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PREDICTABLE REPRESENTATION PROPERTY
OF SOME HILBERTIAN MARTINGALES

M. EL KADIRI

Abstract. We prove as for the real case that a martingale with values in a sepa-

rabale real Hilbert space is extremal if and only if it satisfies the predictable repre-
sentation property.

1. Introduction.

In this article we shall use the stochastic integral with respect to a local vectorial
martingale as it is defined in [2].

Let (Ω,F , P ) be a probability space equipped with a filtration (Ft) satisfying
the usual conditions, that is, (Ft) is complete and right continuous. Let H be a real
separable Hilbert space whose inner product and norm are respectively denoted
by 〈, 〉H and || ||H. The dual of H will be denoted by H′. For every process X
with values in H, we denote by (FX

t ) the complete and right continuous filtration
generated by X. We also denote by EP the expectation with respect to the
probability law P .

Let M be a continuous local (Ft)-martingale with values in H defined on
(Ω,F , P ). We say that M is (Ft)-extremal if P is an extreme point of the
convex set of probabilities law on F∞ = σ(Fs, s ≥ 0) for which M is a local
(Ft)-martingale.

We say that M has the predictable representation property with respect to the
filtration (Ft) if for every real local (Ft)-martingale N on (Ω,F∞, P ) there exists
an (Ft)-predictable process (Ht) with values in H′ such that

Nt = N0 +
∫ t

0

HsdMs

for every t ≥ 0. As in the real case, this is equivalent to the existence, for every
Y ∈ L2(Ω,F∞), of an (Ft)-predictable process (Ht) with values in H′ such that

Y = EP (Y ) +
∫ +∞

0

HsdMs

Received November 22, 2006; revised January 24, 2008.
2000 Mathematics Subject Classification. Primary 60G44.
Key words and phrases. vectorial martingale; extremal martingale; predictable represent-

ation.



124 M. EL KADIRI

and
∫ +∞
0

||Hs||2d〈M〉s < +∞ (this can be proved in the same way as in [3,
Propsition 3.2].

We say that M is extremal or has the predictable representation property if it
has this property with respect to the filtration (FM

t ).
When H = R the notions of extremal martingales and predictable representa-

tion property coincide with the same usual ones. We recall here that this case was
studied by Strook and Yor in a remarkable paper [4].

In this paper we will prove that a local (Ft)-martingale on (Ω,F , P ) with values
in H is extremal if and only if it has the predictable representation property.

We also give some examples of extremal martingales with values in H, that
are defined by stochastic integrals of real predictable processes with respect to a
cylindrical Brownian motion in H.

In the whole paper we will fix a hilbertian basis {en : n ∈ N} of H.

2. Preliminary results

We denote by H2
0 the space of bounded continuous real (Ft)-martingales vanishing

at 0. Equipped with the inner product

〈M,N〉H2
0

= EP (〈M,N〉∞), ∀M,N ∈ H2
0 ,

H2
0 is a Hilbert space.
If M is a continuous local (Ft)-martingale of integrable square with values in

H, we denote by 〈M〉 the increasing predictable process such that ‖M‖2
H−〈M〉 is

a local (Ft)-martingale. If M and N are two local (Ft)-martingales of integrable
squares, we define the process 〈M,N〉 by standard polarisation.

If M is a bounded continuous local (Ft)-martingale with values in H, we denote
by L2

p(H
′,M) the space of (Ft)-predictable processes h = (Ht) with values in H′

such that EP (
∫ +∞
0

‖Hs‖2d〈M〉s) < ∞. We denote by H · M the matringale
(
∫ t

0
HsdMs).

For any stopping time T of the filtration (Ft) and any process X = (Xt),
XT denotes the process (Xt∧T ). We say that a stopping time T reduces a local
martingale Z if ZT is a bounded martingale.

Proposition 2.1. Let M be a continuous local (Ft)-martingale with values in
H, then every real continuous local (FM

t )-martingale X = (Xt), vanishing at 0,
can be uniquely written as

X = H ·M + L

where H is a (FM
t )-predictable process with values in H′ and L is a real local

(FM
t )-martingale such that, for any stopping time T such that the martingales

MT and XT are bounded, LT is orthogonal in H2
0 to the subspace

G = {H ·MT : H ∈ L2
p(H

′,MT )}.

Proof. The unicity of the decomposition is easy, let us prove the existence.
Since M and X are local martingales, there exists a sequence (Tn) of stopping
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times reducing X and M ; let T be one of them. Put

G = {H ·MT : H ∈ L2
p(H

′,MT )}.

It is then clear that G is a closed subspace of H2
0 and that we can write XT =

H̄.MT + L̄, where L̄ ∈ G⊥. For any bounded stopping time S, we have

EP (MT
S LS) = EP (MT

S EP (L∞|Fs))

= EP (MT
s L∞) = 0

since MT∧S ∈ G. Because of the unicity, H and L extend to processes satisfying
the desired conditions. �

We will also need a vectorial version of a theorem in the measure theory due to
Douglas. Let us consider the set P of sequences π = (Pn), n ≥ 1, of probability
measures on (Ω,F). For any probability measure P on (Ω,F), denote by π(P )
the element of P defined on E by Pn = P for every n ≥ 1.

For any function f with values in H defined on a set E, let fn be the functions
defined by fn(x) = 〈f(x), en〉H for every x ∈ E.

Let L be a set of F-mesurable functions with values in H, we denote by KL the
set of sequences π = (Pn) ∈ P such that fn ∈ L1

Pn
(Ω,F) and

∫
fndPn = 0 for any

f ∈ L and any n ≥ 1. It is easy to see that the set KL is convex.
The following theorem is a vectorial version of a classical theorem in the measure

theory due to Douglas ([3, Chap. V, Theorem 4.4])

Theorem 2.2. Let (Ω,F , P ) be a probability space, L a set of F-measurable
functions with values in H and L∗ the vector space generated by L and the constants
in H. Then L∗ is dense in L1

P (Ω,H) if and only if, π(P ) is an extreme point of KL.

Proof. The idea of the proof is the same as for the classical theorem of Douglas.
Assume that L∗ is dense in L1(Ω,H), let π1 = (P 1

n) and let π2 = (P 2
n) in KL such

that π(P ) = απ1 + (1 − α)π2, with 0 ≤ α ≤ 1. If α 6= 0, 1, then π1, π2 and π(P )
would be identical on L∗, and therefore on L1

P (Ω,H) by density, hence π(P ) is an
extreme point of KL.

Conversely, assume that π(P ) is an extreme point of KL. Then if L∗ is not
dense in L1

P (Ω,H), there exists, following Hahn-Banach theorem, a continuous
linear form ϕ not identically 0 on L1

P (Ω,H) which vanishes on L∗. But such a
form can be identified with an element of L∞(Ω,H), hence we can find functions
gn ∈ L∞P (Ω), n ∈ N, such that

φ(f) =
∑
n≥1

∫
gnfndP

for any f =
∑

n fnen ∈ L1(Ω,H). We can assume that ‖gn‖∞ ≤ 1 for any n.
Put, for any n ≥ 1, P 1

n = (1 − gn)P and P 2
n = (1 + gn)P , then π1 = (P 1

n) ∈ KL,
π2 = (P 2

n) ∈ KL and π(P ) = απ1+(1−α)π2, but π1 6= π2, which is a contradiction
with the fact that π(P ) is an extreme point of KL. �
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Remark. If H = R, then KL is simply the convex set of probability laws Q
on (Ω,F) such that L ⊂ L1

Q(Ω) and
∫

fdQ = 0 for any f ∈ L. In this case,
Theorem 2.2 is reduced to the classical Douglas Theorem.

Let X = (Xt) be an integrable process with values in H (i.e. Xt is integrable
for every t). Put

L = {1A(Xt −Xs) : A ∈ FX
s , s ≤ t}.

Then X is a martingale under the law P , with values in H, if and only if π(P ) ∈ L∗.
If F = FX

∞, this is equivalent to π(P ) is an extreme point of KL or to P is
an extreme point of the set of probability laws Q on (Ω,FX

∞), X being a local
martingale of (FX) under the law Q.

Proposition 2.3. Assume that π(P ) is an extreme point of KL. Then every
H-valued local (FX

t )-martingale has a continuous version.

Proof. As in the real case it suffices to prove that for any Y ∈ L1(Ω,H), the
martingale N defined by

Nt = EP (Y |FX
t )

is continuous. It is not hard to see that this result is true if Y ∈ L∗. Now, by
Theorem 2.2, if Y ∈ L1(Ω,H), one can find a sequence (Yn) in L∗ which converges
to Y in L1(Ω,H)- norm. For any ε > 0, one has

P [sup
s≤t

‖EP (Yn|FX
s )− EP (Y |FX

s )‖H ≥ ε] ≤ ε−1EP (‖Yn − Y ‖H).

Hence, by reasoning as for the real martingales, we obtain the desired result. �

It follows easily from the above proposition that if π(P ) is an extreme point
of KL, then every local (FX

t )-martingale with values in a real separable Hilbert
space K has a continuous version.

Theorem 2.4. Let M be a continuous local (Ft)-martingale defined on (Ω,F , P )
with values in H. The following statements are equivalent:

i) M is extremal.
ii) M has the predictable representation property with respect to (FM

t ), and
the σ-algebra FM

0 is P -a.s. trivial.

Proof. Put
L = {1A(Mt −Ms) : A ∈ FM

s , s ≤ t}.
Assume first that M is extremal, that is π(P ) is an extremal point of KL, and
let Y ∈ L∞P (Ω,FM

∞ ). Then by Proposition 2.1, there exist a predictable process
H = (Ht) with values in H′ and a real continuous martingale L = (Lt) such that

EP (Y |FM
t ) = EP (Y ) +

∫ t

0

HsdMs + Lt, ∀t ≥ 0,

with 〈H ·MT , L〉 = 0 for any (FM
t )-stopping time T and any K ∈ L2

P (H,MT ). By
stopping and by virtue of the relation 〈M,LT 〉 = 〈M,Y 〉T , we can assume that |L|
is bounded by a constant k > 0. Put P 1

n = (1 + L∞
2k )P and P 2

n = (1− L∞
2k )P . Let

π1 = (P 1
n) and π2

n = (P 2
n); then we have π(P ) = 1

2π1+ 1
2π2. Hence π1 = π2 = π(P )
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because of the extremality of π(P ), then L∞ = 0. We then deduce that L = 0,
furthermore

EP (Y |FM
t ) = EP (Y ) +

∫ t

0

HsdMs,

or

Y = EP (Y ) +
∫ +∞

0

HsdMs.

Conversely, if P = αP1 + (1 − α)P2, where π(P1), π(P2) ∈ KL, then the real

martingale (
dP1|FM

t

dP ) admits a continuous version L because P has the predictable
representation property, and L ·M is a martingale under the probability P , hence
〈M,L〉 = 0. But we have Lt = L0 +

∫ t

0
HsdMs, henceforth 〈X, L〉t =

∫ t

0
Hsd〈X〉s.

It then follows that P -a.s. we have Hs = d〈M〉s-p.s., hence
∫ t

0
HsdMs = 0, for

every t ≥ 0. Then L is constant, i.e. Lt = L0 for every t ≥ 0. Since FM
0 is trivial,

we have L0 = 1 and then P = P1 = P2. This proves that P is extremal. �

3. Examples

Proposition 3.1. The cylindrical Brownian motion in H (defined on a prob-
ability space (Ω,F , P ) is an extremal martingale.

Proof. Let us remark that since H is separable, then the σ-algebra generated
by the continuous linear forms on H is identical to the Borel σ-algebra of H.

Let Q be a probability measure on FB
∞ for which B is a local martingale. Then

for any non identically 0 continuous linear form φ on H, the process φ(B) =
(φ(Bt)) is a real Brownian motion under the probabilities measures P and Q;
then Q = P on Fφ(B)

∞ . Since φ is arbitrary, it follows that Q = P on σ({φ(Bt) :
t ≥ 0, φ ∈ H′} = FB

∞. Hence P is the unique probability measure on FB
∞ for

which B is a local martingale. Then the martingale B is extremal. �

Proposition 3.2. Let (Ht) be a real process (FB
t )-predictable such that

P -almost every ω ∈ Ω, the set {s ≥ 0 : Hs(ω) 6= 0} is of null Lebesgue mea-
sure, and such that EP (

∫ +∞
0

H2
s ds) < +∞. Then the martingale M defined by

Mt =
∫ t

0
HsdBs is extremal.

Proof. By replacing if necessary the Brownian motion (Bt) by the Brownian
motion (

∫ t

0
sgn(Hs)dBt), we may assume that the process (Ht) is non-negative.

We have, up to a multiplicative constant,

〈M〉t =
∫ t

0

H2
s ds · I, ∀t ≥ 0,

where I is the identity operator on H (see [2]), hence the process (Ht) is
(FB

t )-adapted. On the other hand, we have

Bt =
∫ t

0

1
Hs

dMs,
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hence B is (FM
t )-adapted. Then (FM

t ) = (FB
t ). If N = (Nt) is a real

FM
t -martingale, we have, following the above proposition,

Nt = c +
∫ t

0

XsdBs, ∀t ≥ 0,

where X = (Xt) is a (FB
t )-predictable process with values in H and c is a constant,

hence

Nt = c +
∫ t

0

Xs

Hs
dMs, ∀t ≥ 0.

Then M is extremal by Theorem 2.4. �

Let (Ht) be as in the above proposition. Then for P -almost every ω ∈ Ω, the
mapping from H in H defined by x 7→ Ht(ω)x is for almost every t ≥ 0 (in the
Lebesgue measure sense) an isomorphism from H into itself. This suggests the
following problem:

Problem: Let H and K be two real separable Hilbert spaces, (Bt) a cylindri-
cal Brownian motion in H, and let (Ht) be a predictable process with values in
L(H,K) such that the stochastic integral

∫ t

0
HsdBs is well defined and that for

any t ≥ 0, and P -almost any ω ∈ Ω, Ht is for almost every t ≥ 0 an isomorphism
from H in K. Is H ·B extremal?
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