κ and M a β-free set then M is nowhere dense in κ2∗. As
κ = lim

ξ<cf(κ)
κξ, for some increasing sequence of ordinals {κξ}ξ<cf(κ), we see that

<κ2∗ =
⋃

ξ<cf(κ) Hκξ
. Consequently, <κ2∗ is a set of first cf(κ)-category.

Theorem 5.1. Qκ is a set of first cf(κ)-category.

Proof. Due to Harzheim [2], we have <κ2∗ =
⋃

ξ<cf(κ) Hκξ
where Hξ is a β-free

set for some β < κ. Thus each Hξ is nowhere dense. Let

A =
⋃

τ<cf(κ)

⋃
ξ≤τ

Hκξ

 =
⋃

τ<cf(κ)

Hκτ
.

Noting that if a set is β-free, then its closure is as well β-free, we find that for
each τ < cf(κ), there exists a β < κ such that

⋃
τ<cf(κ) Hκτ

is β-free. Hence it is
nowhere dense. Consequently A is a set of first cf(κ)-category.

We claim that Qκ ⊂ A . Let p ∈ Qκ, then p has character different than
(cf(κ), cf(κ)), let us assume that p has left character ρ, so ρ < κ. As <κ2∗ is dense
in κ2∗, there exists an increasing sequence {xξ}ξ<ρ formed out of <κ2∗ with limit
p. Since cf(κ) is a regular ordinal and ρ 6= cf(κ), there exists a φ < cf(κ) such
that {xξ : ξ < ρ} ⊂

⋃
ξ≤φ Hκξ

= Hκφ
. Thus p ∈ A. �

Lemma 5.1. If A ⊂ κ2∗, and |A| < | <κ2∗|, then A is nowhere dense.
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Proof. In [8], Rotman established that if an ordered set A contains no ηα-set
then the Dedekind completion of A contains no ηα-set. Therefore if A is a dense
subset of κ2∗, for each ξ < cf(κ), A must contain a ηκξ

-set Aκξ
. This set Aκξ

contains a set isomorphic to <κξ2∗. Consequently |A| ≥ |<κξ2∗| for all ξ < cf(κ).
Hence |A| ≥

∑
ξ<cf(κ) |<κξ2∗|, and so |A| ≥ |<κ2∗|, which would lead to a contra-

diction. �

Thus we see that any set of cardinality less that |<κ2∗| is nowhere dense. This
property is comparable to a property in R regarding the set of rationals. That is,
any set of cardinality less than the cardinality of the rationals is nowhere dense in
R. Recall that Theorem 4.4 stated that every set isomorphic to <κ2∗, is a set of
first cf(κ)-category, the following theorem strengthens this result.

Theorem 5.2. If A ⊂ κ2∗ and is isomorphic to a subset of Qκ ∪<κ2∗, then A
is a set of first cf(κ)-category.

Proof. Clearly Qκ ∪ <κ2∗ ⊆
⋃

τ<cf(κ) Hκτ . Suppose A is isomorphic to D where
D ⊆Qκ ∪ <κ2∗. Let f be an isomorphism from D to A. Since D = ∪τ<cf(κ)(D ∩
(Hκτ

)), and as the property that a β-free is preserved under isomorphisms, we
find that for each τ < cf(κ), f(D ∩Hκτ

) is nowhere dense. Hence A is the union
of cf(κ) many nowhere dense sets, and so it is of first cf(κ)-category. �

Notice that when one considers cf(κ)-category in κ2∗, and compares a set to Qκ ∪
<κ2∗, the discussion has been limited to isomorphisms. That is, if one establishes
an isomorphism between a set A and a subset of Qκ∪<κ2∗, then it is of first cf(κ)-
category. However in R, one only needs to establish a 1-1 correspondence between
A and a subset of the rationals to show that it is of first category. (It is true that
any countable set will be isomorphic to some subset of the rationals). The question
whether one can establish the property that a cardinality equivalence of a set with
Qκ∪<κ2∗ will establish first cf(κ)-category is unlikely. For it is unknown whether
there exists a regular cardinal number κ such that |κ2∗| = |<κ2∗|. Of course if
|κ2∗| satisfied this property then there exists sets of second cf(κ)-category of this
power.

Definition 5.2. A set M is dense-in-itself provided that it is nonempty and
that every element of M is a limit point of M . A set P is a perfect set provided
that it is closed and dense-in-itself.

Theorem 5.3. For each ξ < cf(κ), Pξ = Hκξ
\Hκξ

is a perfect set.

Proof. We claim that Pξ 6= ∅. Suppose Pξ = ∅, then Hκξ
= Hκξ

. For each
x ∈ Hκξ

, let x+ = inf y∈Hκξ
y>x

y and x− = sup y∈Hκξ
y<x

y. So x− ≤ x ≤ x+ and

x−, x+, x ∈ Hκξ
(since we are assuming Hκξ

= Hκξ
). Clearly x− 6< x and x 6< x+,

because |(a, b) ∩Hκξ
| = |Hκξ

| for all a, b ∈ Hκξ
with a < b. Hence x− = x+ = x.

Consider the following partition of Hκξ
, let I = {y ∈ Hκξ

: y < x} and R = Hκξ
\I.

Then {I,R} is a partition of Hκξ
into nonempty initial and remainder parts. Thus

for all τ < cf(κ), with ξ < τ there exists a c ∈ Hκτ such that I < c < R. But
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x = sup y∈Hκξ
y<x

y, where x ∈ R and {y ∈ Hκξ
: y < x} ⊆ I. This would imply that

x− ≤ c < x, which contradicts that x− = x. Hence Pξ 6= ∅.
We now show that P̃ξ is an open set. Let q ∈ P̃ξ. As H̃κξ

is an open set where

H̃κξ
⊂ P̃ξ, we shall assume that q 6∈ H̃κξ

. Since q ∈ P̃ξ where Pξ = Hκξ
\Hκξ

, we
have q 6∈ Pξ and q ∈ Hκξ

. Consequently we have q ∈ Hκξ
. Let q− = sup t∈Hκξ

t<q

t

and q+ = inf t∈Hκξ
t>q

t. By an argument analogous to what occurred above, we find

that both q− and q+ 6∈ Hκξ
. Thus q− < q < q+, and so q ∈ (q−, q+) ⊂ P̃ξ. Hence

Pξ is closed.
Now to show Pξ is dense-in-itself. Let q ∈ Pξ and O an open interval containing

q, there exists either an increasing or a decreasing sequence {zµ}µ<ρ formed out
of Hκξ

for which q is a limit point. Without loss of generality, let us assume it
is increasing. Fix a µ < ρ such that zµ ∈ O, then |(zµ, zµ+1) ∩ Hκξ

| = |Hκξ
|. It

follows that Pξ ∩ (zµ, zµ+1) 6= ∅. As (zµ, zµ+1) ⊂ O, we have established that Pξ

is dense-in-itself. Hence Pξ is a perfect set. �

Theorem 5.4. Suppose κ is a regular ordinal. For all ξ < κ, (i) Pξ ⊂ Qκ and
(ii) Pξ ∩ <κ2∗ = ∅

Proof. If p ∈ Pξ then p is a limit point of Hκξ
, and thus p is the limit of an

increasing sequence or a decreasing sequence formed out of Hκξ
. As the closure of

a β-free set is as well a β-free set, we find that either the left or the right character
of p is ≤ β which is less than κ. Thus if κ is regular then

⋃
ξ<cf(κ) Pξ = Qκ, and

so Pξ ⊂ Qκ.
We claim that Pξ ∩ <κ2∗ = ∅ . Let p ∈ Pξ = Hκξ

\ Hκξ
, and p ∈ <κ2∗, then

there exists a τ with ξ < τ < cf(κ) such that p ∈ Hκτ
. As C is a continuous set,

and as p ∈ Hκξ
\ Hκξ

, there exists a monotonic sequence {zµ}µ<ρ formed out of
Hκξ

with a limit point of p. Let us assume without loss of generality that this
sequence is increasing. Thus p = sup

µ<ρ
zµ. We define a partition in Hκτ by setting

I = {y ∈ Hκτ
: y < p}, and R = Hκτ

\ I. Now for all ν with τ < ν < cf(κ) there
exists a c ∈ Hκν

such that I < c < R. Therefore as {y ∈ Hκξ
: y < p} ⊂ I, we

have supµ<ρ zµ < c < p which is a contradiction. Consequently p 6∈ <κ2∗. �

For the remainder of this paper, let Q =
⋃

ξ<cf(κ) Pξ. Clearly Q ⊆ Qκ. It also
follows that Q is a set of first cf(κ)-category. Lastly, |Pξ| = |Hκξ

| = 2κξ . Thus
|Q| = |<κ2∗| =

∑
ξ<cf(κ) 2κξ .

A well known result in analysis is that every perfect set in R is of cardinality
2ℵ0 . Reminder, <κ2∗ is a generalization of the set of rational numbers and κ2∗ its
Dedekind completion, so it is important to realize what results can be extended
to κ2∗. Since Pξ ⊂ Q, and since |Q| = |<κ2∗| , we find that a perfect set in κ2∗
need not necessarily be of the same power as κ2∗ .

Another well known result in analysis is that every residual set contains a perfect
set. Folley in [1], erroneously established that every ωα-residual set contains a
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perfect set. In [1], Folley was working with a complete set C which has a dense
ηκ-set of cardinality κ, hence under Folley’s assumption, C is isomorphic to κ2∗.
(Note that Folley’s assumption implied cf(κ) = κ.) We have already shown that
Qκ is a set of first cf(κ)-category. Now every perfect set is infinite, thus it must
contain a sequence of type ω or ω∗, and so it must contain a point of character
(ω, κ) or (κ, ω). Also cf(κ) = κ > ω (if κ = ω we would be discussing the set
of real numbers R and Baire category). Consequently every perfect set intersects
Qκ. It will be shown in the following section that κ2∗ is a cf(κ)-Baire set. Thus
Q̃κ is a cf(κ)-residual set, and so we find that there does exist a cf(κ)-residual set
which does not contain a perfect set.

Theorem 5.5. For κ satisfying cf(κ) = κ > ω:
(i) there exists a perfect set P ⊂ κ2∗ such that P is of cardinality |<κ2∗|;
(ii) there exists a set X of first κ-category such that every perfect set in κ2∗

intersects X.

The proof follows from the above remarks.

6. κ2∗ is a cf(κ)-Baire set

Theorem 6.1. κ2∗ is a cf(κ)-Baire set.

Proof. We will show that is a cf(κ)-good set. By Theorem 4.1 we see that κ2∗
is a cf(κ)-Baire set. For all ξ < cf(κ), Pξ = Hκξ

\Hκξ
. Let P−

ξ = {f ∈ Pξ : f is
a left hand limit of Hκξ

}, and let P+
ξ = Pξ \P−

ξ . The set Pξ has an initial element
denoted by mξ ∈ P+

ξ , and a terminal element denoted by nξ ∈ P−
ξ .

Let p be any element such that p ∈ P−
ξ \ {nξ}, there exists a qp ∈ P+

ξ such that
qp is the immediate successor of p in Pξ. This result follows from the fact Pξ is
a β-free set for some β < κ, and that <κ2∗ is everywhere dense in κ2∗.

Now consider any t such that t ∈ <κ2∗ \ Q, and any open interval (a, b) con-
taining t. Then there exists a ξ0 < cf(κ) such that both (a, t) ∩ Hκξ0

6= ∅ and
(t, b) ∩ Hκξ0

6= ∅. This can be seen by the following argument: Since <κ2∗ is
dense in κ2∗, there exist ξ, τ such that (a, t) ∩Hκξ

6= ∅, and (t, b) ∩Hκτ 6= ∅. Let
ξ0 = max(ξ, τ).

For each ξ < cf(κ), let

Uξ = {O : O = (p, qp), p ∈ P−
ξ , p 6= nξ, qp ∈ P+

ξ }.

Set U =
⋃

ξ<cf(κ)

Uξ. For all O1, O2 ∈ Uξ if O1 6= O2 then O1 ∩O2 = ∅.

For all t ∈ κ2∗ \Q, the collection {O ∈ Uκ2∗ : t ∈ O} forms a basis for the
open sets which contain t. This follows from the following argument. Let U be
any open set containing t. Then there exists an open interval (a, b) such that
t ∈ (a, b) ⊂ U . By the above argument, there exists a ξ < cf(κ) such that both
(a, t), (t, b) intersect Hκξ0

. We will assume that both (a, t) and (t, b) contain at
least two elements of Hκξ0

. It follows then that both (a, t) and (t, b) intersect Pξ0 .
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Let p = sup y∈Pξ0
y<t

y. As Pξ0 is closed, p ∈ Pξ0 , hence p ∈ P−
ξ0

, thus there exists

qp ∈ P+
ξ0

. It follows then that t < qp. Hence p < t < qp, and so there exists an
(p, qp) ∈ Uξ0 such that t ∈ (p, qp) ⊂ O.

Now Q is a set of first cf(κ)-category. Further κ2∗ contains a dense ηcf(κ)-set.
Consequently κ2∗ is cf(κ)-good, and so κ2∗ is a cf(κ)-Baire set. �

Let

U (2) =
⋃

µ<cf(κ)

 ⋃
ξ<cf(κ)

{O1 ×O2 : O1 ∈ Uµ, O2 ∈ Uξ}

 .

Then U (2) can be written as the union of cf(κ) many collections, i.e.
U (2) =

⋃
τ<cf(κ)

U (2)
τ where for each τ there exists ξ, µ < cf(κ) such that U (2)

τ =

{O1 × O2 : O1 ∈ Uκ2∗,µ, O2 ∈ Uκ2∗,ξ}. Now for all U1, U2 ∈ U(κ2∗)2 if U1 6= U2

then U1 ∩ U2 = ∅. For all ζ ∈ (κ2∗)2 \ [(κ2∗ ×Q) ∪ (Q× κ2∗)], the collection
{O ∈ U(κ2∗)2 : ζ ∈ O} forms a basis for the open sets which contain ζ.
It follows then that (κ2∗)2 is also a cf(κ)-Baire set.

7. Examples

Example 7.1. Denote

C = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, (x, y) 6= (0, 0), (1, 1)}
and give C the lexicographic order. Then C is a continuous set without the first
and the last element, where every element of C has character (ω, ω). The smallest
cardinal for which there exists a basis is 2ℵ0 (i.e. the weight of C is 2ℵ0). However,
Q = {(x, 0) : (x, 0) ∈ C} is nowhere dense in C. Hence it is a set of first ω-category.

Let B = {(an, bn)}n<ω denote the open intervals of (0,1) with rational end
points. We use 〈. . .〉 to denote an open interval in C to avoid confusion between
a point and an interval. Now let UC =

⋃
n<ω

{〈(x, an), (x, bn)〉 : x ∈ [0, 1]}. Then C

is ω0-good set. Hence C is an ω0-Baire space (i.e. a Baire space).

Example 7.2. Let κ > ω be an initial ordinal number, and f, g ∈ κ2∗ where
[f, g] ⊂ κ2∗. Now let C = {(x, y) : x ∈ [f, g], y ∈ [0, 1], (x, y) 6= (f, 0), (g, 1)}, and
give C the lexicographic order. Then C is a continuous set without the first and
the last element. Every element of C has character (λ, τ) where both λ, τ ≥ ω.
Then the set Q = {(x, 0) : (x, 0) ∈ C} is nowhere dense in C. Let {(an, bn)}n<ω

denote the open intervals in (0,1) with rational end points, and set

Uc =
⋃

n<ω

{〈(x, an), (x, bn)〉 : x ∈ [f, g]}.

Then C is an ω0-good set. Hence C is an ω0-Baire space.
This example illustrates that using the weight of the space, as in ∗-category, to

distinguish between“large” (i.e. an s-set) and “small” (i.e. an f -set) inefficiently
classifies sets. This follows from the fact that the weight of C exceeds ω0.
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Observe that both of the above examples have the property that C can be
represented as C = A × B, where B is an ω0-good set, and that C is given the
lexicographic ordering. The consequence is that C is ω0-good set.

Example 7.3. Let κ be an regular ordinal number > ω (i.e. cf(κ) = κ), and
[f, g] ⊂ κ2∗. Thus κ2∗ is cofinal and coinitial with κ. Let

C = {(x, y) : x ∈ [0, 1], y ∈ [f, g], (x, y) 6= (0, f), (1, g)}
and give C the lexicographic order. Then C is a continuous set without the
first and the last element. Every element of C has character (λ, τ) where at
least one of λ or τ equals κ (because κ is regular). It would be best to use κ-
category to classify subsets of C as “large” or “small”. For there exists a dense
set of first κ-category in C, the set {(x, y) ∈ C : y ∈ <κ2∗}. Let Q = {(x, y) ∈
C : y ∈ Qκ}, and Vξ be the intervals of Uξ which are subsets of [f, g]. Now let
U =

⋃
ξ<κ

{〈(x, t1), (x, t2)〉 : x ∈ [0, 1], (t1, t2) ∈ Vξ}. As Q is a set of first κ-category

in C, we find that C is a κ-good set. Consequently C is a κ-Baire set.
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