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SOME RESULTS ON INCREMENTS
OF THE WIENER PROCESS

A. BAHRAM

_1
ABSTRACT. Let A\(7,qp,0) = {2aT [log % + aloglogT + (1 — ) log log aT]} 2
where 0 < o < 1 and {W(¢),t > 0} be a standard Wiener process. This paper

studies the almost sure limiting behaviour of ~ sup A7 ap,a) W (t+ar) =W (?)|
0<t<T—ar T
T

as T'— oo under varying conditions on ap and ar

1. INTRODUCTION

Let {W(t),t > 0} be a standard Wiener process. Suppose that ar is a nondecreas-
ing function of T such that 0 < ap < T and % is nondecreasing. Csorgd and
Révész [2], [3] etablished the following theorem.

Theorem 1.1. Let ar for T > 0 satisfy

(1) ar s nondecreasing,
(2) 0< ar < T,

ar . . .
(3) 7 s nonincreasing.

Define fr = (2ar(log % +loglogT))~2. Then

(4) limsup sup Br|W(T +ar)-W(E)| =1 a.s.
T— 00 0<t<T—ar

(5) limsup  sup sup Or|W({Et+s)—W({t)|=1 a.s.
T—o0 0<t<T—ar 0<s<ar

If, in addition,

- dog
im — =
T—soc0 loglogT

(6)

then “limsup” may be replaced by “lim” in both equations (4) and (5).
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Here and in the sequel we shall define for each v > 0 the functions
Lu = log u = log(max(u, 1)),
and
Lou = loglog(max(u, e)).
€ stands for a positive number given arbitrarily, and C will be understood as
a positive constant independent of n, which can take different values on each

appearance.
To simplify the notation, we will set

A(T7 ar, Oé) = sup )‘(T,G.T,Ot) |W(t + G’T) - W(t)|7

0<t<T—ar

B(T,ar,a) = sup SUP  A(Tyap,a) W (t +s) — W(t)],

0<t<T —ar 0<s<ar

where

T
MNT.ar.a) = 2a7 | L— + aLoT + (1 — a)LgaT and 0<a< 1.
( AT ) ar

N

2. MAIN RESULT

In this section we shall investigate the analogous problem when Sr is replaced by
AN(T,ar,a)- Our goal is to prove the following result.

Theorem 2.1. Under assumptions (2) and (3) of Theorem 1.1, we have

(7) limsup A(T,ar,a) =1 a.s.,
T— 0

(8) limsup B(T,ar,a) =1 a.s.
T—

If we also have

L-L
() P L((LT)a(aLTaT)l—a) -
then
(9) TEnmA(T7 ar,a) =1 a.s.,

(10) Tlim B(T,ar,a) =1 a.s.

Remark 2.1. Let us mention some particular cases .
1. For ar = T we obtain the law of iterated logarithm.
2. If a =1, we obtain Csorgd-Révész theorem (see Theorem 1.1).
3. If @ = 0, under assumptions (2) and (3) of Theorem 1.1, then we also have
(11) limsup A(T,ar,0) =1, a.s.,

T— 00

(12) limsup B(T,ar,0) =1, a.s.

T— o0
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log -L-
If we also have lim ——T—
T—o00 log IOg ar
may be replaced by “lim”.

= 00, then " limsup” in Equation (11) and (12)

Proof of Theorem 2.1. Our proof will be given in three steps expressed by the
following three lemmas.

Lemma 2.1. Let ar be a nondecreasing function of T satisfying conditions (2)
and (3) of Theorem 1.1. Then for any ¢ > 0 we have

(13) limsup A(T,ar,a) > 1 —e¢.

T—o0

Lemma 2.2. Let ar be a nondecreasing function of T satisfying conditions (2)
and (3) of Theorem 1.1. Then for any € > 0 we have

(14) limsup B(T,ar,a) <1+e¢.

T—0o0

Lemma 2.3. Let ar be a nondecreasing function of T satisfying conditions (2),
(3) of Theorem 1.1 and (%) of Theorem 2.1. Then for any € > 0 we have

(15) lqimian(T, ap,a) > 1 —e.
Proof of Lemma 2.1. Let
C(T) = A(T,aT,a)|W(T) — W(T — CLT)|.

Using the well known probability inequality

(16) ﬁ (i - ;3) exp (—gc;) <PW(1)zz) < ;m exp (—f) ;

for x > 0, (see, e.g., [4, p.175]), it follows that

rem 210 () = () (58))

= ((vi) (37)) =)

if T is big enough. We define the sequence {T}} as follows: Let T3 = 1 and define
Tyt by

Tk+1—aTk+1 =Ty if p<l1
and
Thy1 = 6%+ if p=1,

where § > 1 and Tlim G?T = p. The conditions (2) and (3) imply that ar is a
— 00

continuous function of T and that p = 1 if and only if ap = T. Moreover T — ar
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is a strictly increasing function of T if p < 1. In the case p = 1 we refer to the law
of the iterated logarithm. So we assume that p < 1, (13) follows from

[e'S) ar
17 _r
"o kZ:Q T
as was shown in Cséki, Csorgd, Foldes and Révész [1, Lemma 3.2], and the r.v.
C(Ty) (k=1,2,...) are independent. O
Proof of Lemma 2.2. Let ar, = 0%, 0 > 1 and & > 0. Using the inequality
/ CcT —v?
1) Pl sp W =W 20 < Gren{
0<s ,s<T,0<s—s'<h h 2+¢

where C is a positive constant depending only on € (see in [2, Lemma 1*]), we
have

> P(B(Tx,ar,,a) > (1 +¢))

<Oy enl2g <logi’jk<LTk>a<LaTk><l-a>>}

14¢
( ) ( LTy)> LaT )“a))
1+
LT, 1 :
LCLT LTk
i l LTk 1 1+
Ty LaTk LTy
RO .
LaTk)HE
and an application of Borel—Cantelh Lemma gives

(19) limsup B(Tk,ar,, ) <1 a.s.
Notice that heee

I /\

s
% (%

| /\

(20) 1< e

A(Tk+17aTk+17a)

if k is big enough. When T}, < T < Tj41, we have

<4

A
limsup B(T, ar, ) < limsup B(Tyy1, ary ,,, o) et
T— 00 k— 00 )\(Tk+1;U«Tk+1,Oz)
/\(Tk,aTk NeY)

< limsup B(Tyy1, a1, ,,a) limsup
k—so00 k—s 00 (Tk+1,aTk+1,a)

Now choosing 0 near enough to one, (14) follows from (19) and (20). O
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Proof of Lemma 2.3. We will set Dy = {A(T,ar,a) < 1—¢}. Using inequality
(18), for sufficiently large T, we have

P(Dr) < P( max  Aqap,a)|W(iE+1ar —W(iar) <1—¢)
0<i<[z-]-1

= (l ) (T(LT)aﬁaTw)l_a) :

T\° 1
<2e0{~(31) Ty

Now, under condition () and for all sufficiently large T,

L () (Lar) o) =

ar

]

Define T}, = €™ = k.
Therefore

>_ P(Dr,) <2 exp{~(LTi)* (Lag, )"~}
k=2 k=2

= 3 ex - LT 2‘1 ar, )?
—2’;2 p{ (LaTk> (Lar,) }
<2 exp{—(Lag,)’}

k=2
o0
-2
<2 Z ar,
k=2

=2 i(Lk)‘Q
k=2

< 0

which implies by Borel-Cantelli lemma that
(21) llimian(Tk,aTk,a) >1—¢,a.s.

When T, < T < Tyy1, we have ar — ar, > 0 and by (3), it is easy to see that
ar —ag, < GTL: < éar, for any § > 0. Thus

lqim inf A(T,ar,a) >liminf  sup A(Tus1,a1y, 1 0) [W(t+ar,)— W(t)

k——00 0<t<Ti—ar,

—limsup  sup SUP  A(Tap,a)|W(t+s) — W(t)]
T—o0 0<t<T—dar 0<s<dar

ATsrm
—mint o A, W an) - W]
£700 i< Ti—a, (Tk a1, )

A
—lmsup s S Argag W 8) = W]
T— 00 0<t<T—dar 0<s<dar >‘(T,6aT,o¢)
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By Lemma 2.2 we have

(22) limsup  sup SUp  A(7,5ar,0)|W(t+s) = W(t)| <1,a.s.
T—o0 0<t<T—dar 0<s<dar

We notice that
)\ a «
(23) lim sup SACLL SR

T—oc0 N(T,5ar,x)

The proof of Lemma 2.3 will be completed by combining (21), (22) and (23). O
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