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A NOTE ON SOME NEW FRACTIONAL RESULTS
INVOLVING CONVEX FUNCTIONS

Z. DAHMANI

Abstract. In this paper, we establish some new integral inequalities for convex
functions by using the Riemann-Liouville operator of non integer order. For our

results some classical integral inequalities can be deduced as some special cases.

1. Introduction

The integral inequalities play a fundamental role in the theory of differential equa-
tions. Much significant development in this area has been established for the last
two decades. For details we refer to [10, 12, 14, 15] and the references therein.
Moreover, the study of fractional type inequalities is also of a great importance.
For further information and applications we refer the reader to [1, 13]. Let us
introduce now some results that have inspired our work. We begin by the paper
of Ngo et al. [11], in which the authors proved that∫ 1

0

fδ+1(τ)dτ ≥
∫ 1

0

τ δf(τ)dτ(1)

and ∫ 1

0

fδ+1(τ)dτ ≥
∫ 1

0

τfδ(τ)dτ,(2)

where δ > 0 and f is a positive continuous function on [0, 1] such that∫ 1

x

f(τ)dτ ≥
∫ 1

x

τdτ, x ∈ [0, 1].

Then, in [8], W. J. Liu, G. S. Cheng and C. C. Li established the following result∫ b

a

fα+β(τ)dτ ≥
∫ b

a

(τ − a)αfβ(τ)dτ,(3)
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provided that α > 0, β > 0 and f is a positive continuous function on [a, b]
satisfying ∫ b

x

fγ(τ)dτ ≥
∫ b

x

(τ − a)γdτ ; γ := min(1, β), x ∈ [a, b].

In [9], the following two theorems were proved.

Theorem 1.1. Let f and h be two positive continuous functions on [a, b] with
f ≤ h on [a, b] such that f

h is decreasing and f is increasing. Assume that φ is a
convex function φ; φ(0) = 0. Then the inequality∫ b

a
f(τ)dτ∫ b

a
h(τ)dτ

≥
∫ b
a
φ(f(τ))dτ∫ b

a
φ(h(τ))dτ

(4)

holds.

And

Theorem 1.2. Let f, g and h be three positive continuous functions on [a, b]
with f ≤ h on [a, b] such that f

h is decreasing and f and g are increasing. Assume
that φ is a convex function φ; φ(0) = 0. Then the inequality∫ b

a
f(τ)dτ∫ b

a
h(τ)dτ

≥
∫ b
a
φ(f(τ))g(τ)dτ∫ b

a
φ(h(τ))g(τ)dτ

(5)

holds.

Many researchers have given considerable attention to (1), (2) and (3) and a
number of extensions, generalizations and variants have appeared in the literature,
(e.g. [2, 3, 4, 5, 7, 14]).

The purpose of this paper is to generalize some classical integral inequalities
of [9] using the Riemann-Liouville integral operator. For our results Theorem 1.1
and Theorem 1.2 can be deduced as some special cases.

2. Preliminaries

Let us introduce some definitions and properties concerning the Riemann-Liouville
fractional integral operator.

Definition 1. The Riemann-Liouville fractional integral operator of order α≥0,
for a continuous function f on [a, b], is defined as

Jα[f(t)] =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ ; α > 0, a < t ≤ b,

J0[f(t)] = f(t),
(6)

where Γ(α) :=
∫∞

0
e−u uα−1du.

For the convenience of establishing the results we give the semigroup property

JαJβ [f(t)] = Jα+β [f(t)], α ≥ 0, β ≥ 0,(7)
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which implies the commutative property

JαJβ [f(t)] = JβJα[f(t)].(8)

For more details one can consult [6, 13].

3. Main Results

Theorem 3.1. Let f and h be two positive continuous functions on [a, b] and
f ≤ h on [a, b]. If fh is decreasing and f is increasing on [a, b], then for any convex
function φ;φ(0) = 0, the inequality

Jα[f(t)]
Jα[h(t)]

≥ Jα[φ(f(t))]
Jα[φ(h(t))]

, a < t ≤ b, α > 0(9)

is valid.

Proof. The function φ is convex with φ(0) = 0. Then the function φ(x)
x is in-

creasing. Since f is increasing, then φ(f(x))
f(x) is also increasing. This and the fact

that f(x)
h(x) is decreasing yield

(10) φ(f(τ))
f(τ)

f(ρ)
h(ρ) + φ(f(ρ))

f(ρ)
f(τ)
h(τ) −

φ(f(ρ))
f(ρ)

f(ρ)
h(ρ) −

φ(f(τ))
f(τ)

f(τ)
h(τ) ≥ 0

for all τ, ρ ∈ [a, t], a < t ≤ b.
Hence, we can write

(11)

φ(f(τ))
f(τ)

f(ρ)h(τ) +
φ(f(ρ))
f(ρ)

f(τ)h(ρ)

− φ(f(ρ))
f(ρ)

f(ρ)h(τ)− φ(f(τ))
f(τ)

f(τ)h(ρ) ≥ 0

for all τ, ρ ∈ [a, t], a < t ≤ b.
Now, multiplying both sides of (11) by (t−τ)α−1

Γ(α) , then integrating the resulting
inequality with respect to τ over [a, t], a < t ≤ b, we get

(12)
f(ρ)Jα

[φ(f(t))
f(t)

h(t)
]

+
φ(f(ρ))
f(ρ)

h(ρ)Jα[f(t)]

− φ(f(ρ))
f(ρ)

f(ρ)Jα[h(t)]− h(ρ)Jα
[
φ(f(t))
f(t)

f(t)
]
≥ 0.

With the same argument as before, we obtain

Jα[f(t)]Jα
[
φ(f(t))
f(t)

h(t)
]
− Jα[h(t)]Jα

[
φ(f(t))
f(t)

f(t)
]
≥ 0.(13)

Since f ≤ h on [a, b], then using the fact that the function φ(x)
x is increasing,

we can write

(14)
φ(f(τ))
f(τ)

≤ φ(h(τ))
h(τ)

, τ ∈ [a, t], a < t ≤ b.
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This implies that

(15)
(t− τ)α−1

Γ(α)
h(τ)

φ(f(τ))
f(τ)

≤ (t− τ)α−1

Γ(α)
h(τ)

φ(h(τ))
h(τ)

,

where τ ∈ [a, t], a < t ≤ b.
Integrating both sides of (15) with respect to τ over [a, t], a < t ≤ b, yields

Jα
[
φ(f(t))
f(t)

h(t)
]
≤ Jα

[
φ(h(t))
h(t)

h(t)
]
.(16)

Hence, thanks to (13) and (16), we obtain (9). �

Remark 3.2. Applying Theorem 3.1 for α = 1, t = b, we obtain Theorem 1.1.

We further have the following theorem.

Theorem 3.3. Let f and h be two positive continuous functions on [a, b] and
f ≤ h on [a, b]. If fh is decreasing and f is increasing on [a, b], then for any convex
function φ; φ(0) = 0, we have

Jα[f(t)]Jω[φ(h(t))] + Jω[f(t)]Jα[φ(h(t))]
Jα[h(t)]Jω[φ(f(t))] + Jω[h(t)]Jα[φ(f(t))]

≥ 1,(17)

where α > 0, ω > 0, a < t ≤ b.

Proof. The relation (12) allows us to obtain
(18)

Jω[f(t)]Jα
[φ(f(t))
f(t)

h(t)
]
+Jω

[φ(f(t))
f(t)

h(t)
]
Jα[f(t)]

−Jω
[φ(f(t))
f(t)

f(t)
]
Jα[h(t)]−Jω[h(t)]Jα

[φ(f(t))
f(t)

f(t)
]
≥0.

Since f ≤ h on [a, b] and using the fact that the function φ(x)
x is increasing, then

thanks to (14), we obtain

(t− τ)ω−1

Γ(ω)
h(τ)

φ(f(τ))
f(τ)

≤ (t− τ)ω−1

Γ(ω)
h(τ)

φ(h(τ))
h(τ)

,(19)

where τ ∈ [a, t], a < t ≤ b. And then,

Jω
[
φ(f(t))
f(t)

h(t)
]
≤ Jω

[
φ(h(t))
h(t)

h(t)
]
.(20)

Hence, thanks to (16), (18) and (20), we get (17). �

Remark 3.4. (i) Applying Theorem 3.3 for α = ω, we obtain Theorem 3.1.
(ii) Applying Theorem 3.3 for α = ω = 1, t = b, we obtain Theorem 1.1.

Another result which generalizes Theorem 1.2 is described in the following the-
orem.
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Theorem 3.5. Let f , h and g be three positive continuous functions and f ≤ h
on [a, b]. Suppose that f

h is decreasing, f and g are increasing on [a, b] and φ is a
convex function, φ(0) = 0. Then, for any α > 0, a < t ≤ b, we have

Jα[f(t)]
Jα[h(t)]

≥ Jα[φ(f(t))g(t)]
Jα[φ(h(t))g(t)]

.(21)

Proof. Let τ, ρ ∈ [a, t], a < t ≤ b. We have

(22)

φ(f(τ))g(τ)
f(τ)

f(ρ)h(τ) +
φ(f(ρ))g(ρ)

f(ρ)
f(τ)h(ρ)

− φ(f(ρ))g(ρ)
f(ρ)

f(ρ)h(τ)− φ(f(τ))g(τ)
f(τ)

f(τ)h(ρ) ≥ 0.

Hence we can write
(23)

f(ρ)Jα
[φ(f(t))g(t)

f(t)
h(t)

]
+
φ(f(ρ))g(ρ)

f(ρ)
h(ρ)Jα[f(t)]

−φ(f(ρ))g(ρ)
f(ρ)

f(ρ)Jα[h(t)]− h(ρ)Jα
[φ(f(t))g(t)

f(t)
f(t)
]
≥0.

Therefore,

Jα[f(t)]Jα
[φ(f(t))g(t)

f(t)
h(t)

]
− Jα[h(t)]Jα

[
φ(f(t))g(t)

]
≥ 0.(24)

On the other hand, we have

(t− τ)α−1

Γ(α)
h(τ)

φ(f(τ))g(τ)
f(τ)

≤ (t− τ)α−1

Γ(α)
h(τ)

φ(h(τ))g(τ)
h(τ)

,(25)

where τ ∈ [a, t], a < t ≤ b. Consequently,

Jα
[φ(f(t))g(t)

f(t)
h(t)

]
≤ Jα

[
φ(h(t))g(t)

]
,(26)

and so,

Jα[f(t)]Jα
[φ(f(t))g(t)

f(t)
h(t)

]
≤ Jα[f(t)]Jα

[
φ(h(t))g(t)

]
.(27)

Hence, thanks to (24) and (27) we obtain (21). �

Remark 3.6. It is clear that Theorem 1.2 would follow as a special case of
Theorem 3.5 when α = 1 and t = b.

Another result which generalizes Theorem 3.5 is described in the following the-
orem.

Theorem 3.7. Let f, h and g be three positive continuous functions and f ≤ h
on [a, b]. Suppose that f

h is decreasing, f and g are increasing on [a, b] and φ is a
convex function, φ(0) = 0. Then, for any α > 0, ω > 0, a < t ≤ b, we have

(28)
Jα[f(t)]Jω[φ(h(t))g(t)] + Jω[f(t)]Jα[φ(h(t))g(t)]
Jα[h(t)]Jω[φ(f(t))g(t)] + Jω[h(t)]Jα[φ(f(t))g(t)]

≥ 1.
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Proof. Using (23), we can write

Jω[f(t)]Jα
[φ(f(t))g(t)

f(t)
h(t)

]
+ Jω

[φ(f(t))g(t)
f(t)

h(t)
]
Jα[f(t)]

− Jω
[φ(f(t))g(t)

f(t)
f(t)

]
Jα[h(t)]− Jω[h(t)]Jα

[φ(f(t))g(t)
f(t)

f(t)
]
≥ 0.

(29)

Then, using the fact that the function φ(x)g(x)
x is increasing and the hypothesis

f ≤ h on [a, b], we obtain

Jk
[φ(f(t))g(t)

f(t)
h(t)

]
≤ Jk

[φ(h(t))g(t)
h(t)

h(t)
]
, k = α, ω.(30)

Hence, thanks to (29) and (30), we get (28). �

Remark 3.8. It is clear that Theorem 3.5 would follow as a special case of
Theorem 3.7 when α = β.
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