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ON THE BLOW-UP OF SOLUTIONS FOR THE b-EQUATION

M. KODZHA

Abstract. We establish blow-up results for a family of equations under various
classes of initial data. It turns out that it is the shape instead of the size and

smoothness of the initial data which influences breakdown in finite time. Then,

infinite propagation speed for the shallow water equations is proved in the following
sense: the corresponding solution u(t, x) with compactly supported initial datum

u0(x) does not have compact x-support any longer in its lifespan.

1. Introduction

In the paper we study the following nonlinear dispersive equation
ut − α2utxx + c0ux + (b+ 1)uux + Γuxxx = α2(buxuxx + uuxxx),
t > 0, x ∈ R,

u(0, x) = u0(x),

(1.1)

where c0, b,Γ, α are arbitrary real constants. This equation, model wave motion in
the shallow water regime, can be derived as the family of asymptotically equivalent
shallow water wave equations [16, 17]. Using the notation y = u−α2uxx, we can
rewrite Eq. (1.1) as follows: yt + c0ux + uyx + buxy + Γuxxx = 0,

y(0, x) = y0(x) = u0(x)− αu0xx(x).
(1.2)

The b-equation (1.2) can be derived as the family of asymptotically equivalent
shallow water wave equations that emerges at quadratic order accuracy for any
b 6= −1 by an appropriate Kodama transformation, cf. [16, 17].

If α = 0 and b = 2, then Eq. (1.2) becomes the well-known KdV equation

ut + c0ux + 3uux + Γuxxx = 0,

which describes the unidirectional propagation of waves at the free surface of shal-
low water under the influence of gravity, cf. [15]. In this model u(t, x) represents
the wave’s height above a flat bottom, x is proportional to distance in the direction
of propagation and t is proportional to the elapsed time.
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For b = 2 and Γ = 0, Eq. (1.2) becomes the Camassa-Holm equation modelling
the unidirectional propagation of shallow water waves over a flat bottom. Again
u(t, x) stands for the fluid velocity at time t in the spatial x direction and c0 is a
nonnegative parameter related to the critical shallow water speed [1, 15].

The Cauchy problem for the Camassa-Holm equation has been studied exten-
sively. It was shown that this equation is locally well-posed [12, 22, 24] for initial
data u0 ∈ Hs(R), s > 3

2 . More interestingly, it has global strong solutions [12]
and also finite time blow-up solutions [8, 12, 22]. The advantage of the Camassa-
Holm equation in comparison with the KdV equation lies in the fact that the
Camassa-Holm equation has peaked solitons and models wave breaking [2, 8].

If b = 3 and c0 = Γ = 0 in Eq. (1.2), then we find the Degasperis-Procesi
equation [14]. The formal integrability of the Degasperis-Procesi equation was
obtained in [13] by constructing a Lax pair. It has a bi-Hamiltonian structure
with an infinite sequence of conserved quantities and admits exact peakon solutions
which are analogous to the Camassa-Holm peakons [13].

The paper is organized as follows. In Section 2 we consider the b-equation.
In this section, previously known results for the initial data and the bifurcation
parameter in the b-equation are improved. In Section 3, the corresponding strong
solution u(t, x) of the b-equation in its lifespan with u0 being compactly supported
are described in detail.

2. Blow-up

In this section, we consider (1.1). The Cauchy problem for the (1.1) was studied
in [3, 18]. For (1.1) the blow-up occurs as wave breaking, that is, the solution
remains bounded, but its slope becomes infinite in finite time. Conditions on the
initial data and the bifurcation parameter b ≥ 3 for which corresponding solutions
blow-up in finite time are found in [18]. We expand this result to b ≥ 2 using
ideas in [26].

Consider the differential equation qt = u(t, q)− Γ
α2
, t ∈ [0, T ),

q(0, x) = x, x ∈ R.
(2.1)

Differentiation of Eq. (2.1) with respect to x yields to
d
dt
qx = qxt = ux(t, q)qx, t ∈ [0, T ),

qx(0, x) = 1, x ∈ R.
(2.2)

The solution of Eq. (2.2) is given by

qx(t, x) = exp
(∫ t

0

ux(s, q(s, x))ds
)
, (t, x) ∈ [0, T )× R(2.3)

and if c0 + Γ
α2 = 0, then [see [18]]

y(t, q(t, x))[qx(t, x)]b = y0(x).(2.4)
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We first recall the following lemma.

Lemma 2.1 ([26]). Suppose that Ψ(t) is twice continuously differential satis-
fying {

Ψ′′(t) ≥ D0Ψ′(t)Ψ(t), t > 0, D0 > 0.

Ψ(0) > 0, Ψ′(0) > 0.
(2.5)

Then Ψ(t) blows up in finite time. Moreover the blow-up time T can be estimated
in terms of the initial datum as

T ≤ max
{

2
D0Ψ(0)

,
Ψ(0)
Ψ′(0)

}
.

Now we will present the main result in this section. Analogously, result is
obtained in [18] for b ≥ 3, c0 = Γ = 0 and some conditions on initial date u0(x).
We extend this result to b > 2.

Theorem 2.1. Let b > 2 and c0 = Γ = 0. Suppose that u0 ∈ H2(R) and there
exists x0 ∈ R such that y0(x0) = (1− α2∂2

x)u0(x0) = 0, and

y0(x) ≥ 0 for x ∈ (−∞, x0) and y0(x) ≤ 0 for x ∈ (x0,∞).(2.6)

Then, the corresponding solution u(t, x) of (1.1) blows up in finite time with lifes-
pan

T ≤ max
{
−2

u0x(x0)
,
−2α2u0x(x0)

α2u2
0x(x0)− u2

0(x0)

}
.

Proof. Suppose that the solution exists globally. Due to equation (2.4) and the
initial condition, we have y(t, q(t, x0)) = 0 and{

y(t, q(t, x0)) ≥ 0 for x ∈ (−∞, x0)

y(t, q(t, x0)) ≤ 0 for x ∈ (x0,∞)
(2.7)

for all t.
Since u(x, t) = G∗y(t, x), x∈R, t≥0 (where G(x) := 1

2αe
−| xα | and (1−α2∂2

x)−1
f

= G ∗ f), one can write u(t, x) and ux(t, x) as

u(t, x) =
1

2α
e−

x
α

∫ x

−∞
e
ξ
α y(t, ξ)dξ +

1
2α

e
x
α

∫ ∞
x

e−
ξ
α y(t, ξ)dξ,

αux(t, x) = − 1
2α

e−
x
α

∫ x

−∞
e
ξ
α y(t, ξ)dξ +

1
2α

e
x
α

∫ ∞
x

e−
ξ
α y(t, ξ)dξ.

Consequently,

α2u2
x(t, x)− u2(t, x) = − 1

α2

∫ x

−∞
e
ξ
α y(t, ξ)dξ

∫ ∞
x

e−
ξ
α y(t, ξ)dξ.
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From the expression of ux(t, x) in terms of y(t, x)

d
dt
ux(t, q(t, x0)) = utx(t, q(t, x0)) + uxx(t, q(t, x0))qt

= utx(t, q(t, x0)) +
(u− y)
α2

qt

= utx(t, q(t, x0)) +
u

α2
(u− Γ

α2
)

=
1
α2
u2(t, q(t, x0))− 1

2α2
e−

q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α yt(t, ξ)dξ

+
1

2α2
e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α yt(t, ξ)dξ.

Rewrite equation (1.1) as

yt + uyx + 2uxy +
b− 2

2
(u2 − α2u2

x)x = 0.

Using the identity, we can obtain

d
dt
ux(t, q(t, x0)) =

1
α2
u2(t, q(t, x0)) +

1
2α2

e−
q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α (uyξ + 2uξy)dξ

− 1
2α2

e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α (uyξ + 2uξy)dξ

+
b− 2
4α2

e−
q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α (u2 − α2u2

ξ)ξdξ

− b− 2
4α2

e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α (u2 − α2u2

ξ)ξdξ.

By direct calculation we have∫ q(t,x0)

−∞
e
ξ
α (uyξ + 2yuξ)(t, ξ)dξ

=
∫ q(t,x0)

−∞
e
ξ
α (u(t, ξ)y(t, ξ))ξdξ +

∫ q(t,x0)

−∞
e
ξ
α y(t, ξ)uξ(t, ξ)dξ

= − 1
α

∫ q(t,x0)

−∞
e
ξ
α u(t, ξ)y(t, ξ)dξ +

1
2

∫ q(t,x0)

−∞
e
ξ
α (u2(t, ξ)− α2u2

ξ(t, ξ))ξdξ

= − 1
α

∫ q(t,x0)

−∞
e
ξ
α

[
u2(t, ξ) +

1
2
α2u2

ξ(t, ξ)
]
dξ

+
[
e
ξ
α (αu(t, ξ)ux(t, ξ)− 1

2
α2u2

x(t, ξ))
]
ξ=q(t,x0)
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In the above relations we used that y = u − α2uxx and integration by parts. We
have∫ x

−∞
e
ξ
α

[
u2(t, ξ) + α2u2

x(t, ξ)
]
dξ

≥
∫ x

−∞
e
ξ
α 2αu(t, ξ)ux(t, ξ) = α

∫ x

−∞
e
ξ
α (u2(t, ξ))x

= α e
ξ
α u2(t, ξ)|x−∞ −

α

α

∫ x

−∞
e
ξ
α u2(t, ξ) = α e

x
α u2(t, x)−

∫ x

−∞
e
ξ
α u2(t, ξ).

The above inequality yields to∫ x

−∞
e
ξ
α

[
u2(t, ξ) +

1
2
α2u2

x(t, ξ)
]

dξ ≥ α

2
e
x
α u2(t, x).

Hence

1
2α2

e−
q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α (uyx + 2yux)(t, ξ)dξ

≤ − 1
4α2

u2(t, q(t, x0))− 1
4
u2
x(t, q(t, x0)) +

1
2α
u(t, q(t, x0))ux(t, q(t, x0)).

(2.8)

Similarly, we have

− 1
2α2

e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α (uyx + 2yux)(t, ξ)dξ

≤ − 1
4α2

u2(t, q(t, x0))− 1
4
u2
x(t, q(t, x0))− 1

2α
u(t, q(t, x0))ux(t, q(t, x0)).

(2.9)

Now using the inequality (see [26]),

α2u2
x(t, x)− u2(t, x) ≤ (α2u2

x − u2)(t, q(t, x0))

and combining (2.8) and (2.9), we obtain

b− 2
4α2

e−
q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α (u2 − α2u2

ξ)ξdξ ≤ 0.

Similarly, we have

b− 2
4α2

e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α (u2 − α2u2

ξ)ξdξ ≥ 0.

Combining all the above terms together, we have

d
dt
ux(t, q(t, x0)) ≤ 1

2α2
u2(t, q(t, x0))− 1

2α2
α2u2

x(t, q(t, x0)).(2.10)

Claim. ux(t, q(t, x0)) < 0 is decreasing and u2(t, q(t, x0)) < α2u2
x(t, q(t, x0)) for all

t ≥ 0.
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Suppose that the claim is no true, i.e., there exists t0 such that u2(t, q(t, x0)) <
α2u2

x(t, q(t, x0)) on [0, t0] and u2(t0, q(t0, x0)) = α2u2
x(t0, q(t0, x0)). Now, let

I(t) =
1

2α
e−

q(t,x0)
α

∫ q(t,x0)

−∞
e
ξ
α y(t, ξ)dξ > 0,

II(t) =
1

2α
e
q(t,x0)
α

∫ ∞
q(t,x0)

e−
ξ
α y(t, ξ)dξ < 0.

First, by the same trick as above, we obtain

dI(t)
dt
≥ 1

4α
(α2u2

x − u2) > 0

dII(t)
dt

≤ − 1
4α

(α2u2
x − u2) < 0

(α2u2
x − u2)(t, q(t, x0)) = −4I(t)II(t) ≥ −4I(0)II(0) > 0.

This implies t0 can be extended to infinity.
Moreover, due to the above inequality we have

d
dt

(α2u2
x − u2)(t, q(t, x0))

= 4
d
dt
I(t) · (−II(t)) + 4I(t) · d

dt
(−II(t))

≥ 1
α

(α2u2
x − u2)(t, q(t, x0))[I(t)− II(t)]

= −ux(t, q(t, x0))(α2u2
x − u2)(t, q(t, x0)).

(2.11)

Now substituting (2.10) in (2.11), we get

d
dt

(α2u2
x − u2)(t, q(t, x0)) ≥ 1

2α2
(α2u2

x − u2)(t, q(t, x0))

×
[∫ t

0

(α2u2
x − u2)(τ, q(τ, x0))dτ − 2α2u0x(x0)

]
.

Now the theorem follows from Lemma 2.1 with

Ψ(t) =
∫ t

0

(α2u2
x − u2)(τ, q(τ, x0))dτ − 2α2u0x(x0),

and D0 = 1
2α2 . Then, we complete our proof. �

3. Propagation speed

The purpose of this section is to give a detailed description of the corresponding
strong solution u(t, x) in its lifespan with u0 being compactly supported. We
will use the same ideas as in [26], where this problem is considered for α = 1,
c0 = Γ = 0. The main theorem reads as follows.
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Theorem 3.1. Let 0 < b < 3 and c0 + Γ
α2 = 0. Assume that the initial datum

u0 ∈ H3(R) is compactly supported in [c, d]. Then, the corresponding solution of
(1.1) has the following property. For 0 < t < T

u(t, x) =

{
L(t) e−

x
α as x > q(t, d),

l(t) e
x
α as x < q(t, c),

with L(t) > 0 and l(t) < 0, respectively, where q(t, x) is defined by (2.1) and T is
its lifespan. Furthemore, L(t) and l(t) denote continuous non-vanishing functions
with L(t) > 0 and l(t) < 0 for t ∈ (0, T ]. And L(t) is a strictly increasing function
while l(t) is a strictly decreasing function.

Proof. Since u0(x) has a compact support, so does y0(x) = (1 − α2∂2
x)u0(x).

From the equation (2.4) follows that y(t, x) = (1 − α2∂2
x)u(t, x) is compactly

supported in [q(t, c), q(t, d)] in its lifespan. Hence the following functions are well
defined

E(t) =
∫

R
e
x
α y(t, x)dx and F (t) =

∫
R

e−
x
α y(t, x)dx

with E(0) = 0 = F (0). For x > q(t, d), we have

u(t, x) =
1

2α
e−

|x|
α ∗y(t, x) =

1
2α

e−
x
α

∫ q(t,d)

q(t,c)

e
ξ
α y(t, ξ)dξ =

1
2α

e−
x
α E(t)(3.1)

and for x < q(t, c), we have

u(t, x) =
1

2α
e−

|x|
α ∗y(t, x) =

1
2α

e
x
α

∫ q(t,d)

q(t,c)

e−
ξ
α y(t, ξ)dξ =

1
2α

e
x
α F (t).(3.2)

Hence as consequence of (3.1) and (3.2), we have

u(t, x) = −αux(t, x) = α2uxx(t, x) =
1

2α
e−

x
α E(t), for x > q(t, d)(3.3)

and

u(t, x) = αux(t, x) = α2uxx(t, x) =
1

2α
e
x
α F (t), for x < q(t, c)(3.4)

On the other hand,

dE(t)
dt

=
∫

R
e
x
α yt(t, x)dx.
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Differentiating equation (1.1) twice, we get

0 = uxxt +
((

u− Γ
α2

)
ux

)
xx

+ (1− α2∂2
x)−1∂3

x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
= uxxt +

((
u− Γ

α2

)
ux

)
xx

+
1
α2

(1− α2∂2
x)−1∂x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
− 1
α2

(1− α2∂2
x)−1(1− α2∂2

x)∂x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
(3.5)

= uxxt +
((

u− Γ
α2

)
ux

)
xx

+
1
α2

(1− α2∂2
x)−1∂x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
− 1
α2
∂x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
.

Combining (1.1) and (3.5), we obtain

yt = −
(
u− Γ

α2

)
ux + α2

((
u− Γ

α2

)
ux

)
xx

− ∂x
(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
.

(3.6)

Substituting the identity (3.6) into dE(t)
dt , integrating by parts and using that

c0 + Γ
α2 = 0, (3.3) and (3.4), we obtain

dE(t)
dt

= −
∫

R
e
x
α

(
u− Γ

α2

)
uxdx+ α2

∫
R

e
x
α

((
u− Γ

α2

)
ux

)
xx

dx

−
∫

R
e
x
α ∂x

(
b

2
u2 +

3− b
2

α2u2
x +

(
c0 +

Γ
α2

)
u

)
dx

=
1
α

∫
R

e
x
α

(
b

2
u2 +

3− b
2

α2u2
x

)
dx.

Therefore, for 0 < b < 3 in the lifespan of the solution, we have

E(t) =
∫ t

0

(
1
α

∫
R

e
x
α

(
b

2
u2 +

3− b
2

α2u2
x

)
dx
)
> 0.

By the same argument, one can check that the following identity for F (t) is true

F (t) = −
∫ t

0

(
1
α

∫
R

e−
x
α

(
b

2
u2 +

3− b
2

α2u2
x

)
dx
)
< 0.
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We also have E′(t) > 0 and F ′(t) < 0. In order to complete the proof, it is
sufficient to let L(t) = 1

2αE(t) and l(t) = 1
2αF (t). �
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