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ON BOUNDED MODULE MAPS BETWEEN HILBERT

MODULES OVER LOCALLY C∗ -ALGEBRAS

M. JOIŢA

Abstract. Let A be a locally C∗-algebra and let E be a Hilbert A-module. We
show that the algebra BA(E) of all bounded A-module maps on E is a locally m-con-
vex algebra which is algebraically and topologically isomorphic to LM(KA(E)), the
algebra of all left multipliers of KA(E), where KA(E) is the locally C∗-algebra of all

”compact“ A-module maps on E. Also we show that b(BA(E)), the algebra of all
bounded elements in BA(E), is a Banach algebra which is isometrically isomorphic
to Bb(A)(b(E)).

1. Introduction

A locally C∗-algebra is a complete Hausdorff complex topological ∗-algebra A
whose topology is determined by its continuous C∗-seminorms in the sense that
the net {ai}i converges to 0 if and only if the net {p(ai)}i converges to 0 for every
continuous C∗-seminorm p on A. In fact a locally C∗-algebra is an inverse limit of
C∗-algebras.

Hilbert modules over locally C∗-algebras generalize the notion of Hilbert C∗-
modules by allowing the inner product to take values in a locally C∗-algebra.
In [9], Phillips showed that many results about multipliers of a C∗-algebra are
valid for multipliers of a locally C∗-algebra. Thus, he proved that M(A), the
multiplier algebra of a locally C∗-algebra A, is a locally C∗-algebra in the topology
of seminorm [9, Theorem 3.14]. In this note we show that any left multiplier of
a locally C∗-algebra A is automatically continuous (Proposition 3.4) and LM(A),
the algebra of left multipliers of A, is a complete locally m-convex algebra in the
topology of seminorm (Theorem 3.5). Also, Phillips shows that if E is a Hilbert
module over a locally C∗-algebra A, then the locally C∗-algebra LA(E) of all
adjointable maps on E is isomorphic to M(KA(E)), where KA(E) is the locally
C∗-algebra of all ”compact“ A-module maps on E [9, Theorem 4.2]. This result is
a generalization of Theorem 1 of [5] for Hilbert module over locally C∗-algebras.
We show that the locally m-convex algebra BA(E) of all bounded A-module maps
is isomorphic to LM(KA(E) (Theorem 3.6). This result generalizes Theorem 1.5
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of [6] in the context of Hilbert modules over locally C∗-algebras. Finally we prove
that if E and F are Hilbert modules over a locally C∗-algebra A, then b(BA(E, F )),
the set of all bounded elements in BA(E, F ), is a Banach space in the norm ‖·‖

∞

which is isometrically isomorphic to Bb(A)(b(E), b(F )), the Banach space of all
bounded b(A)-module maps from b(E) to b(F ) (Theorem 3.7). In particular,
b(BA(E)) is a Banach algebra which is isometrically isomorphic to Bb(A)(b(E))
and b(LA(E)) is a C∗-algebra which is isomorphic to Lb(A)(b(E)).

2. Preliminaries

If A is a locally C∗-algebra and S(A) is the set of all continuous C∗-seminorms on
A, then for each p ∈ S(A), Ap = A/ ker(p) is a C∗-algebra in the norm induced
by p and A = lim

p←
Ap (see, for example, [9]). The canonical map from A onto Ap,

p ∈ S(A) is denoted by πp and the image of a in A under πp by ap. The connecting
maps of the inverse system {Ap}p∈S(A) are denoted by πpq , q, p ∈ S(A), with p ≥ q.

Now we recall some facts about Hilbert modules over locally C∗ -algebras
from [9].

Definition 2.1. A pre-Hilbert A-module is a complex vector space E which is
also a right A-module, compatible with the complex algebra structure, equipped
with an A-valued inner product 〈·, ·〉 : E ×E → A which is C- and A-linear in its
second variable and satisfies the following relations:

(i) 〈x, y〉∗ = 〈y, x〉 for every x, y ∈ E;
(ii) 〈x, x〉 ≥ 0 for every x ∈ E;
(iii) 〈x, x〉 = 0 if and only if x = 0.

We say that E is a Hilbert A-module if E is complete with respect to the topology
determined by the family of seminorms pE (x) =

√
p (〈x, x〉), x ∈ E, p ∈ S(A).

Given a Hilbert A-module E, for each p ∈ S(A), NE
p = ker(pE) is a closed

submodule of E and Ep = E/NE
p is a Hilbert Ap-module with (x+ NE

p )πp (a) =

xa + NE
p and

〈
x + NE

p , y + NE
p

〉
= πp (〈x, y〉) . The canonical map from E onto

Ep is denoted by σE
p , and the image of x in E under σE

p by xp, p ∈ S(A).

For each p, q ∈ S(A) with p ≥ q there is a canonical surjective linear map σE
pq :

Ep → Eq such that σE
pq(xp) = xq , x ∈ E. Then {Ep; Ap; σ

E
pq , p ≥ q, p, q ∈ S(A)}

is an inverse system of Hilbert C∗-modules in the following sense:

• σE
pq(xpap) = σE

pq(xp)πpq(ap) for every xp ∈ Ep and for every ap ∈ Ap;

•
〈
σE

pq(xp), σ
E
pq(yp)

〉
= πpq (〈xp, yp〉)for every xp, yp ∈ Ep;

• σE
qr ◦ σE

pq = σE
pr , p ≥ q ≥ r;

• σE
pp =idEp

;

and lim
p←

Ep is aHilbert A-module with ((xp)p) ((ap)p)=(xpap)p and 〈(xp)p, (yp)p〉=

(〈xp, yp〉)p
. Moreover, lim

p←
Ep can be identified with E.

We recall that an element a in A respectively x in E is bounded if

‖a‖
∞

= sup{p(a); p ∈ S(A)} < ∞
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respectively

‖x‖
∞

= sup{pE(x); p ∈ S(A)} < ∞

The set of all bounded elements in A respectively in E will be denoted by b(A)
respectively b(E). We know that b(A) is a C∗-algebra in the C∗-norm ‖·‖

∞
, and

b(E) is a Hilbert b(A)-module.

3. Bounded modules maps

Let A be a locally C∗-algebra and let E and F be two Hilbert A-modules. An
A-module map T : E → F is said to be bounded if for each p ∈ S(A), there
is Kp > 0 such that pF (Tx) ≤ KppE(x) for all x ∈ E. The set of all bounded
A-module maps from E to F is denoted by BA(E, F ) and we write BA(E) for
BA(E, E).

Clearly, for each p ∈ S(A), the map p̃ defined by

p̃(T ) = sup {pF (Tx); x ∈ E and pE(x) ≤ 1} , T ∈ BA(E, F )

is a seminorm on BA(E, F ).

Proposition 3.1. Let A be a locally C∗-algebra and let E and F be two Hilbert

A-modules. Then we have:

1. BA(E, F ) with the topology determined by the family of seminorms {p̃}p∈S(A)

is a complete locally convex space.

2. BA(E) with the topology determined by the family of seminorms {p̃}p∈S(A) is

a complete locally m-convex algebra.

Proof. (1): Let p, q ∈ S(A) with p ≥ q and let S ∈ BAp
(Ep, Fp). Since

〈
σF

pq

(
S
(
σE

p (x)
))

, σF
pq

(
S
(
σE

p (x)
))〉

= πpq

(〈
S
(
σE

p (x)
)
, S
(
σE

p (x)
)〉)

≤ ‖S‖p πpq

(〈
σE

p (x), σE
p (x)

〉)
cf. [7, 2.8]

= ‖S‖p

〈
σE

q (x), σE
q (x)

〉

for all x ∈ E, where ‖·‖p is the norm on BAp
(Ep, Fp), we can define (πpq)∗(S) :

Eq → Fq by (πpq)∗(S)
(
σE

q (x)
)

= σF
pq

(
S
(
σE

p (x)
))

. It is easy to see that (πpq)∗(S)
is a bounded Aq-module map from Eq to Fq . Thus we have obtained a map (πpq)∗
from BAp

(Ep, Fp) to BAq
(Eq , Fq). Also it is easy to see that {BAp

(Ep, Fp); (πpq)∗,
p ≥ q, p, q ∈ S(A)} is an inverse system of Banach spaces.

We will show that the locally convex spaces BA(E, F ) and lim
p←

BAp
(Ep, Fp) are

isomorphic.
Let p ∈ S(A) and let T ∈ BA(E, F ). Since T (NE

p ) ⊆ NF
p there is a unique

linear map Tp : Ep → Fp such that σF
p ◦ T = Tp ◦ σE

p . Moreover, Tp is a bounded
Ap -module map. Thus we can define a map (πp)∗ : BA(E, F ) → BAp

(Ep, Fp) by

(πp)∗(T ) = Tp, where σF
p ◦T = Tp◦σ

E
p . Clearly (πp)∗ is a continuous linear map and

(πpq)∗◦(πp)∗ = (πq)∗ for all p, q ∈ S(A) with p ≥ q. Therefore we can define a map

Φ from BA(E, F ) to lim
p←

BAp
(Ep, Fp) by Φ(T ) =

(
(πp)∗ (T )

)
p
. It is not difficult

to check that Φ is linear and ‖Φ(T )‖p = p̃(T ) for all T ∈ BA(E, F ). To show
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that Φ is surjective, let (Tp)p
∈ lim

p←
BAp

(Ep, Fp). Define T : E → F by T (x) =
(
Tp

(
σE

p (x)
))

p
. Since σF

pq

(
Tp

(
σE

p (x)
))

= (πpq)∗ (Tp)
(
σE

q (x)
)

= Tq

(
σE

q (x)
)

for

all p, q ∈ S(A) with p ≥ q, T is well-defined. It is not difficult to check that T is
a bounded A -module map and Φ(T ) = (Tp)p

. Hence Φ is surjective.

Thus we showed that the topological spaces BA(E, F ) and lim
p←

BAp
(Ep, Fp) are

isomorphic, and since lim
p←

BAp
(Ep, Fp) is complete, BA(E, F ) is complete.

(2): It is not difficult to check that p̃ is a submultiplicative seminorm on BA(E)
for all p ∈ S(A) and {Bp(Ep); (πpq)∗, p ≥ q, p, q ∈ S(A)} is an inverse system

of Banach algebras. Also it is easy to check that the map Φ̃ from BA(E) to

lim
p←

BAp
(Ep) defined by Φ̃(T ) =

(
(πp)∗ (T )

)
p

is an isomorphism of topological

algebras, and since lim
p←

BAp
(Ep) is complete, the assertion is proved. �

Remark 3.2. If A is a locally C∗-algebra and E and F are Hilbert A-modules,

then the locally convex spaces BA(E, F ) and lim
p←

BAp
(Ep, Fp) as well as the locally

m-convex algebras BA(E) and lim
p←

BAp
(Ep) can be identified.

A map T from E to F is adjointable if there is a map T ∗ from F to E such
that 〈T (x), y〉 = 〈x, T ∗(y)〉 for all x in E and for all y in F . Any adjointable map
from E into F is a bounded A-module map (cf. [11]). The set of all adjointable
maps from E into F is denoted by LA(E, F ), and we write LA(E) for LA(E, E).
For x in E and for y in F the map θy,x : E → F defined by θy,x (z) = y 〈x, z〉 is
adjointable. The closed subspace of LA(E, F ) generated by {θy,x; x ∈ E, y ∈ F} is
denoted by KA(E, F ), and we write KA(E) for KA(E, E). It is easy to verify that
(πpq)∗

(
LAp

(Ep, Fp)
)
⊆ LAq

(Eq , Fq) and (πpq)∗
(
KAp

(Ep, Fp)
)
⊆ KAq

(Eq , Fq) for
all p, q ∈ S(A) with p ≥ q. Then the restriction of Φ on LA(E, F ) is exactly
the same map as defined in Proposition 4.7 of [9]. Therefore the restriction of Φ
on LA(E, F ) is an isomorphism between the locally convex spaces LA(E, F ) and
lim
p←

LAp
(Ep, Fp), and the restriction of Φ on KA(E, F ) is an isomorphism between

the locally convex spaces KA(E, F ) and lim
p←

KAp
(Ep, Fp) [9, Proposition 4.7]. Also

the restriction of Φ̃ on LA(E) is an isomorphism between the locally C∗-algebras

LA(E) and lim
p←

LAp
(Ep), and the restriction of Φ̃ on KA(E) is an isomorphism

between the locally C∗-algebras KA(E) and lim
p←

KAp
(Ep) [9, Theorem 4.2].

In [9, Theorem 4.2], Phillips shows that the locally C∗-algebras LA(E) and
M(KA(E)), the multiplier algebra of KA(E), are isomorphic. We will prove here
that the locally m-convex algebras BA(E) and LM(KA(E)), the algebra of left
multipliers of KA(E), are isomorphic.

If A is a locally C∗-algebra, we recall that a left multiplier of A is a linear
map l : A → A such that l(ab) = l(a)b for all a and b in A. We know that any
left multiplier of a C∗-algebra is automatically continuous. We will show that
this result is still valid for left multipliers of a locally C∗-algebra. Recall that in
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[11], Weinder showed that the multipliers of a locally C∗-algebra are automatically
continuous.

Lemma 3.3. Let a be an element of a locally C∗-algebra A. If 0 < α < 1,
then there is an element u in A such that a = u |a|α, where |a|2 = aa∗.

Proof. We know that for each p in S(A), there is an element up in Ap such that

πp(a) = up|πp(a)|α. Moreover, up = lim
n

πp(a)
(

1
n

+ |πp(a)|2
)−1

2 |πp(a)|1−α (see,

for example, [8, 1.4.6]).
To show that (up)p

is a coherent sequence in Ap, p ∈ S(A), let p, q ∈ S(A) with

p ≥ q. Since πpq preserves spectral functions, we have

πpq (up) = lim
n

πpq

(
πp(a)

(
1

n
+ |πp(a)|2

)−1

2

|πp(a)|1−α

)

= lim
n

πq(a)

(
1

n
+ |πq(a)|2

)−1

2

|πq(a)|1−α

= uq.

Hence (up)p
is a coherent sequence in Ap, p ∈ S(A). Let u in A be such that

πp (u) = up for all p ∈ S(A). Then, since πp (|a|α) = |πp (a) |α for all p ∈ S(A)
(see [9] or [2]), we have a = u |a|

α
. �

Proposition 3.4. Any left multiplier of a locally C∗-algebra A is automatically

continuous.

Proof. Let l be a left multiplier of A, let p ∈ S(A) and a ∈ ker(p). By

Lemma 3.3, there is u ∈ A such that a = u|a|
1

2 , and then

p(l(a)) = p(l(u)|a|
1

2 ) ≤ p(l(u))p(a)
1

2

whence we conclude that l(a) ∈ ker(p). Hence there is a unique linear map lp :
Ap → Ap such that πp ◦ l = lp ◦ πp. Moreover, lp is a left multiplier of Ap and so
it is continuous (see, for example, [8, 3.12.2]). From these facts we conclude that
l is continuous and the proposition is proved. �

We consider on LM(A), the set of all left multipliers of A, the seminorm topol-
ogy (that is the topology determined by that family of seminorms {p̃}p∈S(A), where
p̃(l) = sup{p(l(a)), a ∈ A and p(a) ≤ 1}).

Theorem 3.5. Let A be a locally C∗-algebra. Then we have:

(1) LM(A) is a complete locally m-convex algebra.

(2) If A = lim
λ∈Λ←

Aλ and the canonical maps πλ : A → Aλ are all surjective, then

the locally m-convex algebras LM(A) and lim
λ∈Λ←

LM(Aλ) are isomorphic.

Proof. To prove this theorem we use the same arguments as in the proof of
Theorem 3.14 of [9].

(1): Let p, q ∈ S(A) with p ≥ q. Since πpq is surjective, there is a unique

morphism π
′′

pq : A
′′

p → A
′′

q which extends πpq and π
′′

pq(LM(Ap)) ⊆ LM(Aq) (see,
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for example, [8, 3.7.7 and 3.12]). Then {LM(Ap); π
′′

pq |LM(Ap), p ≥ q, p, q ∈ S(A)}
is an inverse system of Banach algebras. It is not difficult to check that the map
Ψ : LM(A) → lim

p←
LM(Ap) defined by Ψ(l) = (lp)p, where πp ◦ l = lp ◦ πp for all

p ∈ S(A), is an isomorphism of locally m-convex algebras.
(2): Exactly as in the proof of Theorem 3.14 of [9] we show that the inverse

systems {LM(Aλ)}λ∈Λ and {LM(Ap)}p∈S(A) have the same inverse limit and thus
the assertion is proved. �

The following theorem is a generalization of Theorem 1.5 of [6] in the context
of Hilbert modules over locally C∗-algebras.

Theorem 3.6. Let A be a locally C∗-algebra and let E be a Hilbert A-module.

Then the locally m-convex algebras BA(E) and LM(KA(E)) are isomorphic.

Proof. Let p, q ∈ S(A) with p ≥ q. Since (πpq)∗ (θy,x) = θσpq(y),σpq(x) for all
x, y ∈ Ep, and since the map σpq from Ep to Eq is surjective, the morphism (πpq)∗
from KAp

(Ep) to KAq
(Eq) is surjective. Then according to Theorem 3.5 (2), the

locally m-convex algebras LM(KA(E)) and lim
p←

LM(KAp
(Ep)) are isomorphic.

For each p ∈ S(A), the map Φp : BAp
(Ep) → LM(K Ap

(Ep)) defined by
Φp(Tp)(Sp) = Tp ◦ Sp is an isometric isomorphism of Banach algebras [6, Theo-
rem 1.5]. It is easy to check that (Φp)p is an inverse system of isometric isomor-
phisms of Banach algebras. Then lim

p←
Φp is an isomorphism of locally m -convex

algebras from lim
p←

BAp
(Ep) onto lim

p←
LM(K Ap

(Ep)) and the theorem is proved. �

We say that an element T of BA(E, F ) is bounded in BA(E, F ) if there is M > 0
such that p̃(T ) ≤ M for all p ∈ S(A) and denote by b(BA(E, F )) the set of all
bounded elements in BA(E, F ). It is clear that the map ‖·‖

∞
: b(BA(E, F )) →

[0,∞) defined by

‖T‖
∞

= sup{p̃(T ); p ∈ S(A)}

is a norm on b(BA(E, F )).

Theorem 3.7. If E and F are Hilbert A-modules, then b(BA(E, F )) is a Ba-

nach space in the norm ‖·‖
∞

. Moreover, b(BA(E, F )) is isometrically isomorphic

to Bb(A)(b(E), b(F )).

Proof. Let T ∈ b(BA(E, F )). Then, since

pF (Tx) ≤ ‖T‖
∞
‖x‖
∞

for every x ∈ b(E) and for every p ∈ S(A), T (b(E)) ⊆ b(F ) and it is easy to
see that the restriction T |b(E) of T on b(E) is an element in Bb(A)(b(E), b(F )).

Moreover,
∥∥T |b(E)

∥∥ ≤ ‖T‖
∞

. On the other hand, since b(E) is dense in E [4,
Proposition 3.1], and since

〈
T |b(E)x, T |b(E)x

〉
≤
∥∥T |b(E)

∥∥2
〈x, x〉
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for every x ∈ b(E) (cf. [7, 2.8]), we have ‖T‖
∞

≤
∥∥T |b(E)

∥∥. Hence ‖T‖
∞

=∥∥T |b(E)

∥∥. Define Ψ : b(BA(E, F )) → Bb(A)(b(E), b(F )) by

Ψ(T ) = T |b(E).

Clearly Ψ is an isometric morphism from b(BA(E, F )) to Bb(A)(b(E), b(F )). To
show that Ψ is surjective, let S ∈ L(b(E), b(F )). Since

〈Sx, Sx〉 ≤ ‖S‖
2
〈x, x〉

for all x in b(E) (cf. [7, 2.8]) and b(E) is dense in E, S can be extended to a

bounded A-module map S̃ from E to F . Moreover, since p̃(S̃) ≤ ‖S‖ for all

p ∈ S(A), S̃ is a bounded element in BA(E, F ). Hence Ψ is surjective.
Thus we showed that b(BA(E, F )) is isometrically isomorphic to Bb(A)(b(E),

b(F )), and so b(BA(E, F )) is a Banach space. �

It is easy to check that an element T in b(BA(E, F )) is adjointable if and only
if T |b(E) is adjointable.

Remark 3.8. The restriction of Ψ on b(LA(E, F )) is an isometric isomorphism

from b(LA(E, F )) onto Lb(A)(b(E), b(F ))).

Knowing that for each p ∈ S(A), p̃ is a submultiplicative seminorm on BA(E)
and p̃|LA(E) is a C∗-seminorm on LA(E), it is easy to see that ‖·‖

∞
is a submul-

tiplicative norm on b(BA(E)) and a C∗-norm on b(LA(E)).

Corollary 3.9. Let A be a locally C∗-algebra and let E be a Hilbert A-module.

Then we have:

(1) b(BA(E)) with the norm ‖·‖
∞

is a Banach algebra which is isometrically

isomorphic to Bb(A)(b(E)).
(2) b(LA(E)) with the norm ‖·‖

∞
is a C∗-algebra which is isomorphic to

Lb(A)(b(E)) [4, Theorem 3.3].

Proof. Putting F = E in Theorem 3.7, it is easy to verify that Ψ is an isometric
isomorphism from b(BA(E)) onto Bb(A)(b(E)) and the restriction Ψ on b(LA(E))
is an isomorphism from b(LA(E)) onto Lb(A)(b(E)). �

Remark 3.10. Let E and F be two Hilbert A-modules. In general, b(KA(E, F ))
is not isomorphic to Kb(A)(b(E), b(F )).

Example. Let A = C(Z+), the ∗-algebra of all complex valued functions on

Z+. It is not difficult to see that A is just
∞∏

n=1
C. Also it is not difficult to

check that A with the topology determined by the family of C∗-seminorms {pn}n,
where pn((an)n) = sup{|ak|; 1 ≤ k ≤ n}, is a locally C∗-algebra, and Apn

can be
identified with the product of the first n factors of A for each n.

Let E =
∞∏

n=1
Cn. We make E into a Hilbert A-module via (ξn)n (an)n = (ξnan)n

and 〈(ξn)n , (ηn)n〉 = (〈ξn, ηn〉n)
n
, where 〈·, ·〉n denotes the usual C-inner product

on Cn. Clearly E is not finitely generated as Hilbert A-module. Moreover, Epn



78 M. JOIŢA

can be identified with the product of the first n factors of E for each n. Therefore,
LApn

(Epn
) = KApn

(Epn
) for each n. This implies that LA(E) = KA(E) [9,

Example 4.9], and by Corollary 3.9, b(KA(E)) is isomorphic with Lb(A)(b(E)).
Suppose that b(KA(E)) is isomorphic with Kb(A)(b(E)). Then the C∗-algebras

Kb(A)(b(E)) and Lb(A)(b(E)) are isomorphic. This implies that b(E) is finitely
generated as Hilbert b(A)-module [10] and so E is finitely generated as Hilbert
A-module, a contradiction.Therefore b(KA(E)) is not isomorphicwith Kb(A)(b(E)).

Remark 3.11. If A is a locally C∗-algebra then A is a Hilbert A-module with
〈a, b〉 = a∗b, a, b ∈ A and the locally C∗-algebras LA(A) and M(A), where M(A) is
the set of all multipliers of A, are isomorphic [9]. Putting E = A in Corollary 3.9,
we deduce that the C∗-algebras M(b(A)) and b(M(A)) are isomorphic, a result
obtained independently by Bhatt and J. Karia [1, Theorem 5.1] and the author
[3, Theorem 2].
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