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CURVES WHOSE SECANT DEGREE IS ONE
IN POSITIVE CHARACTERISTIC

E. BALLICO

ABSsTRACT. Here we study (in positive characteristic) integral curves X C P" with
secant degree one, i.e., for which a general P € Seck_l(X) is in a unique k-secant
(k — 1)-dimensional linear subspace.

1. INTRODUCTION

Let K be an algebraically closed base field. Let X C P" be an integral and
non-degenerate closed subvariety. For each x € {0,...,r}, let G(z,r) denote the
Grassmannian of all z-dimensional linear subspaces of P". For each integer £ > 1
let 0 (X) denote the closure in P" of the union of all A € G(k — 1,r) spanned by
k points of X (the variety o4 (X) is sometimes called the (k — 1)-secant variety
of X and written Sec”~!(X), but we prefer to call it the k-secant variety of X).
The integral variety o (X) may be obtained in the following way. Assume that
X is non-degenerate. For any closed subscheme E C P" let (E) denote its linear
span. Let V(X,k) C G(k — 1,r) denote the closure in G(k — 1,r) of the set of all
A € G(k — 1,r) spanned by k-points of X. Set

S[X, k] == {(P,A) e P" x G(k—1,r): P € A, A € V(X,k)}.

Let p1: P" x G(k—1,7) — P" denote the projection onto the first factor. We have
0, (X) = p1(S[X, k]). Set mx i = p1;s;x,5)- If 0%(X) has the expected dimension
k- (dim(X)+1)—1 (ie., if mx y is generically finite), then we write i5(X) for the
inseparable degree of mx  and s;(X) for its separable degree. For any P € X,g,
let Tp X C P" denote the tangent space to X at P. If £ > 2, we say that X is
k-unconstrained if

dim((Tp, X U---UTp X)) = dim(op (X))
for a general (Py,..., Py) € X*. Terracini’s lemma says that
dim((Tp, X U---UTp X)) < dim(oy(X)))
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and that in characteristic zero equality always holds ([1, §1] or [3, §2]). The case
k = 2 of this notion was introduced in [3]. A non-degenerate curve Y C P" is
2-unconstrained if and only if either r = 2 or Y is not strange [3, Example (el)
at page 333]. From now on we assume dim(X) = 1. We first prove the following
result.

Theorem 1. Fiz integers r > 2k > 4. Let X C P" be an integral, non-
degenerate and k-unconstrained curve. Then si(X) = 1.

For each integer i such that 2 < 2i < r we define the integer ¢;(X) in the
following way. Fix a general (Pi,...,P;) € X'. Thus P; € X,eg for all j. Set
V:i=(TpXU---UTpX). Notice that (VN X)ea 2 {P1,..., P} and the scheme
VN X is zero-dimensional. Varying (Py,..., P;) in X? we see that each P; appears
with the same multiplicity in the zero-dimensional scheme V' N X. We call e;(X)
this multiplicity. In characteristic zero we always have e;(X) = 2. The integer
e1(X) is the intersection multiplicity of X with its general tangent line at its
contact point. Hence if char(K) is odd the curve X is reflexive if and only if
e1(X) =2 ([4, 3.5]). In the general case we have e1(X) > 2 and ¢;(X) < e;41(X).
For any P € X,e, and any integer t € {1,...,r}, let O(X, P, t) € G(t,r) denote the
t-dimensional osculating plane of X at P. Thus O(X, P,1) = TpX. Fix integers
i>1,and 5, > 0,1 < h <i. We only need the case 2i+22:1 Jn < r. Fix a general
(Pi,...,P) € X" and set V := (Ui _,O(X, Py, 1+ jp)). For any h € {1,...,i},
let E(X;4;j1,...7:;;h) be the multiplicity of Pj, in the scheme V N X. We will
only use the case j1 = 1 and j, = 0 for all h # 1. If either char(K) = 0 or
char(K) > deg(X), then E(X;4;51,...4i;h) = 2+ jn (Lemma 9). Here we prove
the following result.

Theorem 2. Let X C P2~1 k > 2, be an integral, non-degenerate and k-
unconstrained curve. Set j; :=1 and jn :=0 for allh € {2,...,k —1}.

(a) If sp(X) =1 and E(X;k — 1;51,...,jk—1;1) = ep—1(X) + 1, then X s

smooth and rational and deg(X) = (k — 1)er—1(X) + 1.
(b) X is a rational normal curve if and only if s (X) =1, ex—1(X) = 2 and
E(X;k—171,...,jk-151) = 3.

We do not know if in the statement of Theorem 2 we may drop the conditions
“ep—1(X) =2" and “E(X;k — 1;71,...,Jk—1;1) = 3”. We are able to prove that
we may drop the first one in the case k = 2, i.e., we prove the following result.

Proposition 1. Let X C P3 be an integral and non-degenerate curve. The
following conditions are equivalent:

(a) X is not strange, $2(X) =1 and E(X;1;1;1) = e1(X) + 1;

(b) 2(X) =52(X) =1 and BE(X;1;1;1) = ey (X) + 1;

(¢) X is a rational normal curve.

The picture is very easy if char(K) > deg(X). As a byproduct of Theorem 2
we give the following result.

Theorem 3. Let X C P?*~1 be an integral and non-degenerate curve. Assume
char(K) > deg(X). X is a rational normal curve if and only if sp(X) = 1.
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2. THE PROOFS

Remark 1. Assume X of arbitrary dimension and that
dim(o (X)) = k(dim(X) + 1) — 1.
As in [3] (the case k = 2) X is k-unconstrained if and only if i, (X) = 1.

Lemma 1. Fiz integers ¢ >0, s>y >2 andr > s(c+1)—1. Let X CP" be
an integral and non-degenerate c-dimensional subvariety such that dim(og(X)) =
s(c+1)—1. If X is s-unconstrained, then X is y-unconstrained.

Proof. Since dim(os(X)) = s(c+ 1) — 1 and X is s-unconstrained, we have
dim((Tp, X U+ UTp, X) = s(c+1) — 1

for a general (Py,..., Ps) € X°. Hence dim({(Tp, X U---UTp, (X)) =y(c+1)—1.
Hence X is y-unconstrained. O

We recall the following very useful result ([1, §1]).

Lemma 2. Let X C P" be an integral and non-degenerate curve. Then X is
non-defective, i.e., dim(o,(X)) = min{r,2a — 1} for all integers a > 2.

From Lemmas 1 and 2 we get the following result.

Lemma 3. Fiz integers s >y > 2 andr > 2s — 1. Let X C P" be an integral
and non-degenerate curve. If X is s-unconstrained, then X is y-unconstrained and
not strange.

We recall that a finite set S C P” is said to be in linearly general position if
dim((S")) = min{z, §(S") — 1} for every S’ C S. The general hyperplane section of
a non-degenerate curve X C P” is in linearly general position if X is not strange
([6, Lemma 1.1]). Hence Lemma 3 implies the following result.

Lemma 4. Fix integers r,s such that v > 2s — 1 > 3. Let X C P" be an
integral and non-degenerate curve. Assume that X is s-unconstrained. Then X is
not strange and a general hyperplane section of X is in linearly general position.

Proof of Theorem 1. We extend the proof of the case k = 2 given in [3, §4]. By
Lemma 4 a general (k — 1)-dimensional k-secant plane of X meets X at exactly k
points. Fix a general (Pj,...,P,) € X* and set V := (Tp, X U---UTp,). Since
X is k-unconstrained, we have dim(V) = 2k — 1. Since 2k — 1 < r and X is non-
degenerate, the set S := (V N X)yeq is finite. Fix a general P € ({P1,...,Py}).
Assume s (X) > 2. Since a general hyperplane section of X is in linearly general
position (Lemma 4), the integer s;(X) is the number of different k-ples of points
of X such that a general point of oy (X) is in their linear span. Since P may be
considered as a general point of o1(X) and sx(X) > 2, there is (Q1,...,Qx) € X*
such that P € ({@Q1,...,Qr}) and {P1,..., Py} # {Q1,...,Qk}. For general P we
may also assume that (Q1, ..., Q) is general in X*. Hence each P; and each Qj is
a smooth point of X. Terracini’s lemma gives (Tp, XU---UTp, X) C Tpor(X) and
(T, XU---UT, X) C Tpop(X). Since X is k-unconstrained and both (P, ..., Py)
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and (Q1,...,Qy) are general in X* we have (Tp X U---UTp,) = Tpop(X)
and (T, X U---UTp,X) = Tpop(X). Hence {Q1,...,Qr} € S. Since S is
finite, the union of the linear spans of all S’ C S with £(S") = k is a finite
number of linear subspaces of dimension at most k£ — 1 and (S') = ({Py,..., Pc})
if and only if 8" = {P1,..., P}, because ({P1,...,P,}) N X = {P1,..., P}
Hence dim((S"y N ({Py,...,P})) < k —2 for all S’ # {Py,...,P;}. Varying
Pe{{P,...,P}) 2 P! we get a contradiction. O

Lemma 5. Let X C P", r > 2k — 1 > 5, be an integral, non-degenerate and
k-unconstrained curve. Fix an integer s such that 1 < s < k — 2. Fix a general
(A1,...,As) € X® and set W := (T4, X U---UTy X). Then dim(W) = 2s — 1.
Let by : P"\ W — P"=2% denote the linear projection from W. Let Y C Pr—2s
denote the closure of by (Y \Y NW). ThenY is (k — s)-unconstrained and it is
not strage.

Proof. Fixageneral Ag 1,..., Ax € X*~5. Notice that (¢y (Asi1), ..., lw(Ax))
is general in Y*~* and
fw(<W UTys , XU---U TAkX> \ W) = <TZW(A5+1)Y Uu---u TZW(Ak))Y>-

Hence the latter space has dimension 2k —2s—1. Hence Y is (k—s)-unconstrained.
Since k — s > 2, Y is not strange. O

s+1

Lemma 6. Fiz integers ¢ > 0, k > 2 and r > (c+ 1)k — 1. Let X C P"
be a k-unconstrained c-dimensional variety such that dim(og(X)) = (c+ 1)k — 1.
Fix an integer s € {1,...,k — 1} and a general (Py,...,P;) € X°. Set 'V :=
(Tp, X U---UTp X). Then dim(V) = (c+1)s — 1 and the restriction to X of the
linear projection by : P*\V — Pr—(ctDs is g generically finite separable morphism.

Proof. Since s +1 < k and dim(o,(X)) = (¢ + 1)k — 1, we have dim(o4(X)) =
(c+1)s — 1. Lemma 1 gives that X is s-unconstrained. Since X is (s + 1)-un-
constrained and dim(osy1(X)) = (c+1)(s+1) — 1, we have

dim((V UTpX)) = dim(V) + dim(TpX) + 1

for a general P € X, i.e., VNTpX = ( for a general P € X. Thus ¢y |(X \ V) has
differential with rank c, i.e., it is separable and generically finite. O

Proof of Theorem 2. If X is a rational normal curve, then it is k-unconstrained,
sk(X) =1 ([2, First 4 lines of page 128]) and ix(X) = 1 (Remark 1).

Now assume s;(X) = 1. In step (¢) we will use the assumption E(X;k — 1;
1,0,...,0;1) = ex—1(X) + 1. We need to adapt a part of the characteristic zero
proof given in [2] to the positive characteristic case. We will follow [2] as much as
possible. Fix a general (Py,..., P,_1) € X* Landset V := (Tp, XU---UTp,_, X).
Since X is k-unconstrained, we have dim(V') = 2k — 3. Since X is non-degenerate,
the set S := (V N X),eq is finite.

(a) Here we check that S C X,ee. If £ = 2, then for a general P; we have
Tp, X N Sing(X) = (), because X is not strange by [3, Example (el) at page 333].
Now assume k > 3. Since X is not strange (use Lemma 1), for general P; € X,
we have Tp, X N Sing(X) = (. Then by induction on i we check using a linear
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projection from Tp, X as in Lemma 5 that (Tp, X U---UTp, X) N Sing(X) =0
(more precisely, for any finite set ¥ C X we check by induction on ¢ that (Tp, X U
+-UTp,X)NE = 0 for a general (P1,...,P;) € X?). Fori =k—1we get S C X,eq-

(b) Obviously {P1,...,Px—1} C S. Here we check that S = {Py,...,Pc_1}.
Assume for the moment the existence of Q@ € S\ {P1,...,Px—1}. Since X is not
strange, it is not very strange, i.e., a general hyperplane section of X is in linearly
general position ([6, Lemma 1.1]). Since (P, ..., Py_1) is general in X*~1 we get
<{P1,...,Pk_1}> NnNX = {P17~-~;Pk—1}~ Thus d1m(<{P1,,Pk_1,Q}>) =k -1
Fix a general z € ({P1,..., Py—1,Q}). We have

]P’Qk*l = Tza'k(X) 2 <Tp1XU cee UTpkilX UTQX>

(Terracini’s lemma ([3, §2] or [1, Proposition 1.9]). The additive map giving
Terracini’s lemma for joins in the proof of [1, Proposition 1.9], shows that the map
mx r has non-invertible differential over the point z. Since P?*~! is smooth and
mx, i is separable, we get that mx j, is not finite of degree 1 near z. Since si(X) =
1, mx i contracts a curve over z. Since z lies in infinitely many (k — 1)-dimensional
k-secant subspaces, we get that dim (o (X)) < 2k—2, contradicting Lemma 2. The
contradiction proves S = {Py,..., Py_1}.

(¢) Step (b) means that {Pi,...,Px_1} is the reduction of the scheme-
-theoretically intersection X N V. Let Z; denote the connected component of
the scheme X NV supported by P;. Set e := deg(Z1). Since Tp, X C V, we
have e > 2. Varying (Pj,...,P,_1) in X*~! we get deg(Z;) = e for all i. The
definition of the integer ej_1(X) gives e = ex_1(X). Set ¢ := Ly |(X \ V N X).
Since X NV C X,eg, ¢ is dominant and X, is a smooth curve, ¢ induces a fi-
nite morphism : X — P!. Bezout’s theorem gives deg(X) = (k — 1)e + deg(v)).
Lemma 6 gives that ¢ is separable. Hence deg(v) is the separable degree of .
Assume deg(1)) > 2. Since P! is algebraically simply connected, there is Q € X
at which ¢ ramifies.

First assume @ € X,eq. Since E(X;k—1;1,0,...,0;1) = ex—1(X) +1, ¢ is not
ramified at P;. Moving P, ..., Py_1 we get Q ¢ {P,..., P;—1}. The definition of
¢ gives dim(V U TpX) < dim(V') + 1. Hence the additive map giving Terracini’s
lemma for joins in the proof of [1, Proposition 1.9], shows that the map mx j has
non-invertible differential over the general point z € ({P1,...,Pr—1,Q}). As in
step (b) we get a contradiction.

Now assume @ € Sing(X). Let u: C — X denote the normalization map.
Since we assumed deg(v)) > 2, we have deg(t) o u) > 2. Since P! is algebraically
simply connected, there is Q" € C such that 1) o u is ramified at Q’. We repeat the
construction of joins and secant variety starting from the non-embedded curve C
and get a contradiction using @’ instead of Q. Thus deg(¢)) =1, i.e.

deg(X) = (k — Dep—1(X) + 1,

and X is rational.
X is a rational normal curve if and only if deg(X) = 2k — 1, i.e., if and only if
e = 2. Take any P € Sing(X) (if any). Set H := ({P} UV). Since X is singular
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at P, we have deg(H N X) > 2+ (k — 1)e > deg(X), that is contradiction. Thus
X is smooth. u

Proof of Proposition 1. We have i5(X) = 1 if and only if X is 2-unconstrained
([3] or Remark 1). Obviously X is 2-unconstrained. Hence it is sufficient to prove
that if X is 2-unconstrained, so(X) = 1, and E(X;1;1;1) = e1(X) + 1, then
X is a rational normal curve. Theorem 2 says that X is smooth and rational
and deg(X) = e1(X) 4+ 1. Thus it is sufficient to prove e;(X) = 2. Assume
e1(X) > 3. Since deg(X) = e1(X) + 1, Bezout’s theorem says that any two
different tangent lines are disjoint. Let TX C P? denote the tangent developable
of X. Fix a general P € P? and let p: P3\ {P} — P? be the linear projection
from P. Set ¢ := ¢p|X. Since P ¢ TX, ¢ is unramified. Since X is smooth,
$2(X) =1 and P is general, the map ¢ is birational onto its image and the curve
¢(X) has a unique singular point (the point £(P;) = ¢(P2) with P € ({P1, P»})
and (Pp, P2) € X?). We have p,(¢(X)) = e1(X)(e1(X)—1)/2 > 2. Since P ¢ TX,
we have P ¢ Tp X, i = 1,2. Since Tp, X NTp,(X) = 0, the line Tp,X is not
contained in the plane ({P}UTp, X). Thus {p(Tp, X) # {p(Tp,X). Thus £(Py) is
an ordinary double point of (X ). Hence £(X) has geometric genus p,(X)—1 > 0,
thath is contradiction. d

Lemma 7. Let X C P" be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then e;(X) =2 for all positive integers i such that 2i <r.

Proof. We have e1(X) = 2, because in large characteristic the Hermite sequence
of X at its general point is the classical one ([5, Theorem 15]). The case ¢ > 2 is
obtained by induction on ¢ taking instead of X its image by the linear projection
from Tp, X, P; general in X. O

Lemma 8. Let X C P" be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then X is i-unconstrained for all integers i > 2.

Proof. Fix a linear subspace V' C P" such that v := dim(V) < r — 2. Let
ly:P"\'V — P"=v~! denote the linear projection from V. Since char(K) >
deg(X), the restriction of £ to X is separable. Hence Tp, X NV = ) for a general
P,eX. Take V= (Tp, XU---UTp,_, X) with (Py,...,P;_1) general in X*~! and
use induction on 3. O

Lemma 9. Let X C P" be an integral and non-degenerate curve. Assume
char(K) > deg(X). Then E(X;4;j1,...,7i5h) = 2+ jp for all i,j1,...,7; such
that

i
2+ ja<r
r=1
and for a general (Py,...,P;) € X%, the linear span of the osculating spaces
O(X, Py, 1+j2) ,1 <z <,

has dimension 2i — 1 + Zi:l Ja-
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Proof. The case i =1 is true by [5, Theorem 15]. Hence we may assume 4 > 2.
Fix an index ¢ € {1,...,i} \ {h}. For a general P, € X, the point P, appears
with multiplicity exactly j. + 2 in the scheme O(X, P., j. + 1) ([5, Theorem 15]).
Since char(K) > deg(X), the rational map ¢ obtained restricting to X the linear
projection from O(X, P.,1 + j.) is separable. Call Y the closure in P"=7<=2 of
(X \OX,P,1+j.)NX). Take P,, © # ¢, such that (Py,...,P;) is general
in X¢ and write Q, := ¢(P,) for all z # c¢. Let V be the linear span of the
osculating spaces O(X, P;, 1+ j;), 1 < <4, U the linear span of the osculating
spaces O(X, Py, 1+ ji), © # ¢, and W the linear span of the osculating spaces
O(Y,Q.,1+ j.), ¢ # c¢. By the inductive assumption U and W have dimension
2 — 3+ 3,4 Jo Hence (U) =W and dim(V) = 2i — 1+ > _, j,. Since the
points Q; are general and / is separable, the scheme ¢=1((2 + j,)Q.)), * # ¢, is a
divisor of X whose connected component supported by P, has degree 2 4 j,. Use
the inductive assumption on Y to get F(X;4;j1,...,Ji;h) =2+ jp. O

Proof of Theorem 3. Apply Theorem 2 and Lemmas 7, 8 and 9. O
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