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COUNTER-EXAMPLE FOR LIOUVILLE THEOREMS FOR
INDEFINITE PROBLEMS ON HALF SPACES

J. FOLDES

ABSTRACT. The goal of this paper is a construction of an counter example to Li-
ouville theorems for indefinite problems on half spaces. Since Liouville theorems
are closely related to the scaling method for elliptic and parabolic problems, our
counter=example indicates that one has to impose additional assumptions on the
nodal set of nonlinearity in order to obtain a priori estimates for indefinite el-
liptic problems. The counter-example is constructed by shooting method in one-
dimensional case and then extended to higher dimensions.

1. INTRODUCTION

This paper is motivated by studies of the indefinite elliptic problems of the form
—Au = m(z)|ulP" u, re,

1
(1) u=0 x € 09,

and the parabolic counterparts. In this context the indefinite problem means that
the function m changes sign in Q. Here, and below we assume that @ C RY is
a smooth domain (of class C%“ for some « > 0) and the problem is superlinear
and subcritical, that is, 1 < p < pg, where pg := oo for N = 1,2 and pg =
(N +2)/(N —2) for N > 3. The assumptions on the function m will be specified
below.

Indefinite elliptic problems attracted a lot of attention during recent decades
see e.g [1, 2, 5, 6, 7, 16] and references therein. In order to investigate their
qualitative properties it is important to obtain a priori bounds for solutions. By
a priori estimates we mean estimates of the form

(2) [ullx < C(N,p,Q,m),

where X := L*>°(Q). We remark that analogous estimates occur in the study of
blow-up rates of solutions of parabolic problems see e.g. [9, 14, 17] and references
therein.

A priori estimates can be obtained by various strategies (see [15]). In this paper
we focus on the scaling method, which often yields optimal results with respect to
the exponent p, if the precise asymptotics of the nonlinearity is known.
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Let us briefly explain how the scaling method connects a priori estimates and
Liouville theorems. Detailed exposition for elliptic and parabolic problems can be
found for example in [7, 9, 13]. We are not going to discuss the optimality of
assumptions, especially assumptions on the exponent p. An interested reader can
find a detailed analysis in [15], see also references therein.

In this paper the term Liouville theorem refers to the following statement. Any
bounded, non-negative solution of a given problem is trivial, that is, the solution
is zero everywhere. Equivalently, there is no non-trivial, non-negative, bounded
solution of a given problem.

Before we proceed, we need the following notation:

RY .= {2 = (21,2)) e RN 1 2y > ¢} (ceR),
and
Ot = {x € Q:m(z) > 0}, Q7 :={z e :m(z) <0},
Q= {zx € Q:m(x) = 0}.

Assume that m is a continuous function and there are positive continuous functions
a1, ag defined on the small neighborhood of Qg in € and 71,2 > 0 such that

m(x) = al(m)[diSt(‘x’ QO)]’Yl x e Q+a
() [dist(z, Q)2 2 €Q .

We assume that (2) fails, that is, we assume that for each & € N there exist a
solution wuy, of the problem (1) and z € Q2 such that

ug () > 2k (keN).

After an application of doubling lemma (see [13, Lemma 5.1]), appropriate scaling,
and elliptic regularity we can distinguish the following cases.

If there is a subsequence of (zk)ken (denoted again (x)gen) such that zp — xg
with zp € Q and z¢ € Q°, then there must exist a bounded nonnegative function
v with v(0) = 1 that solves
(3) 0= Av+ ko?, z €RVN,
or
0= Av + kvP, zeRY,

v =0, x € ORY

(4)

for some ¢* < 0, where k € {—1,1}. However, by the results of Gidas and Spruck
[10] if K = 1 and by [4, 8] if K = —1, the Liouville theorem holds for problem (3)
and (4), provided 1 < p < pg. Hence, v = 0, which contradicts v(0) = 1.

If 75 € Q°, then the problem is more involved and was discussed in [7], see also
references therein, under the assumption Q° C €, that is, m does not vanish on
0. Then v with v(0) = 1 can, in addition to (3) and (4), solve

(5) 0= Av + h(z1)0v?, zeRY,
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where h(z) = 2" for > 0, h(x) = —|z|"? for x < 0, and 71, ¥2 are positive
constants. However, by [7, 12] the problem (5) satisfies the Liouville theorem for
any continuous, nondecreasing function h, such that

(6)  h(0) =0, his strictly increasing for « > 0, $lingo h(z) =o0.
Hence v = 0, a contradiction to v(0) = 1. We remark that we can allow A to
depend on z7 only, since the general problem can be transformed to (5), with h
satisfying (6), by an appropriate translation and rotation.

The situation in the remaining case is more interesting. If we allow QoMo # 0,
then v with v(0) =1 can, in addition to the cases above, solve

) 0= Av+ h(z-b)vP, reRY

v =0, x € ORY |
where b is a unit vector, ¢* < 0, and h(z) = 27 for x > 0 and h(z) = —|z|" for
2 < 0. Notice that we cannot guarantee b = e; := (1,0,---,0) by any rotation or

translation, since the problem is defined on the half space. In order to obtain a
contradiction as above, one has to prove Liouville theorem for (7). It follows, with
additional assumptions on b and ¢*, from the following result proved in [9].

Corollary 1. Assumeb # —ey andc* € R, orb= —ej andc* > 0. Ifh: R - R
is continuous, non-decreasing function with h(x) < 0 for x < 0 such that (6) holds,
then there is no non-negative, non-trivial, bounded solution v of (7).

We remark that the result in [9] treats more general nonlinearities. If b # —ey,
then the assumption h(z) < 0 for z < 0 is not needed. In the case b = —e; and
¢* > 0, Liouville theorem holds under more general assumptions on h (see [9, 17]).
One might expect that Liouville theorem will continue to be true when b = —e;
and ¢* < 0.

However, the main result of this paper (see Proposition 1 below), shows that
such Liouville theorem does not hold. More precisely, if b = —eq, then for each
¢* < 0 there exists a bounded, positive solution of (7). The construction of the
solution w; in one dimensional case (N = 1) is based on the shooting method
in two directions. A counter-example uy in N dimensions is obtained by the
trivial extension of the one dimensional solution, that is, uy(z) := wuy(zy1) for
each x = (x1,2') € RY. Similarly, one can obtain a counter-example to parabolic
Liouville theorems.

This counter-example shows that the scaling method needs additional assump-
tions on m, if m(xp) = 0 for some xy € 9. For example we need to assume, as in
[9], that Qg intersects OS2 transversally.

Since one might consider more general functions m, or one might be interested
in the investigated ordinary differential equations without applications to Liou-
ville theorems, we consider more general problems than required by our counter-
examples.
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More specifically, assume that h € C(R) satisfies

(8) h(z) >0 for x>0, h(z) <0 for x<0,

0 o0
(9) Zo h(z)dx = —o0, O/h(ac)dac:oo7

(10) there exists €* > 0 such that h is non-decreasing on (—&*,0).
The main result of the paper is the following proposition.

Proposition 1. Let p > 1 and assume that a continuous function h satisfies
(8) — (10). Then for each a > 0 there exists a bounded, non-negative, nontrivial
solution u of the problem

v = h(z)|ulP~ u, z € (—a,),

(11) u(—a) =0.

Moreover, u/'(z) <0 for x > 0 and lim,_, o u(xz) = 0.

Remark 1. The nonlinearity |u/P~'u can be replaced by a locally Lipschitz
function f : [0,00) — R, such that f(0) = 0, f(u) > 0 for u > 0, f is non-
decreasing for v > 0, and

lim M:oo lim M

u—oo U ’ u—0t+t U

If we extend f as a locally Lipschitz function to whole R such that f(u) < 0 for
u < 0, then the arguments are the same as for f(u) = |u|P~! = occ.
If the assumption

O/h(x) dz = o0

is removed, Proposition 1 still holds true without the statement lim,_,o u(x) = 0.

If the problem is scale invariant, then the proof can be simplified and we can
also address the question of uniqueness.

Proposition 2. If h(zx) = sign(z)|z|* for some a > 0, then the solution in
Proposition 1 is unique.

The following corollary states a counter-example to Liouville theorem for indef-
inite problems on half spaces. It shows that Corollary 1 cannot be improved. A
counterexample is given by a function v(z1,- -+ ,zn5) = u(z1), where u is a function
from Proposition 1.

Corollary 2. If b= —ey, ¢* <0, and h satisfies (8) — (10), then the problem
(7) possesses a bounded, nonnegative solution.
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2. PROOF OF PROPOSITION 1 AND PROPOSITION 2

Let us prove Proposition 1 first. Fix & € (0,00). Let ug : (7%, Tx) — R be the
solution of the initial value problem

ull = h(x)|uglP~uy € (h, T)
up(0) = €, up(0) =k,

where (73, T)) is the maximal existence interval of wy. By a standard theory,
—00 < T <0< Ty < o00.

(12)

Remark 2. In the first part of the proof we show that for each £ > 0, there
exists a unique k(§) such that (12) has a decreasing positive solution on (0, c0),
hence Ty = co. Although we use a shooting method, there are other approaches,
mentioned in this remark, that yield partial results for solutions on (0, 00).

Decay at infinity. If h(z) = |z|* for some « > 0, then one can proceed as in
[11, Theorem 2.1] and obtain that for 1 < p < pg, every solution u of (12) with

Ty, = oo satisfies u(z) < C|x\7i+fﬂ1¥ and |u/] < C|x|7p;§1f1a for each > 1. Observe

that [11] discusses problem with h(z) = —|z|*, but one can easily modify the
proof of [11, Lemma 2.1] by replacing Liouville theorem of Gidas and Spruck [10]
by ones in [4, 8].

Variational approach. Let X be the Banach space of functions with finite norm

[e'e] 2 [ele] p%
1 1
fulx = | 5 [@@)de] + | = [H@lu@) a
0 0
Then it is easy to check that the functional
Flu] == 1 (u/(x))? dz + b h(z)|u(z) Pt dz
2 p+1
0 0
is coercive, strictly convex, and continuous. Moreover, the set M := {u € X :

u(0) = £} is convex and closed (therefore weakly closed) so there exists a unique
global minimizer of F' on M. The minimizer satisfies Euler-Lagrange equation
(12) on (0, 00) for some k(£). Also w is positive, as Flu] = F[Ju|] and every non-
negative, non-trivial solution of (12) is positive. Notice that this method also
implies the decay of the minimizer at infinity.

However, the variational approach guarantees the uniqueness of the solution
in the space X only, but we cannot guarantee u € X a priori. Also, it gives
merely existential result and it does not specify how k£ depends on £, which will
be important in the second part of the proof.

Fowler transformation. If h(xz) = |z|%, one can proceed as in [3] and transform
the problem by Fowler transformation X (t) := —au'u~t, Z(t) := x'*euP(u/)71,
and x = et. Then X and Z satisfy

X' =X[X+Z+1],

(13) 7' = Z[(1+a) — pX — Z].
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The existence of solutions of (12) on (0, 00) is equivalent to the existence of hete-
roclinic trajectories connecting equilibria (0, 0), (fff?, —p?%la) of the system (13).
This approach yields very precise asymptotic behavior of u: —XZ = z2+*yP~! —
% as x — oo (and analogous expression for u').

However, since this method does not apply readily to general h and the proof of

the existence of heteroclinic orbits is not elementary, we rather use other approach.

We prove the existence of solutions for (12) by shooting method. Notice that
this method applies to general h and no decay of u is required. Moreover, it allows
us to derive more precise information on dependence of k on &.

Claim 1. If uj,(z¢) > 0 and ui(z9) > 0 for some xzo > 0, then uj(x) > 0 for
each © > xo and limy_,7, ug(z) = co.

Proof. By (8), u}(z9) = h(zo)uf(xzo) > 0, and therefore uj (z) > uj(x1) >
u)(xg) > 0, for each > x1 > z sufficiently close to zo. If uj(x) > uj(z1) > 0
for each x > x1, Claim 1 follows.

Otherwise, there exists the smallest x5 > x1 with u(z2) = u}(x1). Then
u}(x) > 0 on [z1,x2], and consequently uy(x) > 0 on [z1,z2]. Moreover, for each
z € [x1,22) one has uj(z) = h(z)ul(x) > 0, that is, uy is strictly convex on
[x1,22], a contradiction to uj (x2) = uj,(x1). O

Claim 2. If ug(zg) < 0 for some xg > 0, then ug(x) < 0 for each x > ¢ and
lim, .7, up(x) = —oc0.

Proof. Let «* := inf{z > 0 : ux(z) = 0}. Since uk(0) = £ > 0, z* is well
defined and z* > 0. Suppose that there is 21 > a* such that ug(z1) > 0. Then
either u > 0 on [z*,z1], or u has a negative minimum at xzo € [z*,21]. In the
first case x* is a local minimizer of u. By the uniqueness of solutions of initial
value problems one has u = 0, a contradiction to u(0) = £ > 0. In the second case
uf(x2) = h(z2)|ug[P~ ug(z2) < 0, a contradiction. Hence, xg = z* and u < 0 on
(29, 00).

Finally, since u} = h(z)lu[P~tu(z) < 0 for each = € (zg,00), ux is concave on
(z9,00) and the second statement follows. O

Denote
Ko :={k : ug(x) <0 for some = > 0},
Ko = {k : ug(z) > 2¢ for some z > 0}.

Claim 3. The sets Ko and Ko are non-empty, open, and disjoint. Moreover
(=00, —2§ — HEP) C Ko, where H := sup,¢(,1) h(z).

Proof. From Claim 1 it follows that (0,00) C Ko # 0. If & € Ko, then
lim, 7, up(x) = —oo and if k € Ko, then uj(z) > 0 and u(xz) > 0 for some
x > 0, and therefore lim, 7, ug(x) = co. Thus Ko N Ka = 0.

If ko € Ko, then, by Claim 2, there exists 1 > 0 such that ug,(z1) < —1. The
continuous dependence of solutions on initial data implies u(z1) < —1 for any k
sufficiently close to kg. Thus, g is open.
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Analogously if kg € Kq, then by Claim 1 there is xg such that ug,(z¢) > 3€.
Then the continuous dependence of solutions on the initial data yields ug(xo) > 3&
for any k sufficiently close to ko. Thus, ICy is open as well.

Finally, we show the second statement, which also implies Kg # (. Fix k <
—2¢ — HEP and suppose that there is the smallest o € [0, 1] with ) (z9) = —£.
Without loss of generality assume u > 0 on [0, 2], otherwise k € Ky and there is
nothing to prove. Then uy(x) < uk(0) =& on (0, (). However,

Zo xo
uy,(z0) = uy(0) + /ug(a:) de=k+ [ h(z)u}(z)de < k+ HE < =€,
0 0

a contradiction.
Hence, u}.(xz) < —€ on [0, 1], and therefore uy(x) < 0 for some x € [0, 1]. O

Denote
MZ:R\(’CoﬁICQ)

and note that by Claim 3, M # 0. Also, by Claim 1, uj, < 0 in (0, 00) for each
k € M, and therefore

0> up(z) = up(0) + /ug(t) dt =k + /h(t)ug(t) dt >k + uﬁ(az)/h(t) dt,
0 0 0
and therefore
(14) 0 < u(z) < (—k)> /h(t) dt
0

and the decay of u follows from (9). Also, (14) implies k # 0 for each & > 0.
Moreover, it yields a decay rate of u, which is however not optimal for h(z) = z®.

Claim 4. M = {k*}.

Proof. Suppose that there are k1, ko € M with ky > k. Then for a sufficiently
small g > 0, one has
Uk, (T0) — upy(xo) >0 and  (ug, —ug,) (z) >0 (z €10, z0]) .
Since limg o0 ug, () —ug, () = 0, there exists the smallest x1 > xo with uj, (z1) =
uy, (v1). Then uy, (z) > ug, (x) for x € (zg,z1); however,
1 1
uy,, (21) = uj, (20) + /u%1 (z) da = up, (w0) + / h(z)uy (z)dx
zo
x1

Zo

z1
> uy, (w0) + / h(z)uy, () dz = uj, (x0) + /ug2 (z) dz = uy,, (x1),
o Zo

a contradiction. O
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Define the function k: (0,00) — (—00,0) such that k(§) is the unique k for
which the problem (12) has a bounded positive solution on (0, c0). Let ug be the
solution of such problem:

ug = h(zx)ug, z € (1¢,00),
ug(0) = ¢, ug (0) = k() ,

where 7¢ defines the existence time of u¢. Recall that u¢ is decreasing and decays
to 0 as ¢ — co. Notice that the subscript now indicates the value of u¢(0) rather
than ug (0).

(15)

Claim 5. The function k : (0,00) — (—00,0) is a continuous, strictly decreas-
ing with lime_ o k(§) = —00, and limg_,o+ k(&) = 0.

Proof. First, let us prove continuity. For a contradiction suppose that there is a
sequence (&, )nen With lim,, o &, = & € (0, 00) such that k(&) #lim,— 00 k(&) =:
M. Let u be the solution of the problem (12) with u/(0) = k replaced by u/(0) =
M. Since M # k(&), the solution is either not bounded above or not positive.
Thus, by Claim 1 and Claim 2 there exists xo such that either u(xg) < —2 or
u(xg) > 3. The continuous dependence of solutions on initial conditions yields
that ue, (o) < —2 or wg, (xo) > 2, for sufficiently large n. This contradicts the
definition of k(&,), and proves that k is continuous.

Next, we prove monotonicity of k. Fix &;,& € (0,00). Subtracting equations
(15) for ue, and ue,, multiplying by ue, —ue, and integrating on the interval [0, z],
we obtain

xr T
[t~ e~ uede = [ hol, g, ~ ue) .
0 0
where we do not indicate the dependence of u¢, on t. An integration by parts and
positivity of h yield for any x > 1

(t, = ) = v,)) = (u, = ) (e, — e, )0
— [y~ a2t [ ho, - e, uen) dt = Coy .
0 0

where C¢, ¢, > 0 whenever & # & and Cg, ¢, is independent of > 1. Since wug,
(i = 1,2) decays monotonically to 0, one has

0 = lim inf(ug, — ug,)(ug, —ug,)(w) = (ug, —ug,)(ue, —ue,)(0) + Cey 6,
= (k/’(§1) - k<£2))(£1 - €2> + 051752 )

and the strict monotonicity follows.

From Claim 3 and the negativity of k it follows that 0 > k(§) > —2£ — HEP,
and the statement limg_,o+ k(&) = 0 follows.

We finish the proof by showing that k(&) < —% for large £. Otherwise, there
exists large & such that k(&) > —% and the convexity of u¢ yields that ug(z) > —g
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for each x € [0,1]. Hence, u¢(x) > % for each x € [0, 1]. Since u¢ is a nonincreasing
function

1
0> (1) = ul(0) + /ug(t) at
1 0

= k(&) +/h(t)u§(t) dt > —g <§>p/1h(t) dt,
0

0
a contradiction for sufficiently large &. O

Claim 6. For each § > 0, there exists x* < 0 such that u¢(xz*) = 0.

Proof. For a contradiction assume ug(z) > 0 for each € (7¢,0). Since uf () =
h(z)ug < 0, ug is concave on (7¢,0). Therefore, 0 < ug(x) < €+ ug(0)z for each
x € (7¢,0), and in particular 7e = —o0.

Next, we show that ug(xo) > 0 for some zo < 0. If not, then ug decreases on
(—00,0) and ug () > ue(0) = € for all z < 0. However,

0

0
0> ul(x) = ul(0) - / ul/(s) ds = k(&) / B(s)uE(s) ds

T 0 T

> ke € [ his)ds,

x

a contradiction to (9) for large negative z.
Thus ug (o) > 0 for some x¢ < 0, and since ug is concave, u;(z) > ug(zo) > 0
for each & < . Hence, ug(z*) = 0 for some z* < 0, a contradiction. O

Denote a(§) :=sup{z < 0: ug(x) = 0}. By Claim 6, a is well defined and neg-
ative for each £. Also, the continuous dependence of k on £ implies the continuity
of a.

Claim 7. The range of a is (—00,0), that is, R := {a(§) : £ € (0,00)} =
(—00,0).

Proof. By the continuity of a is suffices to prove sup R = 0 and inf R = —oc.

First, for a contradiction assume max{supR,—c*} =: —e < 0, where £* was
defined in (10). We show that for a sufficiently large &, ui(z) = 0 for some
z € [-§,0]. For a contradiction suppose u;(z) < 0 for each € [-F,0]. Then, ug
decreases on [, 0], and by (10), uf = h(x)ug increases on [—%,0].

If ug(x) > @ for some x € (—5,0), then the increasing second derivative of

ug yields ug(z) = 0 for some z € [—£,0], a contradiction. Otherwise u(z) < @

for all 2 € (—§,0), and therefore

DS e
3 +&>

A e

3
_E(
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Since ug decreases on [—£,0], ug(x) > ug(—5) > —15k() for each v € (-5, —5).
Moreover,

0 0
0>l (_Z) — u}(0) — /ug(t) dt = k(€) — /h(t)ug(t) dt
> ko)~ [ o) (~25) a1 = k) - clriel

where ¢, > 0, a contradiction for a sufficiently large k(§) (and by Claim 5, for
sufficiently large ).

Let be := sup{z < 0: ug(z) = 0}. We showed that bg > —7 for any sufficiently
large &. Let Ug := ug(be), then Ug > € since ug decreases on (be,0). Assume that
there exists # € (—5,b¢) such that ug(z) < Ug/2. Then the concavity of ue yields
that ue(z) < 0 for some = € (—¢,be), a contradiction to the definition of e. Hence,
ug(x) > Ug/2 for each x € (—5,be). However, by the Taylor’s theorem

be
0 < ug (~5) = wuelbe) + u(be)(— 5 —be) - / (<5~ 1) utyan

NG

bf _i
€ Ué’ €
U+ / (5+1) by de < Ue+ 55 [ (5+1) ht)dt
s s
= Ug + CEUE),

where ¢, < 0, a contradiction for sufficiently large Ue, and therefore §. We have
showed supR = 0.

Assume M := inf R > —oo. First, we claim lim¢_,g+ ue(be) = 0, where be was
defined above. Otherwise, there is a sequence (&, )nen converging to 0 such that
limy, 00 utg,, (be,) =: 8 > 0. Since ug is concave, ug, (be,) < &, + k(&n)be,, and
therefore be, < (ug, (be,) — &n)/k(&n) (recall k() < 0). By Claim 5, k(&,) — 0~
as n — oo and g, (b, ) — &, — 0. Thus bg, — —00 as n — o0o. Since ug decreases
on (be,0), it is positive there, and consequently M < a(§,) < b, — —o0, a
contradiction. Therefore, ug(be) — 0 as & — 0.

Since ue is concave, ug increases on (a(§),be). Hence, ue(x) < ue(be) for each
x € (a(§),be). Then, again by the Taylor’s theorem

0 = ug(a(§)) = ug(be) + ug(be)(a(s) — be) — / (a(§) — t)ug (t) dt

¥ a(e) "

— ue(be) — / (a(€) — OYh()uP(2) dt > ug(be) — ul(be) / (a(€) — t)h(t) dt
0

a(§) a(§)
> e (be) — ul (be) / (=M — H)h(t) dt = ue(be) — earul (be)
M
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where cps > 0, a contradiction for small ue(be) (that is, small &). O
This finishes the proof of Proposition 1. U

Proof of Proposition 2. It is trivial to check, that assumptions (8)—(10) are sat-
isfied for h(z) = sign(z)|x|*, and therefore all claims in the proof of Proposition
1 holds true. In particular, for each a < 0 there exists a solution of (11). Fix
a and two bounded, positive, nontrivial, solutions u, v of (11). Notice, by the
scale invariance, that vy(x) = APST v(Az) satisfies the equation in (11) and vy is a
positive bounded function.

Without loss of generality assume u(0) < v(0). Then there exists A € (0, 1]
such that vy(0) = u(0). Moreover, Claim 4 yields that v} (0) = «/(0), and con-
sequently u = vy by the uniqueness of the initial value problem. If A # 1, then

0=u(—a) =vr(—a) = /\%v(f)\a) > 0, a contradiction. Thus, A =1 and u = v,
the uniqueness follows. O
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