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ON AN INEQUALITY FOR ENTIRE FUNCTIONS

T. HUSAIN

o0
ABSTRACT. It is shown that the entire function F(z) = Y e~ V(") 2" satisfies an
n=0
inequality: |F(z)| > MF(|z|) for some M > 0 and for a set of z in the complex
plane.

1. INTRODUCTION
The entire function e* = Y7 Z—T: trivially satisfies the inequality: |e*| < el*l
for all z in the complex plane. It is of some interest to know the set of z for
which [e*| > Mel?! for some M > 0. Indeed, if e® is real-valued then for any M,
0<M<1,|e®| > Mell for all z > 0.

Here we are concerned with a more general function

(1) F(z) Z e (M)
n=0

where v(z) is a suitable real-valued function so that F'(z) becomes an entire func-
tion and satisfies the inequality:

() |F(2)] = MF (|2])

for some M > 0 and for a set of z in the complex plane.

Inequalities of the type (xx) are useful in evaluating, among other results, the
glb or minorant of an entire function in the same way as the inequality of the type
|F'(z)] < MF(|z|) is used in obtaining the lub or majorant. For details on entire
functions and their properties, the reader may consult the references [1]-[7].

1
Note that if v(z) = (w + 5) logx — x, then by using the Stirling’s formula:
nl & v/27mn -n" e ", we see that
= —(n+i)logn+n _n = i
1+ Z e 2 2t <14 CZ o
n=1 n=1
for some ¢ > 0.
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2. THE THEOREM

We use z = re'? =z +iy (z = \/—1) throughout and prove:
Theorem. Let v(x) be a twice differentiable real-valued function defined for all
x > 0 such that
i) v(x) is increasing and — o0 as x — 00;
(ii) v ( ) is increasing and — 00 as T — 00;
(i) v"(z) is decreasing and — 0 as © — 00;
(iv) v (z) >0 for all x > 0;
(v) There exist numbers a > 0, 8 > 0 and x9 > 0 such that for all x > zo,
a<av(x) <.

Then F(z), given by (1), is an entire function and there is ro > 0 such that for
a fired v > 1o and for all z = x + iy with its y-coordinate satisfying the inequality:

|MSG@0/<M%3 )’

[F(2)] = MF(|z])
for some M > 0, depending on r, but 0 < M <1 for all z.
Proof. If a,, = e~ (") 2" then

we have

An+41

S == 0 (n<p<ntl)

as n — oo for all z by using the Mean Value Theorem and the hypothesis (ii). So
F(z) is indeed an entire function.
Put

(2) F(lz]) = j{:e_”’” "

The maximum term [5] or [7] of the series (2) is given as follows: clearly
d

= (emv@) g} = gv(®) — =
o (e r) e r* (logr —v'(z)) =0

if and only if
(3) logr —v'(z) =0

has a solution for a fixed r. Since v'(z) is continuous (because v”(x) exists), (3)
has a solution. Let x be the largest solution of (3) for a fixed r and let £ = [x],
the integral part of x, denote the index. Then

T(r) = e 4%
is the maximum term of the series (2) for a fixed r. Clearly |z — ¢| <1 and so

E—l<¢<a<&+1
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We choose
Q
4 — _
@) o= Jo- o]
Q
(5) n = [$+v”(:c)]'
From (4) and (5), we have
o Q
(6) nogx_v”—(:t)’ I‘”OSW+1
and
Q o
m<r+——=n+1<x+ +1

(7) - ’U”(.T) — 'UI/(.T)

«
and z—n;—1<—

’U”(CL‘)'
We choose r large enough so that
() nptl<é—1<é=z]<z<{+1<ng.
Write
(9) F(z) =T(r)Y e vWHe@ not. oind
n=0
Put
(10) H(z) = Z e VM) =t oin? — ) 4 S5 + S,
n=0
where
Sy = 3 emvmHu(e) pn—t . gind
n=0
(11) Sy = 3 e vmHv(E) n—t  gind
n=no+1
Sy = 3 e+ n—g . gind
n=ni+1
First we show that
(12) lim |S1| = 0.

From (11), we have

no
|Sl| < (e—v(n0)+v(5) ,rno—ﬁ) < Ze—v(n)-l-v(no) .T,n—n()) )
n=0
Set
no
A = (e*”(no)JF”(f) ,THO*f) , By = Zefv(nH»v(no) L pTo
n=0
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Then
(13) |Sl| S Al X Bl.

Using Taylor’s theorem and the equation (3), we estimate upper bounds of Ay,
Bs.

A = (ev(ﬁ) .T—S) (e—v(%) -7“"°>
_ (ev(f) .T*f) (ef{v(z)Jr(nof:b)v'(m)#»%(ngfm)Qv”(noqLG(:cfng)} _engv’m))

(0< 60 <1and (logr =1'(z))
= ev(g)fv(x)+m”,(m)*§vl(m)) X (ef%(nofﬂﬁ)zv”("o+9(f€*no)))

where
Oy = O (@) gz=E' (@)
= 6=V (@) +3(6-2)*0 (§4+0(z—¢)) | o(z—€)v'(2)
— o3 (6—2)%" (6+0(z—¢))

Y
==}

e =1

1
(because 3 (€ —2)* 0" (E+6(x—¢€)) >0).
On the other hand, since |z — ¢ < 1 and £ +0(z — &) > min{z,&} >z — 1, we
have

Ch < 2@ L0 1 a5 200

)

because of (iii).

Thus we have shown that lim Cy = 1.

But z—o00o=r— ﬁﬁﬁoso lim C; = 1.
Also T

D, = e~ 2(n0—)*" (no+6(z—n0)) < o= 3(no—2)*" (@)

because ng + 6 (x — ng) < .
In view of (6)

as  — oo by (iii). Since z — 0o = r — 0o, we have shown that

limD; =0 = lim A; =0. (from (14))

T —00 T — 00
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To find an upper bound for By, we have

no
Bl — Zefv(n)Jrv(ng) 70

n=0

no
_ Zef{(nfno)vl(no)Jr%(n*no)zv,,(nDJFe(nino))} . e(nfng)v’(m)

n=0
no

_ Ze(n—no)(v/(w)—v/(no)) e~ 3 (n=n0)*v" (no+6(n—no))

n=0
< , , 1
< Ze(n—no)(v (2)—v"(no)) (since -3 (n— n0)2 o (no + 6 (n — no)) < 0)
n=0
Put n — ng = —m. Then
e A

= 1 — e W(x)=v'(n0))

m=0

because ng < x = v'(ng) < v'(z) and so the resulting geometric series is conver-
gent. To obtain an upper bound for

(15) v'(ng) —v'(x) = (no — ) v" (no + 0 (z — no))
where 0 < § < 1, we observe that
no <z and ng+ 6 (x —ng) <z = 0" (x) <v" (ng+ 6 (x —no)).

From (6), we have

and so from (15) we have

V' (ng) — v/ (z) < <—U,, (x)> V' (z) = —a.

And so

This shows that

Next we prove that

(16) lim [ S5 = 0
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From (11) we have:

|S5] < Y emvimAv©) e
n=ni+1
_ (e—v(n1+1)+v(£) . Tnl-l-l—f) ( Z e—v(n)+v(n1+1) . rn—n1—1>
n=ni+1
= A3 X B37
where
AB — e—v(n1+1)+v(£) ,,,Jl1+1—5 By = Z e—v(n)+v(n1+1) _Tn—nl—l.
n=ni+1
To see that Bs < 0o, we consider
B3 _ Z ef{(nfnlfl)v’(n1+1)+%(nfnl71)2v"(n1+1+9(n7n171)) } . e(n—nl—l)v'(;ﬂ)
n=ni+1
(0 <6 <1and logr =12'(x))
_ Z e(n—nl—1)(1/(1)—1/(711—1-1)) . e—%(n—n1—1)2v//(n1+1+9(n—n1—1))
n=ni+1
< Z e(n—nl—1)(1/(1)—1/(711—1-1))
n=ni+1

1
(since —5(n—n1—1)2v"(n1+1—|—9(n—n1—1))§O)

Putm=n—-—n; — 1.
Then

By < Y en(v @ m41)
m=0

1

(17) < 1— ev’(w)—v’(nl-i-l)

because the geometric series is convergent, since © < n; +1 = v'(x) < v'(n; +1).
Further,

V() —v'(m+1)=(—n—1)v" (z+60(n +1-1x))
0<0<1)
(18) <(z—n1—1)v" (n1+1)
because x <nj +1and . + 6 (n; +1—2) <ng + 1 imply
vV (np+1) <0 (z+60(n1+1-2)).

Now if & > zg, then n; + 1 > zy and from hypothesis (v),
Q

7’Ll+1'

v (ng+1) >
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But from (7),
n1+1§x—|—i+1

’UH(.T)
and so
(19) v (ny +1) > - .
1
z + ’UH(CC) +

But then from (18), we have

V'(z)—v'(n+1) < (z—n1—1) g
1
I+ ,U//(x) +
() | =
v (z) T+ a +1
/U//(I

2" (z) + a+v"(z)
Since = > x¢ > 0 implies v”(x) < v”(0), and so from hypothesis (v) again,
(20) 2" (z) + a+v"(z) < a+ B+ 0"(0).

But then )

") — o < — >
U(CL‘) U(?’L1+ )_Oz—l—ﬂ—FUN(O)
and so from (17), we have

1

B3 < ; —5 < 0.

6a+ﬁ+v”(0)

As for A3 we have:
Ay = (ev(f) .T*E) (efv(n1+1) .rnlJrl)

= (ev(f) -T_E) (e— {v(z)+(n1+l—w)v'(m)+%(n1+1—w)2v”(m+9(n1+1—m))}
. e<m+1>v’<m>)

0<h<1)
_ (efv@)fv(z)ﬂfsw)v'(z)) (ef%<m+1fm)2v”<m+9<m+1fx)>)

= (5 x D3, say.
Since C3 = (1, lim C3 = 1.
Also o
z4+0(nm+1—xz)<n +1
implies
V' (x+0(m+1—1x))>0" (n1+1)
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(
(

_%<v”a:17) ) (v”a:c)+l> <x T % n 1)
() (e i)
()

« o?
+1
V" () 20" (z) + a+ v (x)

<e
«
since — >0
( T+ gy 1 )
« a?
*(wufﬂ(a+ﬂ+wmﬂ
<e (by (20))
—0 as ¥ — Q.
Andso limD3=0 = limD3=0 = lim A3=0.

This proves that lim |S3| = 0.

Now consider
ni

Sy = Z e—v(n)-{-v(f) . ,r,n—E . ei nf )
n=no+1
First we assume that for n, ng+1 <n < ni,|(n—¢£)0| < g and show that |Sa| > 1.

Clearly S can be expressed as:

1

512 _ eif@ Z e—v(n)+v(£) . ,r,n—E . ei(n—f)@

n=no+1
and so
ni
|S2| > |Re Z e—v(M)Fv(€) n—¢ | Gi(n—€)6
n=no+1
ni
> 30 e O cos(n — )6

n=no+1
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In view of our assumption: |[(n—¢&)68] < g for no +1 < n < nj, we have

cos(n—¢&)0>0
for ng +1 <n <n; and so
|Sa| > cos (€ —€)0 - 7 (E=8) g—v(&)+v(8)
+ Zl e v FU(E) =€ cos(n — £)6
n=mng+1
n#e
>1+40
and so |Sa| > 1, if
[(n—¢8)0| < g for ng+1<n<mn;.
Now we show that the assumption:
[(n—¢)0| < g, no+1 < n <nj is implied by those z = x+1iy whose y-coordinate

satisfies the condition

I/(.T

v"(z)
Let 8 > 0. Then |(n — &) 0] < g, ng + 1 < n < ny yields

and (E—np)0 < g
But
i +1=¢l < +1-2[+ [z ¢
<lm+l—-zl+l=m+1—-2)+1
(since < nj 4+ 1) and from (7)

nl—l—l—zgi—l—l

,UI/ (.T)

. . @ o
1mphes |n1+1_§|§<’l)”—(1')+1>+1_m+2 AISO
1€ = ol < |6 — 2]+ [z —no| < 1+ |z —nyg
<l4+z-—ng (since ng < x)
o
-2 4o

,UI/ (,T)

Thus the assumption:

|(n_§)9|§gf0Yno+1§n§n1
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is implied by the condition that

( a +2)9§gf0r920

v ()

(22) 0<(3) /(555 +2) -

Set

(23) o= () /<U,,L($) +2) >0,

To estimate d, we use Euler’s formular see [7]:

sin (1w) = (7w) ﬁ (1 - :—§> .

k=1

Substituting 6 for mw, we get
o0 92
(24) sin (0) = 0] [ (1 - W)
k=1

The product in (24) is > 0 if for all & > 1, 1 —

92
1-— — = 0 if and only if 8 < 7 for § > 0. Clearly
T

92

52 > 0. In particular,

,U// (CC)

+2>2

for all z > 0 and so

%z(g)/(vi@w) — 0<6<4, <

Further, if 0 <6; <6y <, then 67 < 6% implies
6
m2k2 — m2k2

NE

1

for all £ > 1 and so

2V2
But the last term = i if we put 6 = g in (24).
T



ON AN INEQUALITY FOR ENTIRE FUNCTIONS 105

Thus from (25), we obtain
7 sin 6
0 <

S 5a

Remark: As the referee pointed out, the last inequality can also be obtained

d .
by elementary means, noting that I (smx) < 0 in (0, g] and the value of
x x

i 242
ST —\/_ at z = % Now the inequality in (22) will be satisfied if we set
x T
7 sin 0 0 @ @
< (= — +2 inf <+v2 —+2
e < (3) /(5 +2) o w0t/ (55 +2)
2
(26) = ly| = rsind < &/_776.
—+2
v (z) +
Thus we have shown that if z = z + iy is such that
V2r
| < —7—— .
v"(z) +
then
|Sa] > 1.

Since we have already established that
g 151 = 0= lig [l
and the fact from (9) that
[F'(2)] = T(r) (|1S2] = [51] = [S5])

the proof of the theorem follows, since F(r) and T'(r) differ only slightly (see [7]).
In other words, there is rg > 0 such that » > r¢ and for all z = x + iy with

vl < (var) /(%@) +2>

we have |F(z)| > M F(r) for some M > 0. Since f(r) > |f(2)], clearly 0 < M <1

for all z. O
Example. As a particular case of the theorem take:
o0 o0 en
F(Z) _ ef(n+1) log(n+1)+n o = - Lo
Here v(z) = (z+1)log(x+1) —z, for x > 0, v'(z) = log(z+1) and
1
" _
v’ (z) = P

1
Choose xg =1, then for all z>1, = <zv'(z) = <
z+1

5 =
for all z > 1.

1
<1,ie. azi,ﬁzl
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Thus v(x) satisfies all the conditions of the theorem. For the index of the maximum

term of

en

NE

P S TPESTI

we solve: v'(x) =logr, i.e. log(z+ 1) =logr=x=r—landso& = [z] = [r]—1.
T

Here 6, = a2 S SzforallzZIandSOOS\0|§I.Thusif
+2 x+57 6 6
’U”((E)
for z = = + 1y,
22 2
<Y V2 sy
495 3

then there is rg such that for r > ry and for all those z = x + iy for which

2
ly| < \/?_r, we have
|F(z)] =2 MF(r)
for some M > 0, depending on r.
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