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ON THE RICCATTI DIFFERENTIAL POLYNOMIALS

A. AYAD

Abstract. In this paper we present some properties of the Riccatti differential

polynomial associated with a homogeneous linear ordinary differential equation. We
give a complete description of the differential Newton polygons of their derivatives

and its evaluations.

1. Introduction

Many problems from quantum physics, optimal filtering and control can be mod-
elized by Riccatti differential equations. Grigoriev [2] (see also [3]) has used a
differential version of Newton polygons to compute formal power series solutions
of Riccatti differential equations and consequently to factorize linear ordinary dif-
ferential equations.

This paper will describe some properties of the Riccatti differential polynomi-
als associated with homogeneous linear ordinary differential equations. First, we
introduce them in Section 1. Second, we compute their derivatives in Section 2.
Section 3 describes the Newton polygons of the Riccatti differential polynomials
and their derivatives. Newton polygons of different evaluations of the Riccatti
differential polynomials are given in Section 4.

Let K be a field and K be an algebraic closure of K. Let S(y) = 0 be a
homogeneous linear ordinary differential equation of order n with coefficients in
K[x]. This equation can be written in the form

S(y) = sny
(n) + · · ·+ s1y

′ + s0y

where si ∈ K[x] for all 0 ≤ i ≤ n and sn 6= 0. Let y0, . . . , yn be new variables
algebraically independent over K(x). Let (ri)i≥0 be the following sequence of
differential polynomials

r0 = 1, r1 = y0, r2 = y2
0 + y1,

r3 = y3
0 + 3y0y1 + y2, ri+1 = y0ri +Dri, for all i ≥ 1,
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where Dyi = yi+1 for any 0 ≤ i ≤ n − 1. For all i ≥ 1, ri ∈ Z[y0, . . . , yi−1] has
total degree equal to i w.r.t. y0, . . . , yi−1 and the only term of ri of degree i is yi0.

Definition 1.1. The non-linear differential polynomial

R = snrn + · · ·+ s1r1 + s0r0 ∈ K[x][y0, . . . , yn]

is called the Riccatti differential polynomial associated with S(y) = 0. The equa-
tion R(y) := R(y, dydx , . . . ,

dny
dx ) = 0 is called the Riccatti differential equation

associated with S(y) = 0.

Remark 1. The Riccatti differential equations defined in Definition 1.1 are a
generalization of the well-known first order Riccatti differential equations. Namely,
for n = 2, i.e., S(y) = s2y

′′+s1y′+s0y, the Riccatti differential equation associated
with S(y) = 0 is the following first order Riccatti differential equation

R(y) = s2y
′ + s2y

2 + s1y + s0 = 0.

Lemma 1.2. Let R be the Riccatti differential polynomial associated with
S(y) = 0. y is a solution of S(y) = 0 if and only if y′

y is a solution of R(y) = 0.

Proof. See page 12 of [2] (See also [4]). �

Another way to compute the Riccatti differential polynomial associated with
S(y) = 0 is by considering the change of variable z = y′

y , i.e., y′ = zy, one computes
the successive derivatives of y and we put them in the equation S(y) = 0 to get a
non-linear differential equationR(z) = 0 which satisfies the property of Lemma 1.2.

2. Partial derivatives of the Riccatti differential polynomial

For each i ≥ 0 and k ≥ 0, the k-th derivative of ri is the differential polynomial
defined by

r
(0)
i := ri, r

(1)
i := r′i :=

∂ri
∂y0

r
(k+1)
i := (r(k)i )′ =

∂k+1ri

∂yk+1
0

.

Lemma 2.1. For all i ≥ 1, we have r′i = iri−1. Thus for all k ≥ 0, r(k)i =
(i)kri−k, where (i)0 := 1 and (i)k := i(i− 1) · · · (i− k + 1).

Proof. We prove the first item by induction on i. For i = 1, we have r′1 =
1 = 1 · r0. Suppose that this property holds for a certain i and prove it for i+ 1.
Namely,

r′i+1 = (y0ri +Dri)′ = y0r
′
i + ri +Dr′i

= iy0ri−1 + ri +D(iri−1) = i(y0ri−1 +Dri−1) + ri

= iri + ri = (i+ 1)ri.
The second item can be easily deduced from the the first item by induction on k.

�
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Definition 2.2. Let R be the Riccatti differential polynomial associated with
S(y) = 0. For any k ≥ 0, the k-th derivative of R is defined by

R(k) :=
∂kR

∂yk0
=

∑
0≤i≤n

sir
(k)
i .

Lemma 2.3. For all k ≥ 0, we have

R(k) =
∑

0≤i≤n−k

(i+ k)ksi+kri.

Proof. For all i < k, we have r
(k)
i = 0, because degy0(ri) = i. Then by

Lemma 2.1, we get
R(k) =

∑
k≤i≤n

sir
(k)
i

=
∑
k≤i≤n

si(i)kri−k

=
∑

0≤j≤n−k

(j + k)ksj+krj ,

where the last equality is done by the change j = i− k. �

Corollary 2.4. For all k ≥ 0, the k-th derivative of R is the Riccatti differential
polynomial of the following linear ordinary differential equation of order n− k

S(k)(y) :=
∑

0≤i≤n−k

(i+ k)ksi+ky(i).

Proof. By Definition 1.1 and Lemma 2.3. �

Remark 2. If si ∈ K for all 0 ≤ i ≤ n, then S(k) is the k-th derivative of S
w.r.t. x.

3. Newton polygon of the Riccatti differential polynomial
and its derivatives

Definition 3.1. Let F (y0, . . . , yn) =
∑
i∈Q,α∈A ci,αx

iyα0
0 · · · yαnn be a multi-

variate polynomial in y0, . . . , yn with coefficients ci,α ∈ K, where α = (α0, . . . , αn)
belongs to a finite subset A of Nn+1. For every couple (i, α) ∈ Q × A such that
ci,α 6= 0, we mark the point

Pi,α := (i− α1 − 2α2 − · · · − nαn, α0 + α1 + · · ·+ αn) ∈ Q× N,
and we denote by P (F ) the set of all the points Pi,α. The convex hull of these
points and the point (+∞, 0) in the plane R2 is denoted by N (F ) and is called
the Newton polygon of the differential equation F (y) = 0 in the neighborhood of
x = 0. If degy0,...,yn(F ) = m, then N (F ) is located between the two horizontal
lines y = 0 and y = m.
• For any (a, b) ∈ Q2 \ {(0, 0)}, we define the set

N(F, a, b) := {(u, v) ∈ P (F ), ∀(u′, v′) ∈ P (F ), au′ + bv′ ≥ au+ bv}.
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• A point Pi,α ∈ P (F ) is a vertex of the Newton polygon N (F ) if there exists
(a, b) ∈ Q2 \ {(0, 0)} such that N(F, a, b) = {Pi,α}. We remark that N (F )
has a finite number of vertices. We denote by V (F ) the set of all vertices p
of N (F ) for which a > 0 and b ≥ 0. By the inclination of a line we mean the
negative inverse of its geometric slope. If p ∈ V (F ) and N(F, a, b) = {p}
for a certain (a, b) ∈ Q2 \ {(0, 0)}, then the fraction µ = b

a ∈ Q is the
inclination of a straight line which intersects N (F ) exactly in the vertex p.

• A pair of different vertices e = (Pi,α, Pi′,α′) forms an edge of N (F ) if there
exists (a, b) ∈ Q2 \ {(0, 0)} such that e ⊂ N(F, a, b). We denote by E(F )
the set of all the edges e of N (F ) for which a > 0 and b ≥ 0. It is easy
to prove that if e ∈ E(F ), then there exists a unique pair (a(e), b(e)) ∈ Z2

such that a(e) > 0, b(e) ≥ 0 are relatively prime and e ⊂ N(F, a(e), b(e)).
If e ∈ E(F ), we can prove that the fraction µe = b(e)

a(e) ∈ Q is the inclination
of the straight line passing through the edge e.

• For each edge e ∈ E(F ), we define the univariate polynomial (in a new
variable Z)

H(F,e)(Z) =
∑

Pi,α∈N(F,a(e),b(e))

ci,αZ
α0+α1+···+αn(µe)α1

1 · · · (µe)αnn ∈ K[Z],

where (µe)k := µe(µe − 1) · · · (µe − k + 1) for any positive integer k. We
call H(F,e)(Z) the characteristic polynomial of F associated with the edge
e ∈ E(F ). Its degree is at most m = degy0,...,yn(F ).

• For each vertex p = (u, v) ∈ V (F ), let µ1 < µ2 be the inclinations of the
adjacent edges at p inN (F ). It is easy to prove that for all rational numbers
µ = b

a , a ∈ N∗, b ∈ N such that N(F, a, b) = {p}, we have µ1 < µ < µ2.
We associate with p the polynomial

h(F,p)(µ) =
∑

Pi,α=p

ci,α(µ)α1
1 · · · (µ)αnn ∈ K[µ],

which is called the indicial polynomial of F associated with the vertex p
(here µ is considered as an indeterminate). Let H(F,p)(Z) = Zvh(F,p)(µ)
defined as above for edges e ∈ E(F ).

• Let p = (u, v) ∈ V (F ) and e be the edge of N (F ) descending from p, then
h(F,p)(µe) is the coefficient of the monomial Zv in the expansion of the
characteristic polynomial of F associated with e.

Let R be the Riccatti differential polynomial associated with S(y) = 0. We
will describe the Newton polygons of R and polynomial derivatives. For every
0 ≤ i ≤ n, we mark the points (deg(si), i) and (ord(si), i) in the plane R2, where
ord(si) is the order of multiplicity of 0 as a root of the polynomial si. Let N be
the convex hull of these points and the two points (min0≤i≤n{ord(si)− i+ 1}, 1)
and (+∞, 0).

Lemma 3.2. N is the Newton polygon of R, i.e., N (R) = N .

Proof. For all 0 ≤ i ≤ n, degy0,...,yi−1
(ri) = i and the only term of ri of degree

i is yi0, then lc(si)xdeg(si)yi0 is a term of R and N ⊂ N (R). For any other term of
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siri in the form bxjyα0
0 · · · y

αi−1
i−1 , where b ∈ K, j < deg(si) and α0 + · · ·+αi−1 < i,

the corresponding point (j−α1−· · ·−(i−1)αi−1, α0 + · · ·+αi−1) is in the interior
of N . Thus N (R) ⊂ N . �

Lemma 3.3. For any edge e of N (R), the characteristic polynomial of R as-
sociated with e is a non-zero polynomial. For any vertex p of N (R), the indicial
polynomial of R associated with p is a non-zero constant. Moreover, if the ordinate
of p is i0, then h(R,p)(µ) = lc(si0) 6= 0, where lc(si0) ∈ K is the leading coefficient
of si0 .

Proof. By Lemma 3.2, each edge e ∈ E(R) joints two vertices (deg(si1), i1)
and (deg(si2), i2) of N (R). Moreover, the set N(R, a(e), b(e)) contains these two
points. Then

0 6= H(R,e)(Z) = lc(si1)Zi1 + lc(si2)Zi2 + t,

where t is a sum of terms of degree different from i1 and i2. For any vertex
p ∈ V (R) of ordinate i0, lc(si0)xdeg(si0 )yi00 is the only term of R with the corre-
sponding point p. Then

h(R,p)(µ) = lc(si0) 6= 0. 2

Let 0 ≤ k ≤ n and R(k) be the k-th derivative of R which is the k-th partial
derivative of R w.r.t. y0 (Definition 2.2). Then by [1, Section 2], the Newton
polygon of R(k) is the translation of that of R defined by the point (0,−k), i.e.,
N (R(k)) = N (R) + {(0,−k)}. The vertices of N (R(k)) are among the points
(deg(si+k), i) for 0 ≤ i ≤ n− k by Lemma 2.3. Then for each edge ek of N (R(k)),
there are two possibilities:
• ek is parallel to a certain edge e of N (R), i.e., ek is the translation of e by

the point {(0,−k)}.
• The upper vertex of ek is the translation of the upper vertex of a certain

edge e of N (R) and the lower vertex of ek is the translation of a certain
point (deg(si0), i0) of N (R) which does not belong to e.

In both possibilities we say that the edge e ∈ E(R) is associated with the edge
ek ∈ E(R(k)).

Lemma 3.4. Let ek ∈ E(R(k)) be parallel to an edge e ∈ E(R). Then the
characteristic polynomial of R(k) associated with ek is the k-th derivative of that
of R associated with e, i.e.,

H(R(k),ek)(Z) = H
(k)
(R,e)(Z).

Proof. The edges ek and e have the same inclination µe = µek and
N(R(k), a(ek), b(ek)) = N(R, a(e), b(e)) + {(0,−k)}. Then

H(R(k),ek)(Z) =
∑

(deg(si+k),i)∈N(R(k),a(ek),b(ek))

(i+ k)klc(si+k)Zi

=
∑

(deg(sj),j)∈N(R,a(e),b(e))

(j)klc(sj)Zj−k = H
(k)
(R,e)(Z).

�
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4. Newton polygons of evaluations
of the Riccatti differential polynomial

Let 0 ≤ c ∈ K, µ ∈ Q and R1(y) = R(y + cxµ) be the differential polynomial
obtained from R by replacing yk by c(µ)kxµ−k + yk for all 0 ≤ k ≤ n. We will
describe the Newton polygon of R1 for different values of c and µ.

Lemma 4.1. R1 is the Riccatti differential polynomial of the following linear
ordinary differential equation of order less than or equal to n:

S1(y) :=
∑

0≤i≤n

1
i!
R(i)(cxµ)y(i).

Proof. It is equivalent to prove the following analogy of Taylor formula

R1 =
∑

0≤i≤n

1
i!
R(i)(cxµ)ri

which is done in [2, Lemma 2.1]. �

Then the vertices of N (R1) are among the points (deg(R(i)(cxµ), i) for 0≤ i≤n.
Thus the Newton polygon of R1 is given by [2, Lemma 2.2]

Lemma 4.2. If µ is the inclination of an edge e of N (R), then the edges of
N (R1) situated above e are the same as in N (R). Moreover, if c is a root of H(R,e)

of multiplicity η > 1 then, N (R1) contains an edge e1 parallel to e originating from
the same upper vertex as e where the ordinate of the lower vertex of e1 equals to
η. If η = degH(R,e), then N (R1) contains an edge with inclination less than µ
originating from the same upper vertex as e.

Remark 3. If we evaluate R on cxµ we get

R(cxµ) =
∑

0≤i≤n

si × (cixiµ + t),

where t is a sum of terms of degree strictly less than iµ. Then

lc(R(cxµ)) =
∑
i∈B

lc(si)ci =
∑

(deg(si),i)∈e

lc(si)ci = H(R,e)(c),

where
B := {0 ≤ i ≤ n; deg(si) + iµ = max

0≤j≤n
(deg(sj) + jµ; sj 6= 0)}

= {0 ≤ i ≤ n; (deg(si), i) ∈ e and si 6= 0}.

Lemma 4.3. Let µ be the inclination of an edge e of N (R) and c be a root of
H(R,e) of multiplicity η > 1. Then

H(R1,e1)(Z) = H(R,e)(Z + c)

where e1 is the edge of N (R1) given by Lemma 4.2. In addition, if e′ is an edge
of N (R1) situated above e (which is also an edge of N (R) by Lemma 4.2) then
H(R1,e)(Z) = H(R,e)(Z).
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Proof. We have

H(R,e)(Z + c) =
∑

η≤k≤n

1
k!
H

(k)
(R,e)(c)Z

k

=
∑

η≤k≤n

1
k!
H(R(k),e)(c)Z

k

=
∑

η≤k≤n

1
k!
lc(R(k)(cxµ))Zk

= H(R1,e1)(Z)

where the first equality is just the Taylor formula taking into account that c is a
root of H(R,e) of multiplicity η > 1. The second equality holds by Lemma 3.4, the
third one by Remark 3, the fourth one by Lemma 4.1 and by the definition of the
characteristic polynomial. �

References

1. Ayad A., Puiseux series solutions of ordinary polynomial differential equations: Complexity

study. Acta Universitatis Apulensis, 22 (2010), 79–92.

2. Grigoriev D., Complexity of factoring and GCD calculating of ordinary linear differential
operators, J. Symp. Comput., 10(1) (1990), 7–37.

3. Grigoriev D. and Singer M. F., Solving ordinary differential equations in terms of series with

real exponents, Trans. AMS, 327(1) (1991), 329–351.
4. Singer M. F., Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations,

Am. J. Math., 103(4) (1981), 661–682.

A. Ayad, Lebanese university, Faculty of sciences, Section 1, Hadath, Beirut, Lebanon and Section
5, Nabatieh, South Lebanon, e-mail : ayadali99100@hotmail.com,

http://ali.ayad.free.fr


