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UNSTEADY FLOW OF A CONDUCTING DUSTY FLUID
BETWEEN TWO CIRCULAR CYLINDERS

G.K. RAMESH, MAHESHA, B. J. GIREESHA and C. S. BAGEWADI

Abstract. The present analysis deals with the study of laminar flow of a con-

ducting dusty fluid with uniform distribution of dust particles between two circular

cylinders. Initially the fluid and dust particles are at rest. The flow is due to
the influence of time dependent pressure gradient and the differential rotations of

the circular cylinders. The exact solutions for both fluid and dust velocities are

obtained using Variable Separable method. Further the skin friction at the bound-
aries is calculated. Finally the changes in the velocity profiles with R are shown

graphically.

1. Introduction

The influence of dust particles on viscous flows has great importance in petroleum
industry and in the purification of crude oil. Other important applications of dust
particles in a boundary layer include soil erosion by natural winds and dust entrain-
ment in a cloud during nuclear explosion. Also such flows occur in a wide range of
areas of technical importance like fluidization, flow in rocket tubes, combustion,
paint spraying and more recently blood flows in capillaries.

P. G. Saffman [14] formulated the equations for dusty fluid flow and studied
the laminar flow of a dusty gas. Michael and Miller [13] investigated the motion
of dusty gas with uniform distribution of the dust particles occupied in a cylinder
and between two rotating cylinders. Samba Siva Rao [15] obtained unsteady flow
of a dusty viscous liquid through circular cylinder. E. Amos [1] studied magnetic
effect on pulsatile flow in a constricted axis-symmetric tube. A. J. Chamkha [5]
obtained unsteady hydromagnetic flow and heat transfer from a non-isothermal
stretching sheet immersed in a porous medium. Datta and Dalal [6] obtained
solutions for pulsatile flow and heat transfer of a dusty fluid through an infinitely
long annular pipe. Liu [12] studied flow induced by an oscillating infinite flat plate
in a dusty gas. Indrasena [10] made the solution of steady rotating hydrodynamic-
flows. Girishwar Nath [9] studied the dusty viscous Fluid Flow between Rotating
Coaxial Cylinders.
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Yang Lei and Bakhtier Farouk [17] investigated three-dimensional mixed con-
vection flows in a horizontal annulus with a heated rotating inner circular cylinder.
Colette Calmelet-Eluhu and Philip Crooke [4] tudied unsteady conducting dusty
gas flow through a circular pipe in the presence of an applied and induced magnetic
field. The authors Bagewadi and Gireesha [2], [3] studied two-dimensional dusty
fluid flow in Frenet frame field system and recently the authors [7], [8] obtained
solutions for the flow of unsteady dusty fluid under varying time dependent pres-
sure gradients through different regions like parallel plates, rectangular channel
and open rectangular channel.

The present investigation deals with the study of unsteady flow of a conducting
dusty fluid between two circular cylinders. Here the flow is due to the influence
of time dependent pressure gradient and differential rotations of the cylinders.
The fluid and dust particles are assumed to be at rest initially. The analytical
expressions are obtained for velocities of fluid and dust particles. Further the skin
friction at the boundaries is calculated and graphical representation of the velocity
profiles versus R is given.

2. Equations of Motion

The equations of motion of conducting unsteady viscous incompressible fluid with
uniform distribution of dust particles are given by [14]:
For fluid phase

∇ · −→u = 0 (Continuity)(2.1)

∂−→u
∂t

+ (−→u · ∇)−→u = −ρ−1∇p+ ν∇2−→u +
kN

ρ
(−→v −−→u ) +

1
ρ

(
−→
J ×

−→
B )(2.2)

(Linear Momentum)

For dust phase

∇ · −→v = 0 (Continuity)(2.3)

∂−→v
∂t

+ (−→v · ∇)−→v =
k

m
(−→u −−→v )(2.4)

(Linear Momentum)

We have following nomenclature: −→u – velocity of the fluid phase, −→v – velocity of
dust phase, ρ – density of the gas, p – pressure of the fluid, N – number density of
dust particles, ν – kinematic viscosity, k = 6πaµ – Stoke’s resistance (drag coeffi-
cient), a – spherical radius of dust particle, m – mass of the dust particle, µ – the
coefficient of viscosity of fluid particles, t – time and

−→
J and

−→
B given by Maxwell’s

equations and Ohm’s law, namely,

∇×
−→
H = 4π

−→
J , ∇×

−→
B = 0, ∇×

−→
E = 0,

−→
J = σ[

−→
E +−→u ×

−→
B ](2.5)

Here
−→
H – magnetic field,

−→
J – current density,

−→
B – magnetic flux,

−→
E – electric field

and σ – the electrical conductivity of the fluid.



UNSTEADY FLOW FLUID BETWEEN TWO CIRCULAR CYLINDERS 173

It is assumed that the effect of induced magnetic fields produced by the motion
of the electrically conducting gas is negligible and no external electric field is
applied. With those assumptions the magnetic field

−→
J ×

−→
B of the body force

in (2.2) reduces simply to −σB2
0
−→u , where B0 is the intensity of the imposed

transverse magnetic field.

3. Formulation of the Problem

Consider a flow of viscous incompressible, conducting dusty fluid between two
circular cylinders. The inner cylinder is of unit radius and outer cylinder is of
radius b. The flow is due to the influence of time dependent pressure gradient
and differential rotations of the cylinders. It is assumed that the inner and outer
cylinders rotate with the different angular velocities. Both the fluid and the dust
particle clouds are supposed to be static at the beginning. The dust particles are
assumed to be spherical in shape and uniform in size. The number density of the
dust particles is taken as a constant throughout the flow. As Figure 1 shows, the
axis of the channel is along z-axis and the velocity components of both fluid and
dust particles are respectively given by:

ur = 0; uθ = 0; uz = uz(r, t);
vr = 0; vθ = 0; vz = vz(r, t)

}
(3.1)

where (ur, uθ, uz) and (vr, vθ, vz) are velocity components of fluid and dust parti-
cles, respectively.

Figure 1. Schematic diagram of the flow.

By virtue of equation (3.1) the intrinsic decomposition of equations (2.1) to
(2.4) in cylindrical polar coordinates give the following forms:

−1
ρ

∂p

∂r
= 0,(3.2)

∂uz
∂t

= −1
ρ

∂p

∂z
+ ν

[
∂2uz
∂r2

+
1
r

∂uz
∂r

]
+
kN

ρ
(vz − uz)−

σB2
0

ρ
uz,(3.3)

∂vz
∂t

=
k

m
(uz − vz),(3.4)
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Let us introduce the following non-dimensional quantities:

R =
r

a
, z̄ =

z

a
, p̄ =

pa2

ρν2
, T =

tν

a2
, u =

uza

ν
, v =

vza

ν
,

β =
l

γ
=
Nka2

ρν
, l =

Nm

ρ
, γ =

νm

ka2
.

(3.5)

Transform the equations (3.2)–(3.4) to the non-dimensional forms as

−ν
2

a3

∂p

∂R
= 0,(3.6)

∂u

∂T
= −∂p

∂z̄
+
[
∂2u

∂R2
+

1
R

∂u

∂R

]
+ β(v − u)−M2u,(3.7)

γ
∂v

∂T
= (u− v),(3.8)

where M = B0a
√

(σ/µ) = Hartmann number.
Since we have assumed that the time dependent pressure gradient is impressed

on the system for t > 0, so we can write

−1
ρ

∂p

∂z
= c+ d eiαt,

where c, d and α are reals.
Eliminating v from (3.7) and (3.8) and then substituting the expression for

pressure gradient, one can get

γ
∂2u

∂T 2
+ (l + 1 +M2γ)

∂u

∂T
− γ ∂

∂T

[
∂2u

∂R2
+

1
R

∂u

∂R

]
=c+ d eiαt +

[
∂2u

∂R2
+

1
R

∂u

∂R

]
−M2u.

(3.9)

4. Solution Part

Let the solution of the equation (3.9) be written in the form [16], [11]

u = U(R) + V (R, T ),(4.1)

where U is the steady part and V is the unsteady part of the fluid velocity
Separating the steady part from the unsteady part of the equation (3.9),we get

∂2U

∂R2
+

1
R

∂U

∂R
−M2U = −c,(4.2)

γ
∂2V

∂T 2
+ (l + 1 +M2γ)

∂V

∂T
− γ ∂

∂T

[
∂2V

∂R2
+

1
R

∂V

∂R

]
= d eiαt +

[
∂2V

∂R2
+

1
R

∂V

∂R

]
−M2V.

(4.3)
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Case 1. Periodic Motion.
Consider the boundary conditions

u = u1 sin(αT ), at R = 1,

u = u2 sin(αT ), at R = b,

where u1 and u2 are uniform angular velocities.
Since u = U(R) + V (R, T ), one can see that the boundary conditions become

as follows:

U = 0 and V = u1 sin(αt) at R = 1,

U = 0 and V = u2 sin(αt) at R = b.
(4.4)

Now, by solving equation (4.2) using the boundary conditions (4.4), one can get

U =
c

M2

(
T1J0(MR) + T2K0(MR)

T0
− 1
)
,(4.5)

where J0 and K0 are Bessel’s functions of the first and the second kind, respec-
tively, of order zero.

Assume the solution of the equation (4.3) is in the form

V = g(R) eiαt,(4.6)

where g(R) is an unknown function to be determined.
Using equation (4.6) in (4.3), one can obtain

∂2g

∂R2
+

1
R

∂g

∂R
− λ2

1g = −λ2,(4.7)

where λ1 = (M2−γα2)+iα(1+l)
(1+iαγ) and λ2 = d

(1+iαγ) .
Using the boundary conditions (4.4) one can obtain the solution of (4.7)

g(R) =
λ2

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+
sin(αT )

eiαt

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.8)

Using this in (4.6), we get

V =
λ2 eiαt

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+ sin(αT )
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
.

(4.9)
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Now, using equations (4.9) and (4.5) in (4.1), we obtain the fluid velocity u in
the form

u =
c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+ sin(αT )
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.10)

Also, the dust phase velocity is obtained from equation (3.8) as

v =A e−
1
γ T +

c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+
1

1 + α2γ2
[sinαT − αγ cosαT ]

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.11)

where

A =
αγ

1 + α2γ2

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]

− c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

− λ2(1− iαγ)
λ2

1(1 + α2γ2)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]
.
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Figure 2. Variation of fluid and dust velocities with R for Case 1.
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Figure 3. Variation of fluid and dust velocities with R for Case 1.

Shearing Stress (Skin Friction).

The Shear stress at the boundaries R = 1 and R = b, respectively, is given by

D1 =
µc

M

[
T1J

′
0(M) + T2K

′
0(M)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1) +Q3K

′
0(λ1)

Q0

]
+ µλ1 sin(αT )

[
Q2J

′
0(λ1) +Q4K

′
0(λ1)

Q0

]

Db =
µc

M

[
T1J

′
0(Mb) + T2K

′
0(Mb)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1b) +Q3K

′
0(λ1b)

Q0

]
+ µλ1 sin(αT )

[
Q2J

′
0(λ1b) +Q4K

′
0(λ1b)

Q0

]

Case 2. Impulsive Motion.
In impulsive motion, we consider the boundary conditions

u = u1δ(T ), at R = 1,

u = u2δ(T ), at R = b,

where δ(T ) is the Dirac delta function.
Using these boundary conditions, one can see that the solution for velocities of

fluid and dust phases is obtained as

u =
c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+ δ(T )
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.12)
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Figure 4. Variation of fluid and dust velocities with R for Case 2.
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Figure 5. Variation of fluid and dust velocities with R for Case 2.

and

v =
c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

(1 + iαγ)λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+
e
−1
γ T

γ

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
+A1 e−

1
γ T ,

(4.13)

where

A1 = − 1
γ

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
− λ2

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

− c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]
.
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Shearing Stress (Skin Friction).
The Shear stress, i.e. the skin friction at R = 1 and R = b, respectively, is given

by

D1 =
µc

M

[
T1J

′
0(M) + T2K

′
0(M)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1) +Q3K

′
0(λ1)

Q0

]
+ µδ(T )λ1

[
Q2J

′
0(λ1) +Q4K

′
0(λ1)

Q0

]
,

Db =
µc

M

[
T1J

′
0(Mb) + T2K

′
0(Mb)

T0

]
+
µλ2µ

λ1

[
Q1J

′
0(λ1b) +Q3K

′
0(λ1b)

Q0

]
+ µδ(T )λ1

[
Q2J

′
0(λ1b) +Q4K

′
0(λ1b)

Q0

]
.

Case 3. Transition Motion.
For transition motion, we consider the boundary conditions

u = u1H(T ) eαT , at R = 1,

u = u2H(T ) eαT , at R = b,

where H(T ) is the Heaviside’s unit step function.
Using these boundary conditions, the solution for velocities of fluid and dust

phases can be written as

u =
c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+H(T ) eαT
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

](4.14)

and

v = A2 e−
1
γ T +

c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+
e
−1
γ T
[
e( 1

γ +α)T −1
]

(1 + αγ)
H(T )

[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.15)

where

A2 = − λ2

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

− c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]
.
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Figure 6. Variation of fluid and dust velocities with R for Case 3.
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Figure 7. Variation of fluid and dust velocities with R for Case 3.

Shearing Stress (Skin Friction).

The skin friction at R = 1 and R = b, respectively, is given by

D1 =
µc

M

[
T1J

′
0(M) + T2K

′
0(M)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1) +Q3K

′
0(λ1)

Q0

]
+ µλ1H(T )eαT

[
Q2J

′
0(λ1) +Q4K

′
0(λ1)

Q0

]
,

Db =
µc

M

[
T1J

′
0(Mb) + T2K

′
0(Mb)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1b) +Q3K

′
0(λ1b)

Q0

]
+ µλ1H(T )eαT

[
Q2J

′
0(λ1b) +Q4K

′
0(λ1b)

Q0

]
.
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Case 4. Motion for a Finite Time.
For this case, we consider the boundary conditions

u = u1[H(T )−H(T − t)], at R = 1,

u = u2[H(T )−H(T − t)], at R = b,

where H(T ) is the Heaviside step function.
Using these boundary conditions, we found the solution for velocities of fluid

and dust phases as follows:

u =
c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+ [H(T )−H(T − t)]
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

](4.16)

and

v = A3 e−
1
γ T +

c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]

+
λ2 eiαt

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

+
e
−1
γ T [e( 1

γ +α)T −1]
(1 + αγ)

[H(T )−H(T − t)]
[
Q2J0(λ1R) +Q4K0(λ1R)

Q0

]
,

(4.17)

where

A3 = − λ2

λ2
1(1 + iαγ)

[
Q1J0(λ1R) +Q3K0(λ1R)

Q0
− 1
]

− c

M2

[
T1J0(MR) + T2K0(MR)

T0
− 1
]
.
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Figure 8. Variation of fluid and dust velocities with R for Case 4.
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Figure 9. Variation of fluid and dust velocities with R for Case 4.

Shearing Stress (Skin Friction).
The Shear stress, i.e. the skin friction at the boundaries R = 1 and R = b,

respectively, is given by

D1 =
µc

M

[
T1J

′
0(M) + T2K

′
0(M)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1) +Q3K

′
0(λ1)

Q0

]
+ µλ1[H(T )−H(T − t)]

[
Q2J

′
0(λ1) +Q4K

′
0(λ1)

Q0

]
,

Db =
µc

M

[
T1J

′
0(Mb) + T2K

′
0(Mb)

T0

]
+
µλ2 eiαt

λ1

[
Q1J

′
0(λ1b) +Q3K

′
0(λ1b)

Q0

]
+ µλ1[H(T )−H(T − t)]

[
Q2J

′
0(λ1b) +Q4K

′
0(λ1b)

Q0

]
,

where
T0 = J0(M)K0(Mb)− J0(Mb)K0(M), T1 = K0(Mb)−K0(M),
T2 = J0(M)− J0(Mb),
Q0 = J0(λ1)K0(λ1b)− J0(λ1b)K0(λ1), Q1 = K0(λ1b)−K0(λ1),
Q2 = u1K0(λ1b)− u2K0(λ1), Q3 = J0(λ1)− J0(λ1b),
Q4 = u2J0(λ1)− u1J0(λ1b).

5. Conclusion

In the present paper, we have studied the laminar flow of a conducting dusty
fluid between two circular cylinders. The four different cases based on the time
dependent pressure gradient are discussed. Variable separable and Eigen expansion
methods are employed to solve the governing equations. The graphs for velocity
profiles are shown as in Figures from 2 to 9 for different values of parameters like
Hartmann number (M) and Time (T ) showing that they are parabolic in nature.
From Figures 2, 4, 6 and 8 one can observed the appreciable effect of Hartmann
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number on the flow of both fluid and dust phases, i.e. the magnetic field has
retarding influence. Also, it is evident from the Figures 3, 5, 7 and 9 that as
time increases the velocities of both phases decrease, which is desirable in physical
situations. Further, we can see that if γ → 0, i.e. if the dust is very fine, then the
velocities of both fluid and dust particles will be the same.
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