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APPROXIMATION OF FUNCTIONS OF TWO VARIABLES BY

SOME LINEAR POSITIVE OPERATORS

Z. WALCZAK

Abstract. We introduce certain positive linear operators in weighted spaces of
functions of two variables and we study approximation properties of these operators.
We give theorems on the degree of approximation of functions from polynomial and
exponential weighted spaces by introduced operators, using norms of these spaces.

I. Introduction

Approximation properties of Szasz-Mirakyan operators

Sn(f ; x) := e−nx
∞
∑

k=0

(nx)
k

k!
f

(

k

n

)

,(1)

x ∈ R0 = [0, +∞), n ∈ N := {1, 2, . . . }, in polynomial weighted spaces Cp were
examined in [1]. The space Cp, p ∈ N0 := {0, 1, 2, . . .}, is associated with the
weighted function

w0(x) := 1, wp(x) := (1 + xp)−1, if p ≥ 1,(2)

and consists of all real-valued functions f , continuous on R0 and such that wpf
is uniformly continuous and bounded on R0. The norm on Cp is defined by the
formula

‖f‖p ≡ ‖f (·) ‖p := sup
x∈R0

wp(x) |f(x)|.(3)

In [1] there were proved theorems on the degree of approximation of f ∈ Cp by
the operators Sn defined by (1). From these theorems it was deduced that

lim
n→∞

Sn(f ; x) = f(x),(4)

for every f ∈ Cp, p ∈ N0 and x ∈ R0. Moreover the convergence (4) is uniform on
every interval [x1, x2], x2 > x1 ≥ 0.

The Szasz-Mirakyan operators are important in approximation theory. They
have been studied intensively, in connection with different branches of analysis,
such as numerical analysis. Recently in many papers various modifications of
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Sn were introduced [4]–[8], [12]–[15], [19], [20]. Approximation properties of
modified Szasz-Mirakyan operators

Ln(f ; r; x) :=
1

g ((nx + 1)2; r)

∞
∑

k=0

(nx + 1)2k

(k + r)!
f

(

k + r

n(nx + 1)

)

,(5)

x ∈ R0, n ∈ N,

where

g(t; r) :=

∞
∑

k=0

tk

(k + r)!
, t ∈ R0,(6)

i.e.

g(0; r) =
1

r!
, g(t, r) =

1

tr



et −

r−1
∑

j=0

tj

j!



 if t > 0,

in polynomial weighted spaces were examined in [13].
In [13] it was proved that if f ∈ Cp, p ∈ N0, then

‖Ln(f ; r; ·)− f(·)‖p ≤ M1ω1

(

f ; Cp;
1

n

)

, n, r ∈ N,(7)

where

ω1(f ; Cp; t) := sup
0≤h≤t

‖∆hf(·)‖p, t ∈ R0,(8)

where ∆hf(x) := f(x + h)− f(x) for x, h ∈ R0 and M1 = const > 0.

In particular, if f ∈ C1
p , p ∈ N0, then

‖Ln(f ; r; ·) − f(·)‖p ≤
M2

n
, n, r ∈ N,(9)

where M2 = const > 0. The above inequalities estimate the rate of uniform
convergence of {Ln(f ; r; ·)}

In [14] there were proved theorems on the degree of approximation of f ∈ Cp

by operators An defined by

An(f ; r; α; x) :=
1

g ((nαx + 1)2; r)

∞
∑

k=0

(nαx + 1)2k

(k + r)!
f

(

k + r

nα(nαx + 1)

)

.(10)

The degree of approximation is similar and in some cases better than for approx-
imation by Ln.

Similar results in exponential weighted spaces can be found in [15], [17].
Thus the question arises, whether the operators introduced in [18] for function

of two variables can be similarly modified. In connection with this question we
introduce the operators (15).
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II. Approximation in polynomial weighted spaces

1. Preliminaries

1.1. For given p, q ∈ N0, we define the weighted function

wp,q(x, y) := wp(x)wq(y), (x, y) ∈ R2
0 := R0 ×R0,(11)

and the weighted space Cp,q of all real-valued functions f continuous on R2
0 for

which wp,qf is uniformly continuous and bounded on R2
0. The norm on Cp,q is

defined by the formula

‖f‖p,q ≡ ‖f (·, ·) ‖p,q := sup
(x,y)∈R2

0

wp,q(x, y) |f(x, y)|.(12)

The modulus of continuity of f ∈ Cp,q we define as usual by the formula

ω(f, Cp,q ; t, s) := sup
0≤h≤t, 0≤δ≤s

‖∆h,δf(·, ·)‖p,q , t, s ≥ 0,(13)

where ∆h,δf(x, y) := f(x + h, y + δ) − f(x, y) and (x + h, y + δ) ∈ R2
0. Moreover

let C1
p,q be the set of all functions f ∈ Cp,q which first partial derivatives belong

also to Cp,q .
From (13) it follows that

lim
t,s→0+

ω(f, Cp,q ; t, s) = 0(14)

for every f ∈ Cp,q , p, q ∈ N0.

1.2. In this paper we introduce the following class of operators in Cp,q .

Definition 1. Fix r, s ∈ N := {1, 2, · · · } and α > 0. Define a class of operators
Am,n(f ; r, s, α) by the formula

Am,n(f ; r, s, α; x, y) ≡ Am,n(f ; x, y) :=
1

g ((mαx + 1)2; r) g ((nαy + 1)2; s)

·

∞
∑

j=0

∞
∑

k=0

(mαx + 1)2j

(j + r)!

(nαy + 1)2k

(k + s)!
f

(

j + r

mα(mαx + 1)
,

k + s

nα(nαy + 1)

)(15)

for (x, y) ∈ R2
0, m, n ∈ N .

The methods used to prove the Lemmas and the Theorems are similar to those
used in construction of modified Szasz-Mirakyan operators [16], [18].

From (15), (10), (6) we deduce that Am,n(f ; r, s) are well defined in every space
Cp,q , p, q ∈ N0. Moreover for fixed r, s ∈ N and α > 0 we have

Am,n(1; r, s, α; x, y) = 1 for (x, y) ∈ R2
0, m, n ∈ N,(16)

and if f ∈ Cp,q and f(x, y) = f1(x)f2(y) for all (x, y) ∈ R2
0, then

Am,n(f ; r, s, α; x, y) = Am(f1; r, α; x)An(f2; s, α; y)(17)

for all (x, y) ∈ R2
0 and m, n ∈ N .
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In this paper by Mk(β1, β2) we shall denote suitable positive constants depend-
ing only on indicated parameters β1, β2.

2. Lemmas and theorems

2.1. In this section we shall give some properties of the above operators, which
we shall apply to the proofs of the main theorems.

From (10) and (6) we get for x ∈ R0 and n ∈ N

An(1; r, α; x) = 1,

An(t− x; r, α; x) =
1

nα
+

1

nα(nαx + 1)(r − 1)!g((nαx + 1)2; r)

(18)

An((t− x)2; r, α; x) =
2

n2α
+

r + (nαx + 1)2 − 2nαx(nαx + 1)

n2α(nαx + 1)2(r − 1)!g((nαx + 1)2; r)
.(19)

In the paper [14] was proved the following lemma for An(f ; r, α) defined by
(10).

Lemma 1. For every fixed p ∈ N0, r ∈ N and α > 0 there exist positive

constants Mi ≡ Mi(p, r), i = 3, 4, such that for all x ∈ R0, n ∈ N

wp(x) An (1/wp(t); r, α; x) ≤ M1,(20)

wp(x) An

(

(t− x)2/wp(t); r, α, x
)

≤
M2

n2α
.(21)

Applying Lemma 1 we shall prove the main lemma on Am,n defined by (15).

Lemma 2. Fix p, q ∈ N0, r, s ∈ N and α > 0. Then there exists a positive

constant M5 ≡ M5(p, q, r, s) such that

‖Am,n (1/wp,q(t, z); r, s, α; ·, ·)‖p,q ≤ M5 for m, n ∈ N.(22)

Moreover for every f ∈ Cp,q we have

‖Am,n (f ; r, s, α; ·, ·)‖p,q ≤ M5 ‖f‖p,q for m, n ∈ N, r, s ∈ N.(23)

The formulas (15), (5) and the inequality (23) show that Am,n, m, n ∈ N , defined

by (15) are linear positive operators from the space Cp,q into Cp,q.

Proof. The inequality (22) follows immediately from (11), (17) and (20).
From (15) and (12) we get for f ∈ Cp,q and r, s ∈ N

‖Am,n(f ; r, s, α)‖p,q ≤ ‖f‖p,q ‖Am,n(1/wp,q ; r, s, α)‖p,q , m, n ∈ N,

which by (22) implies (23). This completes the proof of Lemma 2. �
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2.2. Now we shall give two theorems on the degree of approximation of functions
by Am,n.

Theorem 1. Suppose that f ∈ C1
p,q with fixed p, q ∈ N0. Then there exists

a positive constant M6 = M6(p, q, r, s) such that for all m, n ∈ N and r, s ∈ N

‖Am,n(f ; r, s, α; ·, ·)− f(·, ·)‖p,q ≤ M4

{

1

mα
‖f ′x‖p,q +

1

nα
‖f ′y‖p,q

}

.(24)

Proof. Let (x, y) ∈ R2
0 be a fixed point. Then for f ∈ C1

p,q we have

f(t, z)− f(x, y) =

∫ t

x

f ′u(u, z)du +

∫ z

y

f ′v(x, v)dv, (t, z) ∈ R2
0.

From this and by (16) we get

Am,n(f(t, z); r, s, α; x, y)− f(x, y) = Am,n

(∫ t

x

f ′u(u, z)du; r, s, α; x, y

)

+ Am,n

(∫ z

y

f ′v(x, v)dv; r, s, α; x, y

)

.

(25)

By (2), (11), (12) we have
∣

∣

∣

∣

∫ t

x

f ′u(u, z)du

∣

∣

∣

∣

≤ ‖f ′x‖p,q

∣

∣

∣

∣

∫ t

x

du

wp,q(u, z)

∣

∣

∣

∣

≤ ‖f ′x‖p,q

(

1

wp,q(t, z)
+

1

wp,q(x, z)

)

|t− x|,

which by (2), (10) (11), (15) and (16)–(18) implies that

wp,q(x, y)

∣

∣

∣

∣

Am,n

(∫ t

x

f ′u(u, z)du; r, s, α; x, y

)∣

∣

∣

∣

≤ wp,q(x, y)Am,n

(∣

∣

∣

∣

∫ t

x

f ′u(u, z)du

∣

∣

∣

∣

; r, s, α; x, y

)

≤ ‖f ′x‖p,q wp,q(x, y)

{

Am,n

(

|t− x|

wp,q(t, z)
; r, s, α; x, y

)

+ Am,n

(

|t− x|

wp,q(x, z)
; r, s, α; x, y)

}

≤ ‖f ′x‖p,q wq(y)An

(

1

wq(z)
; s; αy

)

·

{

wp(x)Am

(

|t− x|

wp(t)
; r, α; x

)

+ Am (|t− x|; r; x)

}

.

Applying the Hölder inequality and (18)–(21), we get

Am (|t− x|; r, α; x) ≤
{

Am((t− x)2; r, α; x)Am(1; r, α; x)
}

1

2

≤
M7(p, r)

mα
,
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wp(x)Am

(

|t− x|

wp(t)
; r, α; x

)

≤

{

wp(x)Am

(

(t− x)2

wp(t)
; r, α; x

)}
1

2
{

wp(x)Am

(

1

wp(t)
; r, α; x

)}
1

2

≤
M8(p, r)

mα

for x ∈ R0 and m ∈ N. This implies that

wp,q(x, y)

∣

∣

∣

∣

Am,n

(∫ t

x

f ′u(u, z)du; r, s, , α; x, y

)∣

∣

∣

∣

≤
M9(p, q, r, s)

mα
‖f ′x‖p,q, m ∈ N.

Analogously we obtain

wp,q(x, y)

∣

∣

∣

∣

Am,n

(∫ z

y

f ′v(x, v)dv; r, s, α; x, y

)∣

∣

∣

∣

≤
M10(p, q, r, s)

nα
‖f ′y‖p,q, n ∈ N.

Combining these estimations, we derive from (25)

wp,q(x, y) |Am,n(f ; r, s; x, y)− f(x, y)| ≤ M11

{

1

mα
‖f ′x‖p,q +

1

nα
‖f ′y‖p,q

}

,

for all m, n ∈ N , where M11 = M11(p, q, r, s) = const > 0. This ends the proof
of (24). �

Theorem 2. Suppose that f ∈ Cp,q, p, q ∈ N0. Then there exists a positive

constant M11 ≡ M11(p, q, r, s) such that

‖Am,n(f ; r, s, α; ·, ·)− f(·, ·)‖p,q ≤ M11 ω

(

f, Cp,q ;
1

mα
,

1

nα

)

(26)

for all m, n ∈ N , r, s ∈ N and α > 0.

Proof. We apply the Steklov function fh,δ for f ∈ Cp,q

fh,δ(x, y) :=
1

hδ

∫ h

0

du

∫ δ

0

f(x + u, y + v)dv, (x, y) ∈ R2
0, h, δ > 0.(27)

From (27) it follows that

fh,δ(x, y)− f(x, y) =
1

hδ

∫ h

0

du

∫ δ

0

∆u,vf(x, y)dv,

(fh,δ)
′
x(x, y) =

1

hδ

∫ δ

0

(∆h,vf(x, y)−∆0,vf(x, y)) dv,

(fh,δ)
′
y(x, y) =

1

hδ

∫ h

0

(∆u,δf(x, y)−∆u,0f(x, y)) du.

This implies that fh,δ ∈ C1
p,q for f ∈ Cp,q and h, δ > 0. Moreover

‖fh,δ − f‖p,q ≤ ω (f, Cp,q ; h, δ) ,(28)
∥

∥(fh,δ)
′

x

∥

∥

p,q
≤ 2h−1ω (f, Cp,q ; h, δ) ,(29)

∥

∥(fh,δ)
′
y

∥

∥

p,q
≤ 2δ−1ω(f, Cp,q; h, δ),(30)
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for all h, δ > 0. Observe that

wp,q(x, y) |Am,n(f ; r, s, α; x, y)− f(x, y)|

≤ wp,q(x, y) {|Am,n (f(t, z)fh,δ(t, z); r, s, α; x, y)|

+ |Am,n (fh,δ(t, z); r, s, α; x, y)− fh,δ(x, y)|

+ |fh,δ(x, y)− f(x, y)|} := T1 + T2 + T3.

By (12), (23) and (28) we obtain

T1 ≤ ‖Am,n(f − fh,δ; r, s, α; ·, ·)‖p,q ≤ M5 ‖f − fh,δ‖p,q ≤ M5 ω(f, Cp,q; h, δ),

T3 ≤ ω (f, Cp,q; h, δ) .

Applying Theorem 1 and (29) and (30), we get

T2 ≤ M6

{

1

mα
‖(fh,δ)

′
x‖p,q +

1

nα

∥

∥

∥(fh,δ)
′

y

∥

∥

∥

p,q

}

≤ 2M6ω(f, Cp,q ; h, δ)

{

h−1 1

mα
+ δ−1 1

nα

}

.

From the above we deduce that there exists a positive constant M13 ≡ M13(p, q, r, s)

such that

(31) ‖Am,n(f ; r, s, α; ·, ·)− f(·, ·)‖p,q

≤ M13ω (f, Cp,q ; h, δ)

{

1 + h−1 1

mα
+ δ−1 1

nα

}

,

for m, n ∈ N and h, δ > 0. Now, for m, n ∈ N setting h = 1
mα

and δ = 1
nα

to (31),
we obtain (26). �

From Theorem 2 and the property (14) it follows that

Corollary. Let f ∈ Cp,q, p, q ∈ N0. Then for r, s ∈ N and α > 0 we have

lim
m,n→∞

‖Am,n(f ; r, s, α; ·, ·)− f(·, ·)‖p,q = 0.(32)

III. Approximation in exponential weighted spaces

3. Preliminaries

3.1. Let as in [15], for a fixed p, q > 0 ,

v2p(x) := exp (−2px), x ∈ R0,(33)

and

v2p,2q(x, y) := v2p(x)v2q(y), (x, y) ∈ R2
0.(34)

Denote by C2p,2q the set of all real-valued functions f continuous on R2
0 for which

v2p,2qf is uniformly continuous and bounded on R2
0 The norm on C2p,2q is defined

by

‖f‖2p,2q ≡ ‖f (·, ·) ‖2p,2q := sup
(x,y)∈R2

0

v2p,2q(x, y) |f(x, y)| .(35)



44 Z. WALCZAK

The modulus of continuity of function f ∈ C2p,2q we define as in section 1.1.
by formula

ω(f, C2p,2q ; t, z) := sup
0≤h≤t, 0≤δ≤z

‖∆h,δf(·, ·)‖2p,2q , t, z ≥ 0,

and we have

lim
t,z→0+

ω(f, C2p,2q ; t, z) = 0 for f ∈ C2p,2q .(36)

Analogously as in section 1.1, for fixed p, q > 0, we denote by C1
2p,2q the set of all

functions f ∈ C2p,2q which first partial derivatives belong also to C2p,2q .

3.2. Similarly as in Section II we introduce

Definition 2. Fix r, s ∈ N and α > 0. For functions f ∈ C2p,2q , p, q > 0, we
define the operators

(37)

Bm,n(f ; p, q, r, s, α; x, y)≡Bm,n(f ; x, y):=
1

g ((mαx + 1)2; r) g ((nαy + 1)2; s)

·
∞
∑

j=0

∞
∑

k=0

(mαx + 1)2j

(j + r)!

(nαy + 1)2k

(k + s)!
f

(

j + r

mα(mαx + 1) + 2p
,

k + s

nα(nαy + 1) + 2q

)

for (x, y) ∈ R2
0, m, n ∈ N .

In [15] there were examined the operators

Bn(f ; x) ≡ Bn(f ; q, r, α; x)

:=
1

g ((nαx + 1)2; r)

∞
∑

k=0

(nαx + 1)2k

(k + r)!
f

(

k + r

nα(nαx + 1) + 2q

)

(38)

for functions f of one variable, belonging to exponential weighted spaces.
In this paper we shall give similar results for operators Bm,n(f).

4. Lemmas and theorems

4.1. In this section we shall give some properties of the above operators, which
we shall apply to the proofs of the main theorems. From (37) and (6) we deduce
that Bm,n(f) is well-defined in every space C2p,2q , p, q > 0,r, s ∈ N . In particular

Bm,n(1; x, y) = 1, (x, y) ∈ R2
0, m, n ∈ N,(39)

and if f ∈ C2p,2q and f(x, y) = f1(x)f2(y) for all (x, y) ∈ R2
0, then

Bm,n(f ; p, q, r, s, α; x, y) = Bm(f1; p, r, α; x)Bn(f2; q, s, α; y)(40)

for all (x, y) ∈ R2
0 and m, n ∈ N . Moreover from (38) and (6) we get

Bn(1; q, r; x) = 1 x ∈ R0, n ∈ N.(41)

In the paper [15] the following two lemmas for Bn(f ; q, r; ·) defined by (38) were
proved.
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Lemma 3. Let q, α > 0, r ∈ N be fixed numbers. Then for all n ∈ N and

x ∈ R0, we have

Bn (t− x; q, r, α; x) =
(nαx + 1)2

nα(nαx + 1) + 2q
− x+

+
1

(n(nx + 1) + 2q)(r − 1)!g((nx + 1)2; r)
,

Bn

(

(t− x)2; q, r, α; x
)

=

(

(nαx + 1)2

nα(nαx + 1) + 2q
− x

)2

+

(

nαx + 1

nα(nαx + 1) + 2q

)2

+
r + (nαx + 1)2 − 2x(nα(nαx + 1) + 2q)

(nα(nαx + 1) + 2q)2(r − 1)!g((nαx + 1)2; r)
,

Bn

(

e2qt; q, r, α; x
)

=
g

(

(nαx + 1)2e2q/(nα(nαx+1)+2q); r
)

g((nαx + 1)2; r)
e2qr/(nα(nαx+1)+2q),

Bn

(

(t− x)2e2qt; q, r, α; x
)

=

[

(

(nαx + 1)2

nα(nαx + 1) + 2q
e2q/(nα(nαx+1)+2q) − x

)2

+

(

nαx + 1

nα(nαx + 1) + 2q

)2

e2q/(nα(nαx+1)+2q)

]

Bn

(

e2qt; q, r, α; x
)

+
r + (nαx + 1)2e2q/(nα(nαx+1)+2q) − 2x(nα(nαx + 1) + 2q)

(nα(nαx + 1) + 2q)2(r − 1)!g((nαx + 1)2; r)
e2qr/(nα(nαx+1)+2q).

Lemma 4. For every fixed q, α > 0 and r ∈ N there exist positive constants

Mi ≡ Mi(p, r), i = 14, 15, such that for all x ∈ R0, n ∈ N

v2q(x) Bn (1/v2q(t); q, r, α; x) ≤ M14,

v2q(x) Bn

(

(t− x)2/v2q(t); q, r, α; x
)

≤
M15

n2α
.

Applying (33) – (35) and (39) – (41) and Lemma 4 and arguing as in the proof
of Lemma 2, we can prove the basic property of Bm,n(f).

Lemma 5. For fixed p, q, α > 0 and r, s ∈ N there exists a positive constant

M16 ≡ M16(p, q, r, s) such that

‖Bm,n (1/v2p,2q(t, z); p, q, r, s, α; ·, ·)‖2p,2q ≤ M16 for m, n ∈ N.(42)

Moreover for every f ∈ C2p,2q we have

‖Bm,n (f ; p, q, r, s; ·, ·)‖2p,2q ≤ M16 ‖f‖2p,2q for m, n ∈ N, r, s ∈ N.(43)

The formula (37) and the inequality (43) show that Bm,n, m, n ∈ N , are linear

positive operators from the space C2p,2q into C2p,2q.
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4.2. Applying Lemma 3– Lemma 5 and (33)–(35) and (39)–(41) and reasoning
as in the proof of Theorem 1, we can prove the following

Theorem 3. Suppose that f ∈ C1
2p,2q with given p, q > 0 and r, s ∈ N . Then

there exists a positive constant M17 = M17(p, q, r, s) such that for all m, n ∈ N
and α > 0

‖Bm,n(f ; p, q, r, s, α; ·, ·)− f(·, ·)‖2p,2q ≤ M17

{

1

mα
‖f ′x‖2p,2q +

1

nα
‖f ′y‖2p,2q

}

.

Theorem 4. Suppose that f ∈ C2p,2q, p, q, α > 0, r, s ∈ N . Then there exists

a positive constant M18 ≡ M18(p, q, r, s) such that

‖Bm,n(f ; p, q, r, s; ·, ·)− f(·, ·)‖2p,2q ≤ M18 ω

(

f, C2p,2q ;
1

mα
,

1

nα

)

,(44)

for all m, n ∈ N .

Proof. Similarly as in the proof of Theorem 2 we shall apply the Steklov function
fh,δ for f ∈ C2p,2q , defined by (27). Analogously as in (28)–(30) we get

‖fh,δ − f‖2p,2q ≤ ω (f, C2p,2q ; h, δ) ,(45)
∥

∥(fh,δ)
′

x

∥

∥

2p,2q
≤ 2h−1ω (f, C2p,2q ; h, δ) ,(46)

∥

∥

∥
(fh,δ)

′

y

∥

∥

∥

2p,2q
≤ 2δ−1ω (f, C2p,2q ; h, δ)(47)

for all h, δ > 0, which show that fh,δ ∈ C1
2p,2q if f ∈ C2p,2q and h, δ > 0.

Now, for Bm,n , we can write

v2p,2q(x, y) |Bm,n(f ; p, q, r, s, α; x, y)− f(x, y)|

≤ v2p,2q(x, y) {|Bm,n (f(t, z)− fh,δ(t, z); p, q, r, s, α; x, y)|

+ |Bm,n (fh,δ(t, z); p, q, r, s, α; x, y)− fh,δ(x, y)|

+ |fh,δ(x, y)− f(x, y)|} := T1 + T2 + T3.

By (35), (43) and (45), we get

T1 ≤ ‖Bm,n (f − fh,δ; p, q, r, s, α; ·, ·)‖2p,2q

≤ M16 ‖f − fh,δ‖2p,2q ≤ M14 ω (f, C2p,2q ; h, δ) ,

T3 ≤ ω (f, C2p,2q ; h, δ) .

Applying Theorem 3 and (46) and (47), we get

T2 ≤ M17

{

1

mα

∥

∥(fh,δ)
′

x

∥

∥

2p,2q
+

1

nα

∥

∥

∥(fh,δ)
′

y

∥

∥

∥

2p,2q

}

≤ 2M17ω (f, C2p,2q ; h, δ)

{

h−1 1

mα
+ δ−1 1

nα

}

.
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From the above we deduce that there exists a positive constant M19≡M19(p, q, r, s)
such that

‖Bm,n(f ; p, q, r, s, α; ·, ·)− f(·, ·)‖2p,2q

≤ M19ω (f, C2p,2q ; h, δ)

{

1 + h−1 1

m
+ δ−1 1

n

}

,
(48)

for m, n ∈ N and h, δ > 0. Now, for m, n ∈ N setting h = 1
mα

and δ = 1
nα

to (48),
we obtain (44). �

Theorem 4 and (36) imply

Corollary. Let f ∈ C2p,2q, p, q, α > 0, r, s ∈ N . Then

lim
m,n→∞

‖Bm,n(f ; p, q, r, s, α; ·, ·)− f(·, ·)‖p,q = 0.

Remark. Theorems and Corollaries in our paper show that Am,n and Bm,n,
m, n ∈ N , give for α > 1/2 a better degree of approximation of functions belonging
to weighted spaces of functions of two variables than classical Szasz-Mirakyan
operator Sm,n, examined for continuous and bounded functions in [11].
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