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GROUPS OF PERIODS FOR ARBITRARY MAPS ON GROUPS

N. C. BONCIOCAT anDp A. ZAHARESCU

ABSTRACT. We investigate various properties of groups of periods associated to
arbitrary maps defined on groups.

1. INTRODUCTION

Let G, G’ be abelian groups and let f : G — G’ be a homomorphism. In the usual
additive notation for the group law, if ¢ belongs to the kernel of f, then

flz+1) = f(x),

for any = € G. That is to say, the map f is periodic with period ¢. The group of
periods of f coincides with ker f. If we replace G’ by an arbitrary non-empty set
S and let f be any map from G to S, the notion of period still make sense, and
one can again talk about the group of periods of f. Naturally, one has a richer
structure to work with in the case when f is a homomorphism than in the case of
a general map from G to an arbitrary set. Nevertheless, there are many important
examples of periodic maps defined on groups which are not homomorphisms. For
instance, let G be the additive group of real numbers. Trigonometric polynomials
are maps of the form

N
@)= 3 e,
n=—N

where the coefficients a,, are complex numbers, and they play an important role
in many problems in number theory (see [9], [5], [7]). If ar = 1 for some k and
a, = 0 for n # k, in other words if f(x) = €>™*%  then f is a homomorphism to
the multiplicative group of nonzero complex numbers, with kernel %Z. A general
trigonometric polynomial is not a homomorphism, and yet it has a nonzero group
of periods.

Another important class of examples is provided by elliptic functions (see [1],
[15]). Such a function f is meromorphic and doubly periodic. If we let the poles of
f be sent to the point at infinity, then f will be defined everywhere on the complex
plane C, with values in CU {oc}, and will have as group of periods a lattice in C.
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For another example, let K be a number field, which is an abelian extension of
the field Q of rational numbers, and let G = Gal(K/Q). Any element a € K gives
rise to a natural map f, : G — K, defined by

for any o € G. In general f, is not a homomorphism, although the group of periods
of f, may be nontrivial. To be precise, the group of periods of f, coincides with
the Galois group Gal(K/Q(«)).

In the present paper we take a general point of view. We consider a group G,
which does not need to be abelian, a non-empty set S, a map f : G — S, and
investigate some properties of the corresponding groups of periods. Since G is
no more assumed to be abelian, we first need to give a precise definition of what
we mean by a group of periods in this more general context. There are several
subgroups of G that one can consider in this case, namely the groups of left or right
periods, as well as their normal and characteristic interior, which will be defined
in the following section. An alternative point of view is to define these groups
and investigate their properties by considering the partition induced by f on the
underlying set of GG, and the stabilizers of this partition with respect to the actions
of left and right multiplication with elements in G. Groups acting on partitioned
sets have been studied by a number of authors (see [2], [3], [4], [10], [13], [14] and
[16]). Their properties have been extensively used in the computational study of
finite permutation groups.

Subgroups appear in many cases in group theory as kernels, images or inverse
images of group homomorphisms. Our first purpose is to show how the subgroups
of an arbitrary group G may be regarded as groups of periods of arbitrary maps
on G. The normal subgroups and the characteristic subgroups of G are then found
to be precisely the normal interior and the characteristic interior of such groups
of periods, respectively. This could be a source of new examples of subgroups,
as well as a tool to study their properties. Another goal is to investigate the
groups of periods in the case when G factorizes as a product of two subgroups
with trivial intersection. Lastly, we consider modules and rings instead of groups
and show how one can describe their submodules and ideals as appropriate kernels
of arbitrary maps.

2. NOTATIONS AND DEFINITIONS

Let G be a group, P(G) the set of its non-empty subsets and «, § the actions of
G on P(G) by left and right multiplication, respectively. Let now I be a set of
indices and consider a partition P = {A4;};c; of G, that is

G =J4,

el
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where A; are pairwise disjoint non-empty subsets of G. To any such partition of
G we then associate the following four subgroups of G:

LS(P) =  [)Staba(4),

RS(P) = ﬁStabB(Ai)a

NS(P) = ﬁgoLS(P%gl,
geG

csS(P) = (] e(LS(P)).
peAut (G)

Definition 1. We call these subgroups the left stabilizer of P, the right stabilizer
of P, the normal stabilizer of P and the characteristic stabilizer of P, respectively.

Definition 2. Let S be a non-empty set. An arbitrary map f : G — S defines
in a natural way a partition of G if we consider P = {f~!(s)}serm (). In this
case we denote the four subgroups associated to P by LP(f), RP(f), Ker (f) and
Char (f), and call them the group of left periods of f, the group of right periods of
f, the kernel of f and the characteristic kernel of f, respectively.

It is easy to see that these subgroups of G admit the following simple description:

LP(f) {heG: f(hg) = f(9),Yg € G},

RP(f) = {he€G: f(gh)= f(9),Vg € G},

Ker(f) = {heG: flgihgi" - g2) = f(92),Yg1.92 € G},
Char (f) = {heG: f(p(h) g)=f(9),Y9 € G,Vp € Aut (G)}.

In this definition we may obviously assume that f is a surjective map, and
the values taken by f are irrelevant as long as they preserve the same partition

{f_l(s)}selm(f) on G.

Remark. One can define the kernel and the characteristic kernel of f in the
following equivalent way:

Ker (f) = {he€G: f(g1hg2) = f(9192),Y91,92 € G}
= {heG: flg2-qhgr ") = f(92), Y91, 92 € G},
Char (f) = {heG: f(g-e(h) = f(g9),Vg € G,Vp € Aut (G)}.

The following result shows that the definition of N.S(P) and C'S(P) does not
depend on which action we consider, a or 3, and the same obviously holds for the
definition of Ker (f) and Char (f).
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Proposition 1. For every partition P of a group G we have:

(1) NS(P) = ()g-RS(P)-g" and
geG

(2) csp) = () @(RS(P)).
peAut (G)

Proof. Let the partition of G be P = {A;}iecr, with I the set of indices. We
associate to P the map f: G — I given by f(g) =i for every g € A;, i € I. Then
we have LS(P) = LP(f) and RS(P) = RP(f). By double inclusion it follows
easily that

Mo LP(f)-g7" = {heG: flgihgr'-g2) = f(92), Y1, 92 € G},
geG
N9 -RP(f)-g7" = {heG: flgz-gihgi") = f(92), Y91, 92 € G},
geG

and (1) follows by the previous remark. Similarly,

() e@P(f) = {heG:[f(eh)-g9) = f(9),¥g € G,Yp € Aut (G)},
peAut (G)

(N @(RP(f) = {heG:flg-o(h)=f(9).Yg € G.Yp € Aut (G)},
peAut (G)
from which (2) follows using again the previous remark. O
We therefore see that NS(P) is at the same time the core of LS(P) in G and

the core of RS(P) in G. Similarly, CS(P) is both the characteristic interior of
LS(P) in G and the characteristic interior of RS(P) in G.

Remarks. 1. If S is a group and f : G — S is a group homomorphism, then
LP(f), RP(f) and Ker (f) coincide with the usual kernel of f, and Char (f) =
Noeaut (c) P(Ker (f)), the characteristic interior of Ker (f).

2. For an arbitrary map f : G — S we have the following inclusions:
Char (f) € Ker (f) € LP(f) N RP(f),

and for h € LP(f) or h € RP(f) we have f(h) = f(1), so all these subgroups are
contained in the set f~%(1).

3. In general LP(f) # RP(f). To see this we consider the dihedral group G =
{1,z,2%,y, vy, vy} with 23 = y? = 1 and yx = 2%y, and a set S with 3 elements:
S ={a,b,c}. For the map f: G — S given by
[ = fly)=a
fl@) = fla®y) =0
fl@®) = flzy)=c
we have LP(f) = {1,y} and RP(f) = {1}.
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4. If f is an injective map we have LP(f) = RP(f) = Ker (f) = Char (f) = 1,
and obviously Char (f) = G if and only if f is constant.

5. If G is an abelian group, then LP(f) = RP(f) = Ker (f), which is the group
of periods of f, if we consider the additive notation for the group law.

6. If G/ Ker (f) is abelian, then f is a central map and LP(f) = RP(f) = Ker (f).

7. For a group G and a partition P = {A;};c; of G we may consider N(P) =
NierNa(A;) and call it the normalizer of the partition P. Here Ng(A4;) stands
for the normalizer of A; in G. For a finite group G, a non-empty set S and an
arbitrary map f: G — 5, the set

N(f) ={h e G: f(hg) = f(gh),Vg € G}

is a subgroup of G. Obviously N(f) is closed under multiplication, 1 € N(f), and
for h € N(f) we have

f(hg) f(hh™2g) = f(h™?gh) = f(hh™3gh) = f(h~°gh*) = ...
F(h=oM ghe™M=1) = f(gh™),

where o(h) is the order of h. This shows that h=! € N(f). It is easy to see
that N(f) is actually the normalizer of the partition P = {f~*(s)}serm (). We
obviously have the inclusions LP(f) N RP(f) C N(f) and Z(G) C N(f).

n

Examples. 1. For the power functions f, : G — G given by f,(g9) = g",
n € N, we have:
Ker(fn) = {h€G:(g1hg2)" = (9192)",Y91,92 € G}
= {heG:(hg291)" 'hg2 = (9291)" 92, V91,92 € G}
= {heG:(hg291)" "hg201 = (9291)", Va1, 92 € G}
= {h€G:(hg291)" = (9291)",VYg1,92 € G} = LP(f)

and

Ker(fn) = {h€G:(g91hg2)" = (9192)", V91,92 € G}
= {heG:(hgagr)" "'h = (g201)" ", Vg1,92 € G}
= {heG:g291(hgag1)" "h = (9291)", V91,92 € G}
{h € G:(9201h)" = (9291)", V91,92 € G} = RP(fp).
Moreover, for h € Ker (f,,) and ¢ € Aut (G) we have (¢(h)p(g9))™ = (p(g))", for

all g € G, and therefore p(h) € Ker (f,,). This shows that for every n, Ker (f,) is
a characteristic subgroup of G. We therefore have

Char (f,) = Ker(f,)=RP(f,) = LP(f)
= {heG:(hg)" =(9)",Vg €G}.

Note that the order of any element belonging to Ker (f,,) must be a divisor of
n. It is then easily seen that Ker (f2) is the subgroup of involutions of Z(G).
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For two natural numbers m and n we have:

Ker (fm) N Ker (fn) = Ker (fgcd(m,n))v
Ker (fm) - Ker (fn) C Ker (flcm(m,n))v

Thus if m divides n we have Ker (f,) C Ker(f,), and if G is a finite group of
exponent e, we have Ker (f,,) = Ker (fgea(n,e))-

2. Let = be a fixed element of a group G. For the commutator map given by
f2(g) = grg~tx~! we have:

Lp(fm) = Ker (fz) = CG(Cz)v RP(fac) = CG(:E)»
Char (fz) = () ¢(Ca(Ch)),

peAut (G)

where C, is the conjugacy class of x.
3. GROUPS OF PERIODS

The methods to prove that a given subset of a group is a subgroup are omnipresent
tools and can be found in all the classical texts of group theory. It is worth-
mentioning a less known result due to G. Horrocks (see [12, p. 42]) stating that
if a finite set X = {z1,...,2,} of a group G has the property that z;z; € X
whenever 1 < i < j < n, then it is necessarily a subgroup of G.

In what follows we prove that the subgroups, the normal subgroups and the
characteristic subgroups of an arbitrary group may be regarded as groups of peri-
ods, kernels and characteristic kernels of arbitrary maps, respectively.

Theorem 1. A non-empty subset H of a group G is a subgroup (a normal
subgroup, or a characteristic subgroup) of G if and only if there exist a set S
and a map f : G — S such that H = LP(f) (H = Ker (f), or H = Char (f),
respectively). The same characterization for the subgroups of G holds if we replace

LP(f) by RP(f).

Proof. Let H be a subgroup of G and S a set with at least two elements, say a
and b. If H = G, we take the constant map f: G — S, f(g) = a for all g € G and
obviously H = G = LP(f).

If H # G, we consider the indicator map of H given by

_Joa ifgeH
3) ro={% H5h
For h € LP(f) we have f(hg) = f(g) for all g € G and in particular for g € H we

have f(hg) = a, which according to the definition of f means that hg € H, that
is h € H. Therefore we have LP(f) C H. Conversely, for h € H we have

a ifhge H (& geH)
f(hg) = {b ifh§¢H(©§¢H)

a ifgeH
{4 8osh —ro.
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for all g € G, which shows that h € LP(f). Therefore we have H = LP(f). The
proof is similar if we consider RP(f) instead of LP(f).

If H is a proper normal subgroup of G we consider again the indicator map of
H given by (3). For h € Ker (f) we have f(g1hg2) = f(g192) for all ¢g1,¢92 € G.
In particular, for g1, g2 € H we have f(g1hge) = a, which shows according to the
definition of f that gihgs € H, that is h € H. Therefore we have Ker (f) C H.
Conversely, for h € H we have

if g1hgo € H (& g1hgy ‘9192 € H)
if gihge ¢ H (< gihg; 'g192 ¢ H)
_ { a ifgigo € H

f(g1hg2)

|
—N
S Q

b if G192 ¢ H = f(gl.92)7

for all g1, g2 € G, and therefore h € Ker (f), that is H = Ker (f).

Finally, consider a proper characteristic subgroup H of G and f given by (3).
For h € Char (f) we have f(¢(h)g) = f(g) for all g € G and all p € Aut (G). In
particular, for ¢ € H and ¢ = 1 we have f(hg) = f(g) = a, which by (3) shows
that hg € H, that is h € H. Therefore we have Char (f) C H. Conversely, for
h € H we have

it p(h)ge H (& g€ H)
h = .
rema = {5 e (g
_ a ifgeH
for all ¢ € G and all ¢ € Aut(G). Thus H = Char (f), which completes the
proof. O

2

This theorem (as well as its proof) may be alternatively rephrased in terms of
partitions of G as follows:

Theorem 1'. A non-empty subset H of a group G is a subgroup (a normal
subgroup, or a characteristic subgroup) of G if and only if there exist a partition
P of G such that H = LS(P) (H = NS(P), or H = CS(P), respectively). The
same characterization for the subgroups of G holds if we replace LS(P) by RS(P).

We denote by {G/LP(f)}; and {G/RP(f)}: the sets of left cosets of LP(f) and
RP(f) in G, respectively. The following result may be regarded as an analogue
for arbitrary maps of the fundamental theorem on homomorphisms.

Proposition 2. Let G be a group, S a non-empty set and f : G — S
an arbitrary map. Then |G/Ker (f)| > card {Im(f)}, and moreover we have
card {G/LP(f)}; > card {Im (f)} and card {G/RP(f)}; > card {Im (f)}.

Proof. Consider ¢ : G/Ker (f) — Im(f) given by ¢(gKer (f)) = f(g). The
map ¢ is well defined: indeed, if g; Ker (f) = g2 Ker (f) then g5 'g1 € Ker (f),
which means that f(xlgglglelmg) = f(xg) for all 21,22 € G.
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In particular, for 1 = 29 = g2 we find f(g1) = f(g2). Since obviously ¢ is a sur-
jective map, we have |G/ Ker (f)| > card {Im (f)}. For the remaining two inequal-
ities we consider the maps ¢1 : {G/LP(f)}; — Im(f) and ¢2 : {G/RP(f)} —

Im (f) given by ¢1(gLP(f)) = f(g~") and ¢2(gRP(f)) = f(g), which are also well
defined and surjective. Hence, if G is a finite group, we have

[Ker (f)] - card{Im (f)} < |G|,
(4) LP(f)|-card {Im(f)} < |G|  and
[RP(f)| - card{Im ()} < |G,
or, equivalently:
INS(P)|-card {1} < [,
|LS(P)|-card {I} < |G| and
|RS(P)|-card{I} < |G|,
if we consider the same problem in terms of partitions of G. O

Inequalities (4) show that if we try to find maps f having nontrivial ker-
nels or groups of periods, then we have to ask for card {Im (f)} to be “small”.
For instance, if |G| = pi"p5?...p* with p1 < p2 < ... < pi prime numbers,
ny > 1,...,n; > 1 and card{Im(f)} > |G|/p1, then LP(f) = RP(f) =
Ker (f) = 1. In particular, if we choose f such that card {Im(f)} > |G|/2,
then necessarily LP(f) = RP(f) = Ker (f) = 1.

For finite groups we can also establish the following connection between |LS(P)|,
|[RS(P)|, INS(P)|, |CS(P)| and {card {A;}}ier-

Proposition 3. Let G be a finite group and P = {A;}?1 a partition of G.
Then |LS(P)|, |[RS(P)|, INS(P)| and |CS(P)| are divisors of ged(card {41}, ...,
card {4,}).

Proof. Tt will be sufficient to prove this assertion for |LS(P)|. Denote by ~
the action of LS(P) on G by left multiplication. The length of the orbit of each
element with respect to v equals |LS(P)|. Since LS(P) acts on G and stabilizes
each one of the A;’s, it turns out that each A; is a union of distinct orbits with
respect to . Hence |LS(P)| divides card {4;} for every i, which completes the
proof. O

This proposition shows that a nontrivial subgroup H of a finite group G can be
a left or a right stabilizer only for maps partitioning GG into parts each of whose
length is divisible by |H]|.

Some properties of LP(f), RP(f), Ker (f) and Char (f) which are immediate
from the definition are given by the following:
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Proposition 4. (i) Let f; : G — S; , i = 1,...,n be arbitrary maps. For the
map f: G — Sy x -+ xS, given by f(g) = (f1(9),---, fu(g)) we have:

LP(f) = (\LP(f),  RP(f) = | RP(f),

i=1 i=1

Ker (f) = ﬂ Ker (f;), Char(f) = ﬂ Char (f;).
i=1 i=1
(ii) Let f; : G; — S;, i = 1, ... , n be arbitrary maps. For the map f :
Gy XX Gy — Sy X% 8, given by f(g1,...,9n) = (f1(g1),.--, fn(gn)) we
have:

Le(f) =11ep(r,  RP() =[] RP()

Ker (/) = [ Ker ().

Let us consider now the situation when G has subgroups H and K such that
G =K -Hand HNK = 1. Since H and K are not assumed to be normal
subgroups of GG, one might not expect to obtain an immediate correspondent of
Proposition 4, ii). Nevertheless, since every element g € G may be expressed in
a unique way as a product of an element £ € K and an element h € H, we may
consider the two projections 7 : G — K and p : G — H given by 7n(g) = k
and p(g) = h, which are not necessarily group homomorphisms, but still play an
important role when we study the subgroups of G. We proceed now to describe
the groups of periods and the kernels of these projections. For this we first recall
a construction introduced by M. Takeuchi in [17], which characterizes in terms
of group actions the groups which can be expressed as internal product of two
subgroups with trivial intersection. His construction has also nice applications in
the study of Hopf algebras structure, developed in [8].

The fact that for every element g € G there exists a unique pair (k,h) € K x H
such that g = k-h allows one to define the mapsa: HxK — Kand f: KxH — H
by

(5) a(h,k) = z and B(k,h) =y,

where (z,y) € K x H is the unique pair such that h-k = z-y. Then, the associativity
relations

(h-h) k=h-(h -Kh (k&)= (k) K

and the unit properties h-1 =1-h and 1-k = k-1 show that « is a left action of
H on the set K and 3 is a right action of K on the set H, satisfying the following
conditions:

(6) Ol(h, k) ' Oé(ﬂ(k, h)a k/)

(7) B(k,h-n") = pBla(h' k),h) B(k,h")

Q

>

B

L
|
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and

(8) alh,1) = 1,

9) Bk, 1) = 1.

The group law in G may be then regarded as

(10) (k1h1) - (k2h2) = k1a(ha, k2) - B(ka, ha)ha,

and the inverse of an element kh is easily seen to be a(h=t, k=1) - (k=1 h71).

Conversely, if « is a left action and § a right action satisfying (6) — (9), then
the direct product set K x H acquires the structure of a group denoted Kz X, H,
when we define the multiplication law by:

(k1,h1) - (k2,he) = (k1 - a(hy, k), B(ka, h1) - ha) .

The unit element is (1,1) and the inverse of the element (k,h) is
(a(h=1 k7Y, B(k=1, h™1)). Using the injective homomorphisms iy : K — Kz X, H
and iy : H — Kg X, H sending k to (k,1) and h to (1,h), we can identify the
groups K and H with Ky = i1(K) and Hy; = is(H) respectively, and thus we
have Kg W, H = K; - Hy and K7 N Hy = (1,1). Moreover, one can prove that if
G = K-H with KNH =1, then G is isomorphic to Kg X, H, with o and 3 given
by (5) (the map 6 : Kg M, H — G given by 0(k, h) = kh is an isomorphism).

We have the following description for the groups of periods and the kernels of
m and p:

Lemma 1. Let H, K be subgroups of G such that G=K-H, KNH =1, and
let ™ and p be the projections of G onto K and H respectively. Then RP(m) = H,
LP(m) = Ker (m) = Ker (o) = Hg and LP(p) = K, RP(p) = Ker (p) = Ker (8) =
Kq, with o, B given by (5).

Proof. According to the definition, RP(7) consists of those elements ko -hgy € G
for which 7(k1hy - koho) = w(k1hy) for all the elements kq - hy € G. Thus, by (10)
we search for the elements ks - ho such that kya(hy, ko) = k1 for all ky - by € G.
In particular, for h; =1 we find ks = 1, which shows that RP(m) = H. Then we
obviously have

Ker (1) = ﬂ g-RP(7)-g~' = Hg.
geG

Similarly, LP () consists of those elements k1 -hy € G for which w(k1hy-kohe) =
m(kahso) for all the elements ks - he € G. Thus, by (10) we search for the elements
k1 - hy such that kya(hy, ko) = ke for all ko € K. In particular, if we put ko = ky,
we must have a(hy, k1) = 1. Applying now a(hy,-), we find k; = a(h;*, 1), which
by (8) is equal to 1. We therefore see that LP(m) consists of those hy for which
a(hy, ka) = ko for all ky € K, that is LP(w) = Ker (o) < H. By taking the normal
interior in both sides, we see that Ker (r) = Ker (a)g. So in order to prove that
Ker (o) = Hg we have to check that Ker («) is actually a normal subgroup of G.
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Let hy € Ker (a) and let k1 - by be an arbitrary element of G. Then we have

(kih1) - ho - (kiha) ™" = (kihiho) - (a(hyt k7D B(RT Y AT Y)
= kia(hihe,a(hy! ki)
- Bla(hy ™ ki h) haha) Bk hyt) - (by (10))
= PBlalhy' k), hiha)B(ky ' hit) - (ha € Ker (a))
= By hihohi"),  (by (7))
and for an arbitrary k € K we find
a(Blky !t hihahi ), k) = a(hihohy ' k7)™ a(hihehy kT TE)  (by (7))
= k’
since hy € Ker (a) and Ker (o) < H. Therefore Ker (o) < G and Ker (1) =
LP(m) = Ker (o) = Hg.
In a similar way one can prove that LP(p) = K and Ker(p) = RP(p) =
Ker (8) = Kg. O

Proposition 5. Let H, K be subgroups of G such that G=K-H, KNH =1,
and let m and p be the projections of G onto K and H respectively. Let S1, So be
non-empty sets, f1 : K — S1, fo: H — Sa arbitrary maps and f : G — S1 X Sa
given by f(g) = (f1(k), f2(h)), with k € K, h € H uniquely determined by g = k-h.
Then
(i) If p(LP(f)) € Hg, then LP(f) C LP(f1)-LP(f2) (in particular this holds if
H < G); Conversely, if LP(fs) = Hg, then LP(f1)- LP(f2) C LP(f);

(ii) If 7 (RP(f)) C K¢, then RP(f) C RP(f1) - RP(f2) (in particular this holds
if K 9 G); Conversely, if H 4G and RP(f1) C K¢, then RP(f1)- RP(f2) C
RP(f).

Proof. (i) Let © = ky - hy € LP(f). Then for every ks - ha € G we have
f(k1hy - kaha) = f(k2hs), which in view of (10) gives
fi(kia(hi, ko)) = fi(ke) and
f2(B(k2, ha)h2) = fa(h2).
Our assumption that p(LP(f)) C H¢g shows that hy € Hg, which according to
Lemma 1 equals Ker («). Therefore the first equation becomes f;(k1k2) = f1(k2)
for all ko € K, which shows that k1 € LP(f1). Choosing ks = 1, the second

equation above shows that hy € LP(f2).  Assume now LP(f2) = Hg = Ker («)
and let k; € LP(f1) and hy € LP(f2). Then for arbitrary ks - ho € G one finds

f(kihy - koho) = (fi(k1a(ha, k2)), f2(B(k2, hi)h2))

= (filalhi, k), f2(B(ka, ha)ha))  (since ky € LP(f1))
= (fi(k2), f2(B(k2, h1)h2)) (since hy € Ker (a))
(f1(k2), f2(h2)),

since by the definition of « and /3 one has hy - ks = a(hy, k2) - B(k2, h1), which for
hy € Ker (a) becomes B(ka, h1) = ky 'hiks € Ker (a) = LP(f2).
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(ii) The first assertion follows in a similar way. For the second one we use the
fact that H < G forces « to be trivial. O

In the finite case, an additional result relating the groups of periods of f1, fo
and f will be derived in Corollary 1, by using again the projections 7 and p. In
the case when G is a direct product, these projections play an important role in
the study of the structure of its subgroups, as shown by the well-known:

Theorem (Remak [11], Klein, Fricke [6]). Let K and H be normal subgroups
of G such that G = K x H, and let 7 and p be the corresponding projections of G
onto K and H, respectively. Let L be a subgroup of G. Then

(i) (LNK) < #(L)< K, (LNH) QA p(L) < H, andw(L)/(LNK) ~ p(L)/(LNH);
(i) L = (LNK)x (LNH) if and only if (L) = LN K (or if and only if
p(Ly=LNH).

For finite groups this result can be extended in the following way:

Theorem 2. Let H, K be subgroups of a finite group G such that G = K - H,
KNH =1, and let T and p be the projections of G onto K and H respectively.
Let L be a subgroup of G. Then LN K C w(L), LNH C p(L) and

(i) card (w(L))/|L N K| = card (p(L))/|L N H| = |L|/(|L N K| - |L N HI);
(i) L = (LNK)-(LNH) if and only if 7(L) = LN K (or if and only if
p(Ly=LNH).

Proof. (i) By (10) we see that 7 and p satisfy the relations

(11) m(g1-92) = 7(g1) - lp(g1),7(g2))

(12) p(gr-g2) = PB(r(g2),p(g1)) - p(g2)

with « and 3 given by (5). We obviously have

(13) (mlp)"'(1) = {leL:n(l)=1}=LNH and
(14) (l)'(1) = {l€Lipl)=1}=LNK

The set (L) is not necessarily a group, but we can prove that [L : LN H] =
card (w(L)). Let {L/L N H}; be the set of left cosets of LN H in H and ¢ :
{L/LNH}, — 7(L) given by p(g- LNH) = w(g). To check that ¢ is a well defined
map, assume that g;-LNH = go- LNH, with g1, 92 € L. Then gflgg € LNH, so by
(13) we have 7(g; *g2) = 1, which by (11) gives 1 = 7(g9; 1) -a(p(g; "), 7(g2)). This
shows that 7(g2) = a(p(gy ') ™%, 7(g7 ") ~"). On the other hand, we have 7(1) = 1,
which by (11) gives 1 = 7(g97 1) = 7(g7") - a(p(gy '), n(g1)), or furthermore
m(g1) = alplg; ), (g H) ™). We therefore have 7(g1) = 7(g2), so ¢ is a well
defined map.

The fact that ¢ is an injective map follows exactly in the reverse order, since
if we assume 7(g1) = 7(g2), with ¢g1,92 € L, then by (11) we must have 1 =
(g7 ) -alp(grh), m(g2)), that is 7(g7 'g2) = 1, again by (11). Since ¢ is obviously
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a surjective map, we must have [L : L N H] = card (w(L)). Similarly, using (12)
and (14) we find [L : LN K] = card (p(L)). Then

card (m(L))  card(p(L)) |L]
ILNK| — |[LnH| |LNnK|-|[LNnH|
which also gives the proof of (ii), since (LNK)-(LNH)CLCw(L)-p(L). O

Corollary 1. Let H, K be subgroups of a finite group G such that G = K - H,
KNH=1, and let T and p be the projections of G onto K and H respectively.
Let Sy, Sy be non-empty sets, f1 : K — Sy, fo : H — Sy arbitrary maps and
f: G — 51 xSy given by f(g) = (f1(k), f2(h)), with k € K, h € H uniquely
determined by g =k - h. Then
() LP(f) = (LP(f) N K) - (LP(f) 0 H) if and only if 7(LP(f)) = LP(f1);

(i) RP(f) = (RP(f) N K) - (RP(f) N H) if and only if p(RP(f)) = RP(f2).

Proof. We use the fact that (LP(f)NK) = LP(f1) and (RP(f)NH) = RP(f2).

O
We end by mentioning some similar results which allow one to describe sub-

modules and ideals as apropriate "kernels” of arbitrary maps. Thus, if R is a ring
with unit, g M a left R-module, S a non-empty set and f : M — S an arbitrary
map, we define

Ker (f) ={z € M : f(ax +y) = f(y), Yy € M, Va € R}.
Similarly, if we replace g M by a right R-module Mg we define
Ker (f) = {z € M : f(za+y) = f(y), Vy € M, Va € R}

and have the following:

Proposition 6. A non-empty subset N of a module M is a submodule of M
if and only if there exists a non-empty set S and a map f : M — S such that
N = Ker (f).

In particular, if we replace R by a commutative field and M by a vector
space V we obtain a similar description for the subspaces of V. We note that if S
is a topological space and f : V — S is a continuous map, then Ker (f) is a closed
subspace of V.

Finally, if R is a ring with unit, S a non-empty set and f : R — S an arbitrary
map, we define:

Ker,(f) = {z€R: f(ax+b)=f(b), Va,be R},
Ker,.(f) = {z€R: f(xa+b)=f(b), Ya,be R},
Ker(f) = {x€R: f(azas +b) = f(b), ¥ a1,a2,b € R},

the left kernel, the right kernel and the kernel of f, respectively. These ideals
obviously coincide if R is a commutative ring. We then have:

Proposition 7. Let R be a ring with unit and I a proper non-empty subset
of R. Then I is a left (right, two-sided) ideal of R if and only if there exists
a set S with at least two elements and a map f : R — S such that I = Ker(f)
(I =Xer,(f), I =Ker(f), respectively).
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The proof of these results is similar to the one of Theorem 1 and uses again the
indicator map of the corresponding subset.
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