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REMARKS ON ŠEDA THEOREM

B. VYNNYTS’KYI and O. SHAVALA

Abstract. We found sufficient conditions on a sequences (λn) and (bn) when the
equation f ′′ + a0f = 0 has an entire solution f such that f(λn) = bn.

In [10] V. Šeda proved that for any sequence (λn) of distinct complex numbers
with no finite limit points there exists an entire function A0 such that the equation

f ′′ +A0f = 0(1)

has an entire solution f with zeros only at points λn. On the other hand ([3,
p. 201], [7, p. 300–301]), for every sequence (λn) of distinct complex numbers with
no finite limit points and for every sequence (bn) of complex numbers there exists
an entire function f such that

f(λn) = bn.(2)

This result was extended to the case of functions holomorphic in open subsets
of the complex plane C by C. Berenstein and B. Taylor [2]. In particular, we
generalize the above-mentioned results from [10] and [3].

Theorem 1. For any sequence (λn) of distinct complex numbers in the domain
D ⊂ C with no limit points in D and every sequence (bn) of complex numbers there
exists a holomorphic in D function A0 such that the equation (1) has a holomorphic
solution f satisfying (2).

Šeda result was developed in papers [1, 4, 5, 8, 9]. For meromorphic function
A0 it was extended in [11]. Bank [1] obtained a necessary condition for a sequence
with a finite exponent of convergence to be the zero-sequence of a solution of the
equation (1). In [1] there is also proved the following proposition.

Theorem A ([1, p. 3]). Let K > 1 be a real number and let (λn) be any sequence
of non-zero complex points satisfying |λn+1| ≥ K|λn| for n ∈ N. Then there exists
an entire transcendental function A(z) of order zero such that the equation (1)
possesses a solution whose zero-sequence is (λn).

In [8] Sauer obtain a more general sufficient condition.
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Theorem B ([8, p. 1144]). Let (λn) be a sequence with finite exponent of con-
vergence, p be its genus and

µk :=
∏
m 6=k

(
1− λk

λm

)−1

ep

(
λk
λm

)−1

,

where ep(z) denotes the Weierstrass convergence factor. If there exists a real
number b > 0 and a positive integer k0 such that

|µk| ≤ exp
(
|λk|b

)
for all k ≥ k0, then (λn) is the zero-sequence of a solution of an equation (1) with
entire transcendental function A0(z) of finite order.

In [4] J. Heittokangas and I. Laine improved the above results and, in particular,
proved the following statement.

Theorem C ([4, p. 300]). Let (λn) be an infinite sequence of non-zero complex
points having a finite exponent of convergence λ, a finite genus p and no finite
limit points. Let L be the canonical product associated with (λn),

inf
k

{
|λk| e|λk|q |L′ (λk)|

}
> 0

for some q ≥ 0 and arbitrary ε > 0. Then (λn) is the zero-sequence of a solution
of an equation (1) with entire transcendental function A0 such that

ρA0 ≤ max{λ+ ε; q}.

From estimates in [4] it is possible to get the following result.

Corollary 1. Let ρ ∈ (0; +∞), L be the canonical product associated with the
sequence (λn) of distinct complex numbers and the conditions

λ := lim
j→∞

log j
log |λj |

≤ ρ,(3)

lim
j→∞

log+ log+ |1/L′(λj)|
log |λj |

≤ ρ(4)

be satisfied. Then there exists an entire function A0 of order ρA0 ≤ ρ such that
the equation (1) has an entire solution f for which (λn) is the zero-sequence.

This corollary also follows from the following theorem. The Theorem 2 is our
second main result.

Theorem 2. Let ρ ∈ (0; +∞), (bn) be an arbitrary sequence of complex num-
bers and L be the canonical product associated with the sequence (λn) of distinct
complex numbers. If the conditions (3), (4) and

lim
j→∞

log+log+log+|bj |
log |λj |

≤ ρ(5)

hold, then there exists an entire function A0 of order ρA0 ≤ ρ such that the
equation (1) has an entire solution f satisfying (2).
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To prove Theorem 1 we need the following lemma.

Lemma 1 ([2, p. 118]). Let (aj,1) and (aj,2) be sequences of complex numbers,
(λj) be a sequence of distinct complex numbers in domain D ⊂ C with no limit
points in D. Then there exists a holomorphic in D function g such that

g(λj) = aj,1, g′(λj) = aj,2(6)

for all j ∈ N.

Proof of Theorem 1. Let

{nk : k ∈ N} = {n ∈ N : bn = 0} and {mk : k ∈ N} = N\{nk : k ∈ N}.
Then {λnk

} ∪ {λmk
} = {λn}. Let log u = log |u| + iϕ, ϕ = arg u ∈ [−π;π),

and Q be a holomorphic function in D with simple zeros at the points λnk
and

Q(λmk
) 6= 0 for all k. Denote

aj,1 =

 log
bj

Q(λj)
, j ∈ {mk},

0, j /∈ {mk},
aj,2 =


0, j /∈ {nk},

− Q
′′(λj)

2Q′(λj)
, j ∈ {nk}.

By Lemma 1 it follows that there exists a holomorphic function g in D such that
(6) is valid. Hence the function

A0 = −Q
′′ + 2Q′g′

Q
− g′′ − g′2

is holomorphic in D and the function f = Qeg is a solution of the equation (1)
and satisfies the condition (2). �

To prove Theorem 2 we need the following statement.

Lemma 2 ([6, p. 146–147]). Let ρ ∈ (0; +∞) and (λn) be a sequence of distinct
complex numbers. For any sequences (aj,1) and (aj,2) of complex numbers such
that

lim
j→∞

log+log+|aj,s|
log |λj |

≤ ρ, s ∈ {1; 2},(7)

there exists at least one entire function g of order ρg ≤ ρ satisfying (6) if and only
if the condition (3) and

lim
j→∞

log+log+|γj,s|
log |λj |

≤ ρ, s ∈ {1; 2},(8)

hold, where F = L2,

γj,1 =
(

(z − λj)2

F (z)

)∣∣∣∣
z=λj

, γj,2 =
(

(z − λj)2

F (z)

)′∣∣∣∣∣
z=λj

,

L(z) =
∞∏
j=1

(1− z/λj) exp

(
p∑
i

1
i

(
z

λj

)i)
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and p is the smallest integer for which the series∑
j

1
|λj |p+1

converges.

Proof of Theorem 2. Let {nk : k ∈ N} = {n ∈ N : bn = 0} and {mk : k ∈ N} =
N\{nk : k ∈ N}. Then {λnk

} ∪ {λmk
} = {λn}. Denote

Q(z) =
∞∏

j=1,j∈{nk}

(1− z/λj) exp

(
p∑
i

1
i

(
z

λj

)i)
,

G(z) =
∞∏

j=1,j∈{mk}

(1− z/λj) exp

(
p∑
i

1
i

(
z

λj

)i)
and

aj,1 =

 log
bj

Q(λj)
, j ∈ {mk},

0, j /∈ {mk},
aj,2 =


0, j /∈ {nk},

− Q
′′(λj)

2Q′(λj)
, j ∈ {nk}.

Since L(z) = Q(z)G(z), L′(z) = Q′(z)G(z) +Q(z)G′(z), we see that 1/Q(λmk
) =

G′(λmk
)/L′(λmk

) and 1/Q′(λnk
) = G(λnk

)/L′(λnk
). Using (3)–(5), we get that

the sequences (aj,1) and (aj,2) satisfy the condition (7). Since

F (z) =
m∑
j=0

F (j)(λj)
j!

(z − λj)j + o(z − λj)m, z → λj

for each m ∈ Z+, we have

γj,1 =
2

F ′′(λj)
, γj,2 = −2

3
F ′′′(λj)

(F ′′(λj))2
.

Since
F ′′(λj) = 2(L′(λj))2, F ′′′(λj) = −2L′′(λj)/L′(λj),

then

γj,1 =
1

(L′(λj))2
, γj,2 =

L′′(λj)
3(L′(λj))5

.

Taking into account (3) and (4), we obtain (8). From Lemma2 it follows that there
exists an entire function g such that the condition (6) holds. Moreover ρg ≤ ρ.
Then f = Qeg is a solution of the equation (1), where

A0 = −Q
′′ + 2Q′g′

Q
− g′′ − g′2.

By standard metods we obtain ρA0 ≤ ρ. �

A question of sharpness of the condition (7) remains open.
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