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WEAKLY wW-CONTINUOS FUNCTIONS

K. AL-ZOUBI anDp H. AL-JARAH

ABSTRACT. The purpose of this paper is to introduce a new class of functions called
weakly w-continuous which contains the class of w-continuous functions and to in-
vestigate their basic properties.

0. INTRODUCTION

Throughout this work a space will always mean a topological space on which no
separation axiom is assumed unless explicitly stated. Let(X,7) be a space and A
be a subset of X. A point z € X is called a condensation point of A if for each
U € 7 with € U, the set U N A is uncountable. A is called w-closed [7] if it
contains all its condensation points. The complement of an w-closed set is called
w-open. It is well known that a subset W of a space (X, 7) is w-open if and only if
for each x € W there exists U € 7 such that x € U and U — W is countable. The
family of all w-open subsets of a space (X, 7), denoted by 7., forms a topology on
X finer than 7. Let (X, 7) be a space and A be a subset of X. The closure of A,
the interior of A and the relative topology on A will be denoted by cl,(A), int,(A)
and 74, respectively. The w-interior (w-closure) of a subset A of a space (X, 7) is
the interior (closure) of A in the space (X, 7,,) and is denoted by int_(A)(cl,, (A4)).

Weak continuity due to Levine [8] is one of the most important weak forms of
continuity in topological spaces. It is well-known that if f : (X,7) — (Y,0) is a
function from a space (X, 7) into a regular space (Y, o), then f is continuous iff it is
weakly continuous. In [6], Hdeib introduced the notion of w-continuous functions
and in [3, Theorem 3.12], Al-Zoubi showed that a function f : (X,7) — (Y,0) from
an anti-locally countable space (X, 7) into a regular space (Y, o) is continuous iff
it is w-continuous iff for each x € X and each open set V in (Y, ¢) with f(z) € V,
there exists an w-open set U in (X, 7) such that x € U and f(U) C cl (V).

In Section 1 of the present work we use the family of w-open subsets to de-
fine weakly w-continuous functions. We obtain characterizations of this type of
functions and also we study its relation to other known classes of generalized
continuous functions, namely the classes of w-continuous functions, and weakly
continuous functions.
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In Section 2, basic properties of weakly w-continuous functions such as compo-
sition, product, restriction, ... etc are given.

For a nonempty set X, Tinq, respectively, 74is will denote, the indiscrete, re-
spectively, the discrete topologies on X. R, Q and N denote the sets of all real
numbers, rational numbers, and natural numbers, respectively. By 7, we denote
the usual topology on R. Finally, if (X,7) and (Y, p) are two spaces, then 7 x p
will denote the product topology on X x Y.

Now we recall some known notions, definitions and results which will be used
in the work.

Definition 0.1. A space (X, 7) is called

(a) Locally countable [9] if each point x € X has a countable open neighbor-
hood.

(b) Anti-locally countable [4] if each non-empty open set is uncountable.

Definition 0.2. A function f: (X,7) — (Y, 0) is called

(a) w-continuous [6] if f~1(V) is w-open in (X, 7) for every open set V of (Y, o).

(b) w-irresolute [2] if f~1(V) is w-open in (X, 7) for every w-open set V of
(Y,o0).

Lemma 0.3 ([4]). Let A be a subset of a space(X, 7). Then

(a) (Tw)w =Tw-
(b) (Ta)w = (Tw)a-

Lemma 0.4 ([1]). Let A be a subset of an anti-locally countable space (X, T).

(a) If A € 7, then cl;(A) = cl, (A).
(b) If A is w-closed in (X, 1), then int(A) = int,_ (A).

Lemma 0.5 ([3]). Let (X,7) and (Y,0) be two topological spaces.

(a) (TX0)y €Ty X 0.
(b) If AC X and B CY, then cl, (A) x cly, (B) C cl(zxq), (A x B).

1. WEAKLY w-CONTINUOUS FUNCTIONS

Recall that a function f : (X,7) — (Y,0) is called weakly continuous [8] if for
each z € X and each open set V in (Y, o) containing f(z), there exists an open
set U in (X, 7) such that x € U and f(U) C cl,(V).

Definition 1.1. A function f : (X,7) — (Y, 0) is said to be w*-weakly con-
tinuous (respectively, w-weakly continuous, weakly w-continuous) if for each z € X
and for each V' € g, (respectively, V € o) containing f(x), there exists an w-open
subset U of X containing x such that f(U) C cl,_ (V) (respectively, f(U) C cl,(V),
f(U) €y, (V).

Observe that if (X, 7) is a locally countable space, then 7, is the discrete topol-
ogy and so every function f: (X,7) — (Y, 0) is w¥-weakly continuous.

The following diagram follows immediately from the definitions in which none
of these implications is reversible.
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continuous —  w-continuous ~ — weakly w-continuous « w“-weakly continuous

N ! 7

weakly continuous — w-weakly continuous

Example 1.2. (a) Let X = R with the topologies 7 = 7,, 0 = {}, R,Q} and
p={0,R,{1}}. Let f: (R,7) — (R, o) be the function defined by

(V2 forr c R-Q
f(ac)—{ 1 forz e Q

Then f is w-weakly continuous, but it is not weakly w-continuous. Note that

cly, (Q) = Q and if W is an w-open set in (R, 7), then W N (R — Q) # 0. On the
other hand, the function g : (R,7) — (R, p) given by

|0 forr e R-Q
g(:c){l forx € Q

is weakly continuous (w-weakly continuous), but it is neither weakly w-continuous
nor w*-weakly continuous.

(b) Let X = R with the topologies 7 = {U C R: U C R — Q} U {R} and
o={0,R,Q}. Let f: (R,7) — (R, o) be the function defined by

] 0 forr e R—-Q
f(x)_{l forz e Q

Then f is w-continuous, but it is not w*-weakly continuous. Note that if we choose
x € Q, then f(z) =1€V = {1} € g,. Now if U € 7, such that z € U and
f(U) Ccly, (V) = {1}, then U C Q. But the only open set containing = is R,
therefore R — U is countable, a contradiction.

(c) Let X = R with the topologies 7 = 7, and ¢ = {§,R,R — {0}}. Let
f:(R,7) — (R, o) be the function defined by

0 forr e R—Q
f(x){l forz e Q
Then f is not w-continuous since V =R — {0} € o, but f~(V) =Q ¢ 7. On the
other hand, f is weakly w-continuous since cl,, (R — {0}) = R.

Let f:(X,7) — (Y,0) be a function. Then a function f¥ : (X,7,) — (Y,04,)
(respectively, f, : (X,7,) — (Y,0), f*: (X,7) — (Y,0,)) associated with f is
defined as follows: f¥(x) = f(z) (respectively, f,(x) = f(z), f¥(z) = f(x)) for
each z € X.

The proof of the following results follow immediately from the definitions and
Lemma 0.3 part (a).

Remark 1.3. Let f: (X,7) — (Y,0) be a function.

(a) f is w*—weakly continuous iff f¥ is weakly continuous.
(b) f is w-weakly continuous iff f,, is weakly continuous.
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(¢) f¥ is weakly continuous iff it is w*“-weakly continuous iff it is weakly w-
continuous iff it is w-weakly continuous.

(d) If (Y, 0) is a locally countable space, then f is w-continuous iff it is weakly
w-continuous.

(e) If (Y,0) is an anti-locally countable space, then f is w-weakly continuous
iff it is weakly w-continuous.

It follows from Remark 1.3 part (a) and part (b) that the basic properties
of w“-weakly continuous and w-weakly continuous functions follow from the well
known properties of weakly continuous functions.

Proposition 1.4. A function [ : (X,7) — (Y, 0) is weakly w-continuous iff
YV Cint,, (f~1(cl 5, (V))) for every V € o.

The easy proof is left to the reader.
2. FUNDAMENTAL PROPERTIES OF WEAKLY w-CONTINUOUS FUNCTIONS

In this section we obtain several fundamental properties of weakly w-continuous
functions.

The composition go f : (X,7) — (Z, p) of a continuous function f : (X,7) —
(Y,0) and a weakly w-continuous function g : (Y,0) — (Z, p) is not necessarily
weakly w-continuous as the following example shows. Thus, the composition of
weakly w-continuous functions need not be weakly w-continuous.

Example 2.1. Let X = R with the topologies 7 = 7,, and ¢ = 7,q and let
Y = {0,1} with the topology p = {0,Y,{1}}. Let f : (R,7) — (R, o) be the
function defined by

f(x)—{ 0 forr e R—Q
T V2 forz € Q

and let g : (R,0) — (Y, p) be the function defined by

! forceR-Q
g(x)—{o forz € Q

Then f is continuous and ¢ is weakly w-continuous. However g o f is not weakly
w-continuous. Note that if © € Q, then (go f)(x) =1 € V = {1} € p. Suppose
there exists w-open set W in (R, 7) such that z € W and (go f)(W) C ¢l (V) =
{1}. Then W C Q, i.e. W is countable, a contradiction. Therefore g o f is not
weakly w-continuous.

Recall that a function f: (X,7) — (Y, 0) is called #-continuous [5] if for each
x € X and each open set V in (Y, o) containing f(x), there exists an open set U
in (X, 7) such that z € U and f(cl.(U)) C clo(V).

Theorem 2.2. Let f : (X,7) — (Y,0) and g : (Y,0) — (Z, p) be two functions.
Then the following statement hold

(a) gof is weakly w-continuous if g is weakly w-continuous and f is w-irresolute.

(b) gof is weakly w-continuous if f is weakly w-continuous and g is w-irresolute
and continuous.
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(¢c) go f is weakly w-continuous if ¢* is O-continuous and f is weakly
w-continuous.

(d) gof is weakly w-continuous if g* is weakly continuous and f is w-continuous.

(e) Let (Z,p) be an anti-locally countable space. Then go f is weakly
w-continuous if g is O-continuous and f is weakly w-continuous.

The easy proof is left to the reader.
The following examples show that the conditions in Theorem 2.2 are essential.

Example 2.3. Let X = R with the topologies 7 = 7, and n = {0, R,R — Q}
and let Y = {1,1/2} with the topologies o = {0, Y, {v/2}} and p = {0,Y, {1}}.

(a) Let f: (R,7) — (Y, p) be the function defined by

1 forx e R—Q
f(qj):{\/i forz € Q

and g : (Y, p) — (Y, 0) be the identiy function. Clearly, (Y, p) is not anti-locally
countable, f is weakly w-continuous, g is #-continuous and w-irresolute, but not
continuous. However g o f is not weakly w-continuous.

(b) Define f: (R,7) — (R,n) and g : (R,n) — (Y, p) as follows

f _
=g ={ ;5 macq

Then f is weakly w-continuous since cl,, (R — Q) = R and g is continuous, but it
is not w-irresolute. However g o f is not weakly w-continuous.

Note that Example 2.3 shows that continuity and w-irresoluteness are indepen-
dent notions.

Lemma 2.4 ([3]). Let f: (X,7) — (Y, 0) be an open surjective function.

1) If AC X, then f(int,, (A)) C int,, f(A).

2) If U € 7, then f(U) € oy.

Theorem 2.5. Let [ : (X,7) — (Y,0) be an open surjection and let
g: (Y,o) — (Z,p) such that go f : (X,7) — (Z,p) is weakly w-continuous.
Then g is weakly w-continuous.

Proof. Let y € Y and let V € p with g (y) € V. Choose x € X such that
f(x) = y. Since g o f is weakly w-continuous, there exists U € 7, with z € U
and ¢g(f(U)) C cly, (V). But f is open, therefore by Lemma 2.4, f(U) € o, with
f(z) € f(U) and the result follows. O

Theorem 2.6. Let (X, 7) and (Y, 0) be topological spaces where (Y, o) is locally
countable. Then the projection p, : (X X Y, 7 x 0) — (X, 7) is w-irresolute.

Proof. Let (z,y) € X xY and let V' be an w-open subset of (X, 7) such that
px(x,y) =x € V. Choose U € 7 and a countable open subset W of (Y, o) such
that y € W,z € U and U —V is countable. Since UxW -V xY = (U—-V)xW is
countable, VxY € (rx0), andso B = p" (U)N(VXY) = (UNV)xY € (TX0),.
Now (z,y) € B and px(B) = U NV C V. Therefore px is w-irresolute. O
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To show that the condition (Y, o) is locally countable in Theorem 2.6 is essential
we consider the following example.

Example 2.7. Consider the projection p : (R x R, 7, x 7,) — (R, 7,) and let
A=R-—Q. Then A is w-open in (R, 7,) while p71(A4) = (R-Q) x R is not w-open
in (R xR, 7, X 7,). Thus p is not w-irresolute.

Corollary 2.8. Let A be a countable set and let fo, : (X, Ta) — (Ya,04) be
a function for each o € A. If the product function f = [[,ea fo @ [Taca Xo —
[loca Ya is weakly w-continuous and (Yo, 0q) is locally countable for each a € A,
then fo is weakly w-continuous for each o € A.

Proof. For each § € A, we consider the projections pg : [],cp Xo — X and
43 : [[aca Ya — Yp. Then we have gg o f = fg o pg for each § € A. Since f is
weakly w-continuous and ¢g is w-irresolute (Theorem 2.6) for each 8 € A, ggo f is
weakly w-continuous and hence f3opg is weakly w-continuous. Thus fz is weakly
w-continuous by Theorem 2.5. O

The following example shows that the converse of Corollary 2.8 is not true in
general.

Example 2.9. Let X = R with the topology 7 = {U : U C Q} U {R} and let
Y = {0,1,2} with the topology o = {0,Y,{0},{1,2}}. Let f: (X,7) — (Y,0)
be the function defined by

1 forx e R —Q,
f(x)_{o for z € Q.

One can easily show that f is weakly w-continuous. However, the product function
h=fxf:RxR —Y xY defined by h(z,t) = (f(x), f(t)) for all z,t € R
is not weakly w-continuous. Let (z,t) € (R — Q) x (R — Q) . Then h(z,t) =
(f(x), f(t)) = (1,1). Take V = {1,2} x {1,2}. Then V € o x o with h(z,t) € V.
Suppose there exists U € (7 x 7), such that (z,t) € U and h(U) Ccl, (V) =V.
Therefore U C (R — Q) x (R — Q). Note that the only open set containing (z,t)
is R x R and so (R x R) — U is countable. Thus

RxQU@Q@xR)=RxR)-(R-Q) x(R-Q)) C(RxR)-U,
a contradiction.

To see that the conditions in Corollary 2.8 are essential we consider the following
examples.

Example 2.10. (a) Let X = R with the topologies 7 = 7,,p = {0, R,R — Q}
and p = {0,R,Q}. Let f: (R,7) — (R, p) be the function given by f(z) =1 for
all z € R and let g : (R,7) — (R, ) be the function defined by

V2 forr e R-Q,
g(x){ 0 for xr € Q.

One can easily show that f is weakly w-continuous while g is not. To show that
f x g is weakly w-continuous, let (z,y) € R x R and let W € o x pu such that
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(f x g)(z,y) € W. There exists a basic open set V in (R x R, p x p) such that
(f x g)(=,y) € {(1,0),(1,v/2)} CV C W. Therefore V € {R x R ,R x Q}. To
complete the proof it is enough to show that cl, ), (R x Q) = R x R. Suppose
there exists (s,t) € R x R —cl(,x,), (R x Q). Then there exist W € (o x p),, and
a basic open set U in (R X R, p x u) such that (s,t) € WNU, WN(R x Q) = and
U — W is countable. Therefore W CR x (R—Q) and U € {R xR, (R —Q) x R}.
Thus U — (R x (R — Q)) is countable, a contradiction.

(b) Let X = R with the topology 7 = 7, and Y = {1, \@} with the topology
o={0,Y,{1}}. Let f: (X,7) — (Y, 0) be the function defined by

2 forz e R—Q,
fy={ V2 ©
0 for z € Q.
Then f is not weakly w-continuous. Let A be an uncountable set and let X, = X
and Y, =Y for all & € A. Then the product function

h=1] fo: [[ X« — ] Ya
a€A acA a€A
is weakly w-continuous where f, = f for all @ € A. We show that if B is a
basic open set in [[,ca Ya, then clo ), (B) = [[,ea Ya, where o, is the product

topology on [[,ca Yo. Suppose by contrary that there exists y € [, ca Yo —
cl(s,)w(B). Note that B = [] B, where B, =Y, for all but finitely many

aEA
a € A, say aj,ao, ..., a,. Therefore
B,, =B,, =...= Bon ={1}.

Now choose W € (0,),, and a basic open set V' = [[a € AV, in [],ca Yo such
that z e WNV, WNB=0,and V — W is countable. Thus

0#£BNV =[] (BanVa) SV -W,
aEA

a contradiction.

Theorem 2.11. Let f:(X,7) — (Y1 X Y3,01 X 02) be a weakly w-continuous
function, where (X,7), (Y1,01) and (Ya,02) are topological spaces. Let f; : (X, 1)
— (Y;,04) be defined as f; = P;o f fori=1,2.

(a) If f; is weakly w-continuous for i = 1,2, then f is weakly w-continuous.

(b) If (Y1,01) and (Ya,02) are locally countable spaces and f is weakly

w-continuous, then f; is weakly w-continuous for i =1, 2.

Proof. (a) Let z € X and let V be an open in (Y; x Y3,01 X 02) such that
f(z) € V. There exist V; € o1 and V; € o9 such that
f(x) = (fi(2), fa(x)) e Vi x Vo C V.
Now
(P o f)(z) = Pi(fi(2), fa(x)) = fi(x) € Vi fori=1,2
and so there exist Uy, U, € 7, such that

fi(Ui) = (P o f)(Ui) C clg, (Vi)
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Put U =U; NU;y. Then U € 7, such that = € U and
f(U) = (fl(U)v f2(U)) - Cl(al)w (Vl) X Cl(az)w (V2) c Cl(m X02)w (V)

by Lemma 0.5. Thus f is weakly w-continuous.

(b) This follows from Theorem 2.6 and Theorem 2.2. d

To see that the condition put on (Y7,01) and (Y3, 02) to be locally countable
in Theorem 2.11 part (b) is essential we consider the functions f and g as given
in Example 2.10 part (a). Then the function & : (R,7) — (R x R, x p) defined
by h(z) = (f(x),g(x)) is weakly w-continuous while g is not.

Theorem 2.12. Let f : (X,7) — (Y,0) be a function with g : (X,7) —
(X x Y, 7 x 0) denoting the graph function of f defined by g(x) = (x, f(z)) for
every point x € X. If [ is weakly w-continuous, then g is weakly w-continuous.

Proof. Let x € X and let W € 7 x 0 with g(z) € W. Then there exist U € 7 and
V € o such that g(z) = (z, f (z)) €e U x V C W. Since f is weakly w-continuous
there exists Uy € 7, with € Uy and f(U;y) C cl, (V). Put U = U NU;. Then
U e, withx € U and

g(U)=g(UNU) =UnU, f(UNU)) CU x f(Uy)
- CITW(U) X Cldu, (V) c CI(TXO')W (U X V) c CI(TXO')W (W)
by Lemma 0.5. O

The following example shows that the convese of Theorem 2.12 is not true in
general.

Example 2.13. Let X =Y =R with the topologies 7 = {0, R,R — Q}, and
o={0,R,Q}. Let f: (R,7) — (R, ) be the function defined by

. V2 forzx e R—Q,
f(:r)—{ 0 for z € Q.

Then f is not weakly w-continuous. On the other hand, the graph function g is
weakly w-continuous since cl(; ), (R X Q) = cl(7 o), (R —=Q) x R) = RxR (see
Example 2.10 part (a))

The following results follow immediately from the definitions and Lemma 0.3.

Theorem 2.14. Let f : (X,7) — (Y,0) be a function.

(a) If f is weakly w-continuous and A a subset of X, then the restriction f|a :
(A, 74) — (Y, 0) is weakly w-continuous.

(b) Let © € X. If there exists an w-open subset A of X containing x such
that fla : (A,74) — (Y, 0) is weakly w-continuous at x, then f is weakly
w-continuous at x.

(¢) IfU ={U, : @ € A} is anw-open cover of X, then f is weakly w-continuous
if and only if flu, is weakly w-continuous for all o € A.

The following example shows that the assumption A is w-open in Theorem 2.14
part (b) can not be replaced by the statement A is w-closed.
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Example 2.15. Let X = R with the topology 7, and let Y = {0,1} with the
topology o = {0,Y,{1}}. Let f: (X,7) — (Y, o) be the function defined by

_J o forzx e R —Q,
f(x)_{l for z € Q.

Then f |g is weakly w-continuous, but f is not.

Theorem 2.16. Let (X,7) be an anti-locally countable space. Then (X,T) is
Hausdroff if and only if (X,7.) is Hausdroff.

Proof. We need to show the sufficiency part only. Let x,y € X with x # y.
Since (X, 7,) is a Hausdroff space, there exist W, W, € 7, such that x € W,
y € Wy and W, N W, = (. Choose V,,V, € 7 such that z € V,, y € V,
Ve = Wy = Cy, and Vy — W, = C, where C, and C, are countable sets. Thus

VenV, C(C, UW,)N(Cy UW,) C CpUC,.
Since (X, 7) is anti-locally countable, then V, NV, = 0 and the result follows. [

Theorem 2.16 is no longer true if the assumption of being anti-locally count-
able is omitted. To see that we consider the space (N, 7.of) where 7. is the
cofinite topology. Then (N, 7¢.¢) is not anti-locally countable. On the other hand,
(N, (Teof)w) = (N, 74is) is a Hausdroff space, but (N, 7¢0¢) is not.

Theorem 2.17. Let (A,74) be a subspace of a space (X, 7). If the retraction
function f : (X,7) — (A, 74) defined by f(x) = x for all x € A is weakly
w-continuous and (X, 7) is a Hausdroff space, then A is w-closed.

Proof. Suppose A is not w-closed. Then, there exists « € cl (A) — A. Since f
is a retraction function, = # f(x) and so there exist two disjoint open sets U and
V in (X, 7) such that z € U and f(z) € V. Thus U Necl., (V) CUN(V) = 0.
Now let W be an w-open set in (X, 7) such that 2 € W. Then U NW is an w-open
set in (X, 7) containing z and so U NW N A # (. Choose y € U NW N A. Then
y= f(y) € U and so f(y) ¢ cl,, (V), i.e. f(W) is not a subset of cl. (V). Thus f
is not weakly w-continuous at z, a contradiction. Thus A is w-closed. O

Theorem 2.18. If (X,7) is a connected anti-locally countable space and
f:(X,7) — (Y,o0) is a weakly w-continuous surjection function, then (Y,o)
is connected.

Proof. At first we show that if V is a clopen subset of (Y, ), then f=1(V) is
clopen in (X, 7). Let V be a clopen subset of (Y, o). Then by Proposition 1.4,

F7HV) € imtr, (f7H(elo, (V) € it (F7H(clo (V) = intr, (F7H (V).
Thus f~1(V) is w-open in (X, 7) and so, by Lemma 0.4,
el (f7HV)) = clr, (fHV)).
Now we show that f~1(V) is w-closed in (X, 7). Suppose by contrary that there

exists x € cl, (f~1(V)) — f~1(V). Since f is weakly w-continuous and Y — V is
an open set in (Y, o) containing f(x), there exists U € 7, such that € U and

JU) Sl (Y V) =Y — V.
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But z € cl, (f~1(V)) and so U N f~1(V) # (). Therefore,
D+ fFUNVCVNY =V),
a contradiction. Thus f~*(V) is w-closed in (X, 7) and so

el (f V) =l (f7H(V)) = f7H(V),
ie., f71(V) is closed in (X, 7). Also by using Lemma 0.4,

int- f7H(V) = int, (f (V) = f7H(V),
ie., f71(V) is open in (X, 7).

Now suppose that (Y, o) is not connected. Then, there exist nonempty open
sets V1 and V5 in (Y,0) such that Vi NV, = 0 and V3 UV, = Y. Hence we
have f=1(Vi) N f=1(Va) = 0 and f=1(V3) U f~1(V2) = X. Since f is surjective,
F7H(V;) # 0 for j = 1,2. Since V; is clopen in (Y,0), then f~!(V;) is open in
(X,7) for 5 = 1,2. This implies that (X, 7) is not connected, a contradiction.
Therefore, (Y, 0) is connected. O

Theorem 2.18 is no longer true if the assumption of being anti-locally countable
is omitted. To see that we consider the following example.

Example 2.19. Let X =R with the topology 7 ={U CR: Q C U}U{0} and
let Y = {0,1, 2} with the topology p = {0,Y,{1},{0,2}}. Let f: (R,7) — (Y, 0)
be the function defined by

1 forz e R—-Q,
flz)y=< 2 for z € Q — {0},
0 for z = 0.

Then f is weakly w-continuous surjection, (X, 7) is connected but not anti-locally
countable, and (Y, o) is not connected.

Recall that a space (X,7) is called almost Lindel6f [10] if whenever U =
{Uqs : @« € T} is an open cover of (X, 7) there exists a countable subset Iy of T
such that X = (U, , cl(Ua)-

In [7, Theorem 4.1], Hdeib shows that a space (X, 7) is Lindeldf if and only if
(X, 7,) is Lindelof.

Theorem 2.20. For any space (X, 7), the following items are equivalent

(a) (X,7,) is almost Lindeldf.

(b) For every open cover W ={W, : a € I} of (X, T) there exists a countable
subset Iy of I such that X = J ¢, clr, (Wa)-

Proof. We need to prove (b) implies (a). Let W be an open cover of (X, 7,,). For
each z € X we choose W, € W and an open set U, in (X, 7) such that z € W,
and U, — W, = C, is countable. Therefore the collection U ={U, : x € X} is
an open cover of (X, 7) and so, by assumption, it contains a countable subfamily
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U*={Ugn : n € N} such that X = [J,cyclr, (Uzn). But U, cpy Cen is a countable
subset of X and we can choose a countable subfamily W* of W such that

U Con = | el (Con) SU{W : W € W}

neN neN
Then
X = U Cl‘ru (Ua:n) c U ClTw(Wzn UC:ML )
neN neN
= ( U el (Wan )) U ( U clr. (Can )>
neN neN

c (U clr, (W >> U ( U W)
neN Wew
C (U clr, (Wan )) U ( U clm(W)> :

neN Wew=*
Thus (X, 7,) is almost Lindeldf.

It is clear that if (X, 7,) is almost Lindeldf, then (X, 7) is almost Lindel6f. To
see that the converse is not true, in general; we consider the space (X,7) where
X =Rand7={U: Q C U}U{}. Then (X, 1) is almost Lindelof since cl(Q) = R.
On the other hand, 7, = Tgisc and so (X, 7,,) is not almost Lindelof. O

Corollary 2.21. Let (X, 7) be an anti-locally countable space. Then (X, T) is
almost Lindeldf if and only if (X, 1,) is almost Lindeldf.

Theorem 2.22. Let f : (X,7) — (Y,0) be a weakly w-continuous function
from a Lindeldf space (X, T) onto a space (Y,o0). Then (Y,0,,) is almost Lindeldf.

Proof. Let V be an open cover of (Y,0). For each x € X choose V, € V
such that f(x) € V.. Since f is weakly w-continuous, there exists an w-open set
Uy in (X, 7) such that z € U, and f(U,) C cly, (V). Therefore the collection
U = {U,:x € X} is an w-open cover of the Lindelof space (X,7), and so it
contains a countable subfamily U* = {U,,, : n € N} such that X = J,,cjy Uzn-

Thus

Y =f(X)=f (U Um> = J fWan) € | clon (Van)-

neN neN neN
Therefore (Y, 0,,) is almost Lindel6f by Theorem 2.20. O
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