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CONVERGENCE OF BANACH LATTICE VALUED

STOCHASTIC PROCESSES WITHOUT THE RADON-NIKODYM

PROPERTY

V. MARRAFFA

Abstract. We obtain almost sure convergence theorems for stochastic processes
consisting of Bochner integrable functions taking values in a Banach lattice without
assuming the Radon-Nikodym property. It is shown that if the limit exists in a weak
sense then the almost sure convergence follows.

1. Introduction

For Banach lattice valued subpramarts the Radon-Nikodym property is equivalent
to the convergence a. e. (see [4], [11] and [6]). If the Radon-Nikodym property is
not assumed it is natural to ask how small can be the class T of functionals f such
that the a.s. convergence of fXn to fX for f ∈ T implies the convergence of Xn

to X in some stronger sense. In case of Banach valued processes it was established
that T can be a total set. In particular in [8] it was proved that an amart (Xn)
converges scalarly almost surely to a random variable X if fXn converges to fX

a. s for each f in a total subset of the dual. In [3], under the same assumption,
the strong a.s. convergence for martingales follows. Analogous results has been
obtained also for weak amarts and uniform amarts in [1].

In §3 we obtain similar results for subpramarts taking values in a Banach lattice
(see Theorem 2).

In §4, under a suitable covering condition (Vitali condition V ), we generalize
the subpramarts result to directed sets.

2. Definitions and notations

Throught this note (Ω,F , P ) is a probability space and (Fn)n∈IN a family of sub-
σ-algebras of F such that Fm ⊂ Fn if m < n. Moreover, without loss of generality,
we will assume that F is the completion of σ(∪nFn). From now on E will denote
a Banach lattice with norm ‖ · ‖ and E∗ its dual. A subset T of E∗ is called a
total set over E if f(x) = 0 for each f ∈ T implies x = 0. For an element x ∈ E
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we denote by x+ the least upper bound between x and 0. The Banach lattice E

is said to have the order continuous norm or, briefly, to be order continuous, if for
every downward directed set {xα}α in E with ∧αxα = 0, then limα ‖xα‖ = 0. The
norm on E has the Kadec-Klee property with respect to a set D ⊂ E∗ if whenever
limn f(xn) = f(x) for every f ∈ D and limn ‖xn‖ = ‖x‖, then limn xn = x

strongly. If D = E∗ we say that the norm has the Kadec-Klee property. It was
proved in [2] the following renorming theorem for Banach lattices.

Theorem 1. A Banach lattice E is order continuous if and only if there is an
equivalent lattice norm on E with the Kadec-Klee property.

It is obvious that if E is separable, the equivalent norm has the Kadec-Klee
property with respect to a countable set of functionals.
A stopping time is a map τ : Ω → IN ∪{∞} such that, for each n ∈ IN , {τ ≤ n} =
{ω ∈ Ω : τ(ω) ≤ n} ∈ Fn. We denote by Γ the collection of all simple stopping
times (i.e. taking finitely many values and not taking the value ∞). Then Γ is
a set filtering to the right.
We recall that a stochastic process (Xn,Fn) is called

(i) a submartingale if Xn ≤ E(Xn+1|Fn) a.s. for each n ∈ IN , or equivalently
if ∫

A

Xn ≤

∫
A

Xn+1,

for each A ∈ Fn and for each n ∈ IN ;
(ii) a subpramart if for each ε > 0 there exists τ0 ∈ Γ such that for all τ and σ

in Γ, τ > σ > τ0 then

P ({‖(Xσ −E(Xτ |Fσ))+‖ > ε}) ≤ ε.

We remind that if (Xn,Fn) is a positive subpramart (i.e. Xn(ω) ≥ 0 for each
n ∈ IN and ω ∈ Ω), then for each f ∈ (E∗)+, where (E∗)+ denotes the nonnegative
cone in E∗, (fXn,Fn) and (‖Xn‖,Fn) are real valued positive subpramarts [5,
Lemma viii.1.12].

3. Convergence theorems for processes indexed by IN

We will need the following Propositions.

Proposition 1. [5, p. 303] Let E be a Banach space and let (Xn,Fn) be a
L1-bounded stochastic process. Then there exists a subsequence (nk)k in IN such
that for every k ∈ IN

Xnk
= Ynk

+ Znk

where Ynk
and Znk

are Fnk
-measurable, (Ynk

)k is uniformly integrable and
limk Znk

= 0 a.s..

Proposition 2. [5, p. 298] Let (Xm
n ,Fn)n be a sequence of real valued positive

subpramarts for which for each ε > 0 there exists τ0 ∈ Γ such that for all τ and σ

in Γ, τ > σ > τ0 then

P ({sup
m

(Xm
σ −E(Xm

τ |Fσ)) ≤ ε}) ≥ 1− ε.
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Suppose, moreover, that there is a subsequence (nk)k such that

sup
k

∫
sup
m

Xm
nk

< ∞.

Then each subpramart (Xm
n ,Fn)n converges a.s. to an integrable function Xm and

we have
lim
n

(sup
m

Xm
n ) = sup

m
Xma.s..

We are able to prove the following theorem.

Theorem 2. [9, Theorem 3.8] Let E be an order continuous Banach lattice,
which is weakly sequentially complete and let T be a total subset of E∗. Let
(Xn,Fn) be a positive subpramart with an L1-bounded subsequence and let X be
a strongly measurable random variable. Assume that, for each f ∈ T , fXn con-
verges to fX a.s. (the null depends on f). Then Xn converges to X strongly,
a.s..

Proof. Since (Xn) and X are strongly measurable it is possible to assume that
E is separable. Using Proposition 1 and the fact that a subsequence of (Xn)n,
still denoted by (Xn)n, is L1-bounded we can also assume that

Xnk
= Ynk

+ Znk

where Ynk
and Znk

are Fnk
-measurable, (Ynk

)k is uniformly integrable and

lim
k

Znk
= 0 a.s..

For each f ∈ (E∗)+, (fXn)n is a real valued subpramart with a L1-bounded
subsequence, then it converges a.s. to a real random variable Xf . Also fYnk

converges to Xf a.s. and in L1. In particular for each f ∈ T , limk fYnk
= fX . So

for A ∈ F

lim
k

∫
A

fYnk

exists in IR. Hence (
∫

A
Ynk

)k is weakly Cauchy. Since the Banach lattice E is
weakly sequentially complete, let for every A ∈ F

µ(A) = w − lim
k

∫
A

Ynk
.

Then µ is a measure of bounded variation and it is absolutely contionuous with
respect to P . For each f ∈ T we have

f(µ(A)) = lim
k

∫
A

fYnk
=

∫
A

fX.

Let An = {‖X‖ ≤ n}, then XIAn
is Bochner integrable and

f(µ(An)) =

∫
An

fX = f

∫
An

X.

Since T is a total set it follows that

µ(An) =

∫
An

X.
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Moreover the uniform integrability of (Ynk
)k implies that∫

An

‖X‖ = ‖µ‖(An) ≤ sup
k

∫
Ω

Ynk
,(1)

and since X is strongly measurable, P (∪n(‖X‖ ≤ n)) = 1. Letting n →∞ in (1),
we get that X is Bochner integrable and for each A ∈ F

µ(A) =

∫
A

X.

It follows that ∫
A

fX = f(µ(A)) = lim
k

∫
A

fYnk
=

∫
A

Xf ,

for each f ∈ (E∗)+ and A ∈
⋃
F . Hence fX = Xf a.s. and for each f ∈ (E∗)+,

fXn converges to fX a.s.. Let ||| · ||| denote the Kadec-Klee norm equivalent
to ‖ · ‖, as in Theorem 1, and let D ∈ (E∗)+ be a countable norming subset.
Applying Proposition 2 to the sequence {(fXn,Fn), n ∈ IN, f ∈ D} it follows
that limn |||Xn||| = |||X |||, a.s.. Now invoking again Theorem 1 we get the strong
convergence of Xn to X and the assertion follows. �

The following corollary holds.

Corollary 1. Let E be a Banach lattice not containing c0 as an isomorphic
copy and let T be a total subset of E∗. Let (Xn,Fn) be a positive subpramart with
a L1-bounded subsequence and let X be a strongly measurable random variable.
Assume that, for each f ∈ T , fXn converges to fX a.s. (the null set depends on
f). Then Xn converges to X strongly a.s..

Proof. If E does not contain c0, E is an order continuous Banach lattice which is
weakly sequentially complete [7, p. 34] and the assertion follows from Theorem 2.

�

Since a submartingale is a subpramart we get

Corollary 2. [3, Proposition 11] Let E be a Banach lattice not containing
c0 as an isomorphic copy and let T be a total subset of E∗. Let (Xn,Fn) be
a L1-bounded positive submartingale and let X be a strongly measurable random
variable. Assume that, for each f ∈ T , fXn converges to fX a.s. (the null set
depends on f). Then Xn converges to X strongly a.s..

4. A convergence theorem for subpramarts

indexed by a directed set

In this section we will consider stochastic processes indexed by a directed set. Let
J be a directed set filtering to the right. Throughout this section we assume that
there is an increasing cofinal sequence (tn) in J . Let (Ft) be a filtration, that is
an increasing family of sub-σ-algebras of F . A filtration (Ft) is said to satisfy the
Vitali condition V if for every adapted family of sets (At) and for every ε > 0
there exists a simple stopping time τ ∈ Γ such that P (lim supJ At \Aτ ) < ε. Even
in the real-valued case the Vitali condition on the filtration is necessary for the
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convergence of classes of random variables. Under the condition V , the analogue
of Theorem 2 holds for subpramarts indexed by directed sets.

Theorem 3. Let the filtration satisfy the condition V and let E be a separa-
ble order continuous Banach lattice, which is weakly sequentially complete. Let
(Xt,Ft) be a L1-bounded positive subpramart and let X be a strongly measurable
random variable. Let T be a total subset of E∗ and assume that, for each f ∈ T ,
fXt converges to fX a.s.. Then Xt converges to X strongly a.s..

Proof. Let (tn) be an increasing cofinal sequence in J . Set Xtn
= Yn and

Ftn
= Gn. We first show that (Yn,Gn) is a subpramart sequence. Since (Xt) is

a subpramart, for every ε > 0 there exists τo ∈ Γ such that if τ > σ > τo then

P ({||(Xσ −E(Xτ |Fσ))+‖ > ε}) ≤ ε.

Now if σ is a stopping time for G then tσ is a stopping time for Ft. Thus choose
σo such that tσo

≥ τo. Now for each τ > σ > σo it follows

P ({‖(Yσ −E(Yτ |Gσ))+‖ > ε}) = P ({‖(Xtσ
−E(Xtτ

|Ftσ
))+‖ > ε}) ≤ ε.

Then Yn is a subpramart sequence. For each f ∈ T , fYn converges to fX a.s..
Therefore by Theorem 2, Yn converges to X a.s. and also scalarly. As E is
a separable Banach lattice there exists a countable norming subset D of (E∗)+

(i.e. ‖x‖ = sup{|x∗(x)| : x∗ ∈ D ∩ B(X∗)}). Now, for each f ∈ D, fXt is
a L1-bounded real valued subpramart and since the filtration satisfies V , by [10]
Theorem 4.3, fXt converges to Xf a.s.. Since fXtn

converges to fX , it follows that
fX = Xf . As in Theorem 1, we denote by ||| · ||| the Kadec-Klee norm equivalent to
‖ · ‖. Applying [6] Lemma 2.3 to the sequence {(fXt,Ft), t ∈ T, f ∈ D} it follows
that limt |||Xt||| = |||X |||, a.s.. Now invoking again Theorem 1 we get the strong
convergence of Xt to X and the assertion follows. �
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