Acta Math. Univ. Comenianae 25
Vol. LXXIV, 1(2005), pp. 25-36

ON (m,n)-QUASI-INJECTIVE MODULES

Z. M. ZHU, J. L. CHEN anp X. X. ZHANG

ABSTRACT. Let R be a ring. For two fixed positive integers m and n, an R-module
M is called (m,n)-quasi-injective if each R-homomorphism from an n-generated
submodule of M™ to M extends to one from M™ to M. It is showed that Mg
is (m, n)-quasi-injective if and only if the right R™"*"-module M™*" is principally
quasi-injective. Many properties of (m,n)-injective rings and principally quasi-
injective modules are extended to these modules. Moreover, some properties of
(m, n)-quasi-injective Kasch modules are investigated.

Throughout this paper R and S are associative rings with identities, and all mod-
ules are unitary. Unless specified otherwise, m and n will be two fixed positive
integers. For an Abelian group G, we write G™*"™ for the set of all formal m x n-
-matrices with entries in G, and write G™ ( resp. G,,) for G**"(resp. for G"*1).
Multiplication maps « +— ax and x — za will be denoted by a- and -a, respec-
tively. For A = (aij)mxn € G™ ™ (vesp. a = (a1,...,a,)T € G,,), we write 7;;(A)
(resp. m;(a)) for a;; (resp. a;). For any x € G, we write l;;(x) (resp. [;(x))for the
m X n-matrices (resp. the m x l-matrices) whose (i, j) entry (resp. i-th entry) is
x and the others are 0’s. Let ¢Mg be a bimodule. For x € M™*" 4 € S™ and
v € R™* under the usual multiplication of matrices, uz ( resp. zv) is a well-
defined element in M'*™ (resp. M™*k). If X C M*" U C 8™ and V C R"*k,
define

rroxe(X) = {veRYF |av=0VazeX},
lgmxi(X) = {ueS™'|uz=0,Vre X},
raymxn(U) = {ye M™™ |uy=0,YueU},
Lymxn (V) = {z2e M™" | z2v=0,YveV}.

1. CHARACTERIZATIONS OF (m,n)—QUASI—INJECTIVE MODULES

Firstly, we recall some concepts. A right R-module My is called principally
quasi-injective (or PQ-injective in brief) [5] if each R-homomorphism from
a cyclic submodule of M to M can be extended to an endomorphism of M. A ring
R is said to be right (m,n)-injective [3] in case each right R-homomorphism
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from an n-generated submodule of R™ to R extends to one from R™ to R. A right
R-module Mp, is said to be finitely quasi-injective [8] if each R-homomorphism
from a finitely generated submodule of M to M extends to an endomorphism of
M. Motivated by these concepts, we introduce the following definition.

Definition 1.1. An R-module M is called (m, n)-quasi-injective in case each
R-homomorphism from an n-generated submodule of M™ to M extends to one
from M™ to M. An R-module M is called n-quasi-injective if it is (1, n)-quasi-
-injective.

Examples. (1) Every quasi-injective module is (m, n)-quasi-injective for all posi-
tive integers m and n [2, Proposition 16.13(2)].

(2) R is right (m,n)-injective if and only if Rg is (m, n)-quasi-injective.

(3) Mg is PQ-injective if and only if My is (1, 1)-quasi-injective.

(4) Mg is finitely quasi-injective if and only if Mg is n-quasi-injective for all

positive integers n.

It is easy to see that Mg is (m,n)-quasi-injective if and only if Mg is (I, k)-

-quasi-injective for all 1 <l <mand 1 <k <n.

Definition 1.2. A bimodule s My is called left balanced in case every right
R-endomorphism of M is left multiplication by an element of S.

Remark. (1) gna(ay)Mr is left balanced for every right R-module Mg.
(2) Given a module sM, then the bimodule s Mg,q(sar) is left balanced if and
only if s Mgna(sar is balanced [2, p. 60].

Theorem 1.3. Let sMp be a left balanced bimodule, then the following state-
ments are equivalent:

(1) Mg is (m,n)-quasi-injective.

(2) Ipnrr,{a1,02,  ,am} = Sa;+Sas+- - -+ Say, for any m-element subset
{ar, 0, ,am} of M™.

(2)" Ipnrg, (A) = S™A for all A € M™*™.

(3) Ifrg,(A) Crg,(B) where A, B € M™*™, then S™B C S™A.

(4) Ifze M™ and A € M™*" satisfy rgr, (A) Crg, (2), then z € S™A.

(5) lLyp[CR, N1R,(A)] = Iy (C) + S™A for all positive integers |, A € M™*!
and C € R,

(5) Ipn[CR,NrR, (A)] = lpn (C) + S™A for all A€ M™*™ and C € R™™™.

(6) The right R-module M™ (or M,,) is n-quasi-injective.

Proof. (1) & (6), (2) < (2)" and (5) = (5)’ = (2)' = (3) are trivial.

(1) < (2). Argue as the proof of [3, Theorem 2.4].

(3) = (4). Let B = < g ) € M™*"_ Then rg,(A) C rg,(z) = rg,(B) and
S™B = Sz. By (3), we have Sz = S™B C S™A. Therefore z € S™A.

(4) = (). Let z € [n[CR, NrR,(A)]. For all y € rg, (AC), ACy = 0 implies
that Cy € CR,, Nrg,(A). Hence zCy =0, i.e., y € rg, (C). Thus

rgr, (AC) Crg, (xC).
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By (4), zC = wAC for some u € S™. So
x=(r—ud)+uld e€ly(C)+ S"A.

Therefore,

The inverse inclusion is clear. O

Corollary 1.4. Let sMpg be a left balanced bimodule. Then

(1) Mg is PQ-injective if and only if lpyrr(a) = Sa for any a € M if and only
if rr(x) Crr(y) where z,y € M implies y € Sx;

(2) Mg is n-quasi-injective if and only if lynrg, (o) = Sa for any o € M™ if
and only if rr, (A) C rg, (B) where A, B € M"™ implies B € SA;

(3) Mg is (m,1)-quasi-injective if and only if M (or(Mp)r) is PQ-injective
if and only if Iyrr(N) = N for any m-generated submodule N of sM ;

(4) Mg is finitely-quasi-injective if and only if lymrr, (o)) = Sa for all positive
integers n and any o € M™ if and only if rg, (A) C rg, (B) where A,B €
M™ implies B € SA for all positive integers n.

Theorem 1.5. Let sMp be a left balanced bimodule. Then the following con-
ditions are equivalent.

(1) Mg is (m,n)-quasi-injective.

(2) Mg is (m,1)-quasi-injective and lgm (INK) = lgm (I)+1gm (K), where I, K
are submodules of (My,)r such that I + K is n-generated.

(3) Mg is (m,1)-quasi-injective and lgm (INK) = lgm(I)+1sm (K), where I, K
are submodules of (My,)r such that I is cyclic and K is (n — 1)-generated
(K=0ifn=1).

Proof. (1) = (2). It is obvious that Mg is (m, 1)-quasi-injective and lgm (I N K)
Dlgm(I)+lgm(K). Conversely, let x € [gm (I N K) and define f: I + K — M by
fle+b)==acforall ce I and b€ K. Then f is a right R-homomorphism. Since
Mg is (m,n)-quasi-injective and gMp is left balanced, f = y- for some y € S™.
Therefore, for any ¢ € I and b € K, we have yc = f(c¢) = zc and yb = f(b) = 0.
This means that

T = ((E — y) +y e lSM(I) + lSm(K)

(2) = (3) is obvious.

(3) = (1). We proceed by induction on n. Let K = ajR+asR+---+a, R be an
n-generated submodule of (M,,)r and f : K — M be a right R-homomorphism.
Write K1 = oy R, K3 = asR + -+ + a, R. By induction hypothesis, f|x, = y1-
and f|k, = ya- for some y1,y2 € S™. Clearly,

Y1 — Y2 € lgm (K1 N Ky) = lgm (K1) + lgm (K2).
Suppose y1 —y2 = 21+ 22 with z; € lgm (K;) (1 = 1,2) and let y = y1 — 21 = Y2+ 22.
Then for any x = x1 + 25 € K with z; € K; (i = 1,2),
(@) = f(x1)+ f(22) = yiw1 +y2w2 = (Y1 — 21)21 + (Y2 + 22)72 = y(T1 +22) = Y.
So f =y- and (1) follows. O
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Corollary 1.6. Given a left balanced bimodule sMpg.

(1) The following statements are equivalent:
(i) Mg is n-quasi-injective.
(ii) Mg is PQ-injective and ls(I N K) = ls(I) + ls(K), where I, K are
submodule of Mg and I + K is n-generated.
(iii) Mg is PQ-injective and ls(INK) =lg(I)+1s(K), where I is a cyclic
submodules of Mg and K is an (n — 1)-generated submodule of M.
(2) Mg is finitely quasi-injective if and only if lyrr(z) = Sx for all x € M
and ls(INK) =1s(I)+1s(K) for any finitely generated submodules I and
K Of MR
(3) Mg is (m,2)-quasi-injective if and only if (Mg is PQ-injective and

lsm(aRNBR) = lgm(a) + Lsm (B)

for all o, B € My,. In particular, Mg is 2-quasi-injective if and only if Mpr
is PQ-injective and

ls(zRNyR) =ls(z) + ls(y)
for all x,y € M.

Lemma 1.7. Let M be a right R-module. If f € End(Mp.%}), then

(1) 7 f(X) = i f (OCpey lej(xnj)) for each X = (i) € M™*™ and all
1<i<m,1<5<n.
(2) mijfl; = ma flen foralll<i<m,1<j<nandl<k<m.

Proof. (1) Since

<Z lkt iUkt ) (XEtt) f(X)Ett = Zlkt(ﬁktf(X))7

k=1

we have m; f (Z lkt(a:kt)) =01in case t # j. Thus
k=1

Tig f(X) = mi lz iy lkt(ﬂ?kt))] =i f (Z lkj($kj)> :
k=1 k=1

t=1
(2) For any z € M,
Tij flij (@) = 73 f (lka (#) P(1, 5)) = mi5[f (lea (2)) P (L, 5)] = 7ir flga ().
So
Tij fleg = mi1 [l
(I
Corollary 1.8. Given a module Mr with S = End(Mg). Then a map f :

M™X™ — M™X" gs g right R™*™-homomorphism if and only if f = C- for some
C e gmxm,
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Proof. (=) Suppose f € End(MgLnXXZ) and take C' = (71 flk1)mxm € S™*™.

Then for each X = (Zij)mxn € M™*™ and all 1 <7 < m, 1 < j < n, by
Lemma 1.7, we have

mig f(X) = mi; f <Z lkj(»’ij)) = miflis(wrg) = Y min flaa (wrg) = 75 (CX).
k=1 k=1 k=1
Therefore
f(X) = CX.

(<) It is clear. O
Theorem 1.9. Given a module Mp with S = End(Mg). Mg is (m,n)-quasi-
injective if and only if the right R™*™-module M™*™ is PQ-injective.
Proof. (=). Let A, B € M™*" with rgnxn(A) C rraxa(B) and write
By
B =
B,
Then for each i = 1,2,--- ,m, Tgaxn(A) C rraxn(B;). Consequently rg, (A4) C
TR, (B;). Since Mg is (m,n)-quasi-injective, by Theorem 1.3(4), B; € S™A (i =
1,2,---,m). So B = CA for some C € S™*™, Now we define f : M™>*"™ — M™>™

by f(X) = CX. Then f € End(Mg.%) and B = f(A), whence My, is PQ-
injective by Corollary 1.4(1).

(<) Suppose z € M™, A € M™*"™ and rg, (A) C rg,(2). Let B = ( N ) €

0
M™*". Then 7gnxn(A) C rgexn(B). Since My is PQ-injective, B = C'A for
some C € S™*™ by Corollary 1.4(1) and Corollary 1.8. It follows that z € S™A.
By Theorem 1.3(4), we see that Mg is (m,n)-quasi-injective. O

Corollary 1.10. A ring R is right (m,n)-injective if and only if the right
R ™-module R™*™ is PQ-injective. In particular, R is right (n,n)-injective if
and only if M, (R) is P-injective.

By Theorem 1.9, Corollary 1.4 and Corollary 1.8, we have

Corollary 1.11. Mg is finitely quasi-injective if and only if the right R™*"-
module M™ is PQ-injective for all positive integers n if and only if LpynTpnxn (x) =
Sz for all positive integers n and all x € M™, where S = End(MRg).

2. PROPERTIES OF (m,n)-QUASI-INJECTIVE MODULES

In this section, some known results on PQ-injective modules and principally injec-
tive rings are extended to (m,n)-quasi-injective modules.
We begin with the following theorem, which extends [5, Proposition 1.2].

Theorem 2.1. Given a left balanced bimodule sMp with Mg (m,n)-quasi-
ingective and A, B € M™*".
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(1) If (BRy)R embeds in (AR, )R, then s(S™B) is an image of 5(S™A).
(2) If (AR,)R is an image of (BRy)R, then s(S™A) embeds in s(S™B).
(3) ]f (BRH)R = (ARH)R, then S(SmA) %S(SmB).

Proof. If o : BR,, — AR,, is a right R-homomorphism, then the (m,n)-quasi-
injectivity of Mg forces o = g|gr, for some g € End((M,,)r). Let D= (m;91;)mxm.-
Then g = D-. But s Mg is let balanced, so g = C- for some C' € S™*™. Choose
Uy, Uz, Uy € R, such that o(Be;)= Au;, where e;=(0,---,0,1,0,--- ,00T€R,

(with 1 in the ith position and 0’s in all the other positions), i = 1,2,--- ,n. Let
U= (uj,u2, -+ ,u,). Then
AU = (Auy, Aug, - -+, Au,) = (o(Bey),o(Bes), -+ ,0(Bey))

= (CBey,CBey,- -+ ,CBe,) = CB.

Now we define p : S A — S™B by yA — yAU. Then p is a left S-homomorphism.
(1) If o is a monomorphism, then for any x = (v1, 72, -+ ,2,)T € rg, (AU),

o(Bzx) =0 (Z Beixl) =

=1

U(Bei)aci :Z(A’U,Z)Jil:o

1 =1

n n

follows that

Bx =0.
Thus rgr, (AU) C rg,(B). By Theorem 1.3(3), S™B C S™AU. But STAU =
S™CB C S™B, so S™B = S™AU. Hence ¢ is an epimorphism.

(2) Suppose o is an epimorphism. Let Ae; = o(Bv;), v; € Ry, i = 1,2,--- ,n,
and write V' =(v1,v2, -+ ,v,). Then V € R"*™ and A=CBV. Thus, if p(yA) = 0,
then yAU = 0, ie., yCB = 0, whence yA = yCBV = 0. Therefore ¢ is a
monomorphism.

(3) By (1) and (2). O
The next theorem extends [5, Lemma 1.2].

Theorem 2.2. Suppose that sMpg is left balanced and Mg is (m,n)-quasi-
injective. Then

lsk [TMk (A) N BRn] =S"A + lsk (B)
for all positive integers k, A € S™ % and B € M**",

Proof. Let x € lgk[ram, (A) N BR,). For all y € rg, (AB), we have ABy = 0.
This implies that By € ry, (A) N BR,,. So xBy = 0, i.e., y € rg, (zB). Thus
rr,(AB) C rg, (¢B). Since Mg is (m,n)-quasi-injective, by Theorem 1.3(4),
xB = u(AB) for some u € S™. Then x — uA € lgr(B). Hence

x=uA+ (x —ud) € STA+1g(B).
Therefore
lSk [7"1\/[,C (A) N BRn] Q SmA + lSk (B)

The inverse inclusion is obvious. O
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Corollary 2.3. Let Mg be (m,n)-quasi-injective. If aq,qz,..., 0 € S =
End(MRg), z1,22, -+ ,xn € M, then

ls (ﬂ Kera;) N ijR) = Z Sa; + ﬂ Is(z;).
i=1 j=1 i=1 j=1

Proof. Takek =1, A = (aq,... ,am)T and B = (21,22, -+ , &) in Theorem 2.2
and then the result follows. |

Corollary 2.4. Let Mp be an n-generated (m,n)-quasi-injective module with
S = End(Mg). Then

(1) s (ﬁ Kerai> = iSai for any a1, a9,...,a, € S.
i=1 i=1
2) If a;,8, € S (i = 1,2,---,m) satisfy ﬁKerai C ﬁKerﬂi, then
i=1 i=1
0B; € iSai (i=1,2,---,m).
i=1
a1 x
Take Mg = xR, k =n, A = and B = in Theo-
Qm x

nxn
rem 2.2. Then we have the following corollary.

Corollary 2.5. Let Mg be a cyclic (m,n)-quasi-injective module with S =
End(Mg). Then

m
lgnrar, {an, 00, o, } = E Sy
im1

for any a1, as, -+, € S™.

Let Mg be a module with S = End(Mg), write W(S) = {w € S| Ker(w) <M}.
Then W (S) = J(5) in case My is a cyclic PQ-injective module [5, Proposition 2.4].
For the case of n-quasi-injective modules, we have

Lemma 2.6. If Mg is n-quasi-injective and n-generated, then W(S) = J(S),
where S = End(MEg).

Proof. If a € W(S), then ra(a) = Kera < M, and this forces rp (1 —a) =0,
ie, lsrp(l —a) = S. Since My is n-quasi-injective and n-generated, we have
S(1 —a) = S by Corollary 2.4. This means that W(S) C J(S). Conversely, let
a € J(S). Forany x € M, if rpr(a)NaR = 0, then lg[rp(a)NzR] = S. So we have
Sa+lg(xz) = S by Corollary 2.3. It follows that Ig(z) = 9, i.e., z = 0. Therefore
rar(a) <M, that is, a € W(S). O

Given a module Mpg. We call U(#£0)eM™*™ a right uniform elementif UR,,
is a uniform submodule of (M,,)r, and write My={x € S™|run,, () NUR,#0}.
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Lemma 2.7. Let Mg be (m,n)-quasi-injective with S = End(Mg). If U €
M™>" s a right uniform element, then My is the unique mazimal submodule of
$S™ which contains lgm (U).

Proof. Since UR,, is a uniform submodule of (M,,)r, My is a submodule of
sS™. Tt is easy to see that lgm(U) C My # S™. If A € S™\ My, then

rur,, (A)NUR, = 0. So lgm(ry,, (A)NUR,) = S™. Let A = ( f)l > € smxm,

Then 7y, (A) = rar,, (A) and S™A = SA. But Mg is (m,n)-quasi-injective, by
Theorem 2.2, SA+1gm (U) = S™. Hence SA+ My = S™. Therefore My is a max-
imal submodule of ¢S™ which contains lgm (U). Now, if lgm(U) C sL G S™, then
L C My (otherwise, if A € L\ My, then lgm(U) + SA = S™ as before. So we
have L = S™, a contradiction). This completes the proof. 0

Lemma 2.8. Let Mg be (m,n)-quasi-injective with S = End(Mpg) and W =
UiR, ®---®UR,,, where U; € M™*™ are right uniform elements, i = 1,2,--- ,t.
If sL is a mazimal submodule of sS™ not of the form My for any right uniform
element U € M™*™ then ryr,, (B — A)NW W for some A € Ly,.

Proof. Since L # My,, so ru,, ()NU1 R, = 0 for some « € L, thus rg, (zUy) C
rr, (U1). Let B = (zU1,0)" € M™*". Then rg, (B) = rg, (zUy) C rg, (U1).
Since My is (m,n)-quasi-injective, S™U; C S™B by Theorem 1.3(3). Let &1 =
(1,0,---,0), e2 = (0,1,0,---,0), -+, &, = (0,---,0,1) € S™ and suppose
g;Up = s;zUp for some s; € S (i = 1,2,---,m). Write 47 = (slx,...,smx)T
Then Ay € L,, and (Em—Al)Ul =0. So TM,, (Em—Al)ﬂUan # 0. IfTMm (Em—
A1)NU3R, = 0, then (E,, — A1)U2R,, = U3 R, is a unform right R-module. Hence
(Em - Ag)(Em - Al)Ug =0 for some Ay € L,,. Let A3 = Ay + Ay — A3 Aq1. Then
(Em — Ag)Ul = (Em — Ag)UQ = 0. Thus TMm(Em — Ag) n Uan 7§ 07 1= 1,2
Continue in this way to obtain A € L., such that ry (E,, — A)NW IW. O

The following theorem extends [6, Theorem 3.3]. We complete this section with
it and two corollaries.

Theorem 2.9. Let Mg be an n-generated n-quasi-injective and finite dimen-
sional module with S = End(Mpg).
(1) If L C S is a mazimal left ideal, then L = My for some right uniform
element U € M™".
(2) S/J(S) is semisimple artinian.

Proof. Since Mp, is finite dimensional, we may assume W = U1 R,,®- - -®U R, <
Mg, where Uy,--- ,U; € M™ and each U;R,, is uniform [4, Proposition 3.19].
If ¢L is a maximal left ideal of g5 not of the form My for any right uniform
element U € M™, then rp (1 —a) N W < W for some a € L by Lemma 2.8. So
1—a € J(S) C L by Lemma 2.6, a contradiction. Thus (1) follows. As to (2), if
a € My, " My, N---N My,, then ras(a) NU;R, #0,i=1,2,--- ,t. Hence

t
Plru(a) NUiR,] < Mg

i=1
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because each U; Ry, is uniform. This means ry(a) IMpg. By Lemma 2.6, a € J(S).
But each My, is maximal in ¢S by Lemma 2.7, so

J(S) = My, "My, N---N My,.
Therefore S/J(S) is semisimple artinian. O

Corollary 2.10. If My is finitely quasi-injective finite dimensional and finitely
generated, then S/ J(S) is semisimple artinian, where S = End(MEg).

Corollary 2.11. If Mg is an n-quasi-injective and n-generated uniform mod-
ule, then S = End(MRg) is local.

3. (m,n)-QUASI-INJECTIVE KASCH MODULES

Following Albu and Wisbauer [1], a right R-module Mp, is called a Kasch module
if any simple module in o[Mpr] embeds in Mg, where o[M] is the category consist-
ing of all M-subgenerated right R-modules [9, p. 118]. In this section, we study
some properties of (m,n)-quasi-injective (in particular, n-quasi-injective) Kasch
modules.

Recall that a bimodule s Mg is said to be faithfully balanced [2] in case the
canonical ring homomorphisms A : S — End(Mg) and p : R — End(sM) are
isomorphisms.

Proposition 3.1. If sMp is faithfully balanced and Mg is an (n,m+ 1)-quasi-
injective Kasch module, then sM is (m,n)-quasi-injective.

Proof. Let a1,a9,-+ ,amym € M,. Then
N=aiR+ - +anR Cry,len{ar,...,am}.

Assume f € ryp lsn{aq,...,an} but SEN. Then N C Lg for some maximal
submodule Lg of BR+ Ng. Since (BR+ N)/L is a simple module in o[Mg], there
exists a monomorphism ¢ : (B3R + N)/L — Mg. Define f : BR+ N — Mg by
f(z) =d(x+ L). Then f(oy) =0foralli=1,2,---,m, but f(8) # 0. Note that
Mpg is (n,m + 1)-quasi-injective and SR + N is an (m + 1)-generated submodule
of (My)r, so f(x) = ux for some u € (End(Mg))™. And hence there exists v € S™
such that f(z) = vz for ¢Mp is balanced. Thus va; = 0,4 = 1,2,--- ,m, i.e.,
v € lgn{aq, a2, - ,amy}. This implies that f(8) = v8 = 0, a contradiction. So
N =rp lgn{ai, -+ ,an}, whence ¢M is (m,n)-quasi-injective. O

Corollary 3.2. [3, Theorem 2.7] If R is right Kasch and right (n,m + 1)-
-injective, then R is left (m,n)-injective.

Our next theorem extends [6, Lemma 2.3].

Theorem 3.3. Given a left balanced bimodule sMp. If Mg is l-generated and
In-quasi-injective and Kasch, then lgn(J,)<gS™, where J = Rad(MRg).

Proof. If 0 # a € S™, then choose a maximal submodule A of the right R-mo-
dule aM,,. Let o : aM,,/A — Mg be a monomorphism and define a : aM,, — Mg
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by a(x) = o(x + A). Since aM,, is an In-generated submodule of the In-quasi-
injective module Mpg, « extends to an endomorphism of M. Then o = sg- for
some sg € S because g Mg is left balanced. Choose y € M,, such that ay€A. Then
soay = a(ay) = o(ay + A) # 0. So spa # 0. If aJ,, € A, then aT,, + A = alM,.
Now, let a = (s1,- -+, Sy). Then s;(Rad(Mg)) < s;M (i =1,2,---,n) for Mg is
finitely generated. This follows that
Z si(Rad Mg) < Z si(Mg), ie., aJ, <aM,.

i=1 i=1
Hence A = aM,, a contradiction. Thus aJ, C A and it implies that

(soa)Jn = afad,) = o(0) = 0.

So 0 # spa € SaNlign(J,). Therefore lgn(J,)<sS™. [l

Corollary 3.4. Given a cyclic module Mr with S = End(Mg), if Mg is PQ-
-injective and Kasch, then lg(J)<sS, where J = Rad(MRg).

Corollary 3.5. Given a finitely generated module Mg with S = End(Mg). If
Mg, is finitely quasi-injective and Kasch, then lgn(J,)<gS™ for all positive integers
n, where J = Rad(MRg).

Lemma 3.6. Given a module Mr with S = End(Mg). If Rad(MRg) # Mg and
consider the following conditions:

(1) Mg is a Kasch module.

(2) lsn(T) # 0 for all positive integers n and for any mazimal submodule T of
(Mn)r-

(3) lgn(T) # 0 for some positive integer n and for any mazimal submodule T
Of (Mn)R

(4) 1s(T) # 0 for any mazimal submodule T of Mg.

Then we always have the following implications:
1) = 2 = 6B = @.

If Mg generates all simple modules in o[M] (in particular, if Mg is a generator
in a[M]), then we have (4) = (1).

Proof. Since Rad(M) # M, so M (and hence M,,) has maximal submodules.

(1) = (2). Let ¢ : M,/T — Mpg be a monomorphism, define f : M,, — M
by z — (z + T), and write a = (fl1, fla, -+, fln). Then 0 # a € S™ and
aT = f(T) = 0. So Lg«(T) # 0.

(2) = (3) is clear.

(3) = (4). If n = 1, the implication holds. Now we assume n > 1. Let T be

), and define ¢ : M,,/K —

any maximal submodule of M, write K = ( MT
n—1

M/Tvia<Z)+K»—>x—|—T, where x € M, y € M,_1. Then ¢ is a right

R-isomorphism. This means that K is a maximal submodule of M,. Hence
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lsn(K) # 0. Suppose 0 # (u,v) € lgn(K), where u € S and v € S"~!. Then
0#uels(T).

Lastly, assume M generates all simple R-modules in o[M] and (4) holds. Then
for every simple module Ag in o[M], there exists a maximal submodule T of M
such that A =2 M/T. Suppose 0 # so € Ig(T). Then T C ra(so) # M. Hence
T = rp(s9). Now we define ¢ : M/T — M by x + T — soz. Then it is easy to
see that ¢ is an R-monomorphism. O

The following theorem is an extension of [7, Theorem 1.2].

Theorem 3.7. Let Mg be an n-quasi-injective cyclic Kasch module with S =
End(Mg). Then the map K — rp, (K) and T — lgn(T) are mutually inverse
bijections between the set of all minimal submodules of ¢S™ and the set of all
mazimal submodules of (My)r. In particular,

(1) lgnrp, (K) = K for all minimal submodules K of §S™.
(2) rar,lsn(T) =T for all mazimal submodules T of (M,)rg.

Proof. (1) follows from Corollary 2.5. As to (2), observe that T' C 7y, lgn(T)
and that rys, lgn(T) # M, by Lemma 3.6. The proof is completed by establishing
the following claims. ]

Claim 1. ry, (K) is a mazimal submodule of (My)g for each minimal sub-
module K of gS™.

Proof. Let rps, (K) C T, where T is a maximal submodule of M,,. Then 0 #
lgn(T) Clgnry, (K) = K by (1). So lgn(T) = K because K is minimal in gS™.
Hence rpr, (K) = ra,lsn(T) = T by (2). O

Claim 2. Ig«(T) is a minimal submodule of sS™ for all maximal submodules

T Of (Mn)R

Proof. Since Mp is Kasch, by Lemma 3.6(2), we may choose 0 # x € Ign(T).
Then T C ry, () # M, whence T = rp, (). As Mg is n-quasi-injective and
cyclic, this gives lgn(T) = lgnrar, () = Sz by Corollary 2.5 and it follows that
lgn(T) is a minimal submodule of gS™. O
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