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ON INTEGERS EXPRESSIBLE
BY SOME SPECIAL LINEAR FORM

A. DUBICKAS and A. NOVIKAS

Abstract. Let E(4) be the set of positive integers expressible by the form 4M −d,
where M is a multiple of the product ab and d is a divisor of the sum a + b of two

positive integers a, b. We show that the set E(4) does not contain perfect squares

and three exceptional positive integers 288, 336, 4545 and verify that E(4) contains
all other positive integers up to 2 · 109. We conjecture that there are no other

exceptional integers. This would imply the Erdős-Straus conjecture asserting that
each number of the form 4/n, where n ≥ 2 is a positive integer, is the sum of three

unit fractions 1/x+1/y+1/z. We also discuss similar problems for sets E(t), where

t ≥ 3, consisting of positive integers expressible by the form tM − d. The set E(5)
is related to a conjecture of Sierpiński, whereas the set E(t), where t is any integer

greater than or equal to 4, is related to the most general in this context conjecture

of Schinzel.

1. Introduction

Let t be a fixed positive integer. In this paper we consider the set of positive
integers

E(t) := {n : n = tM − d},
where M is a positive multiple of the product and d is a positive divisor of the
sum of two positive integers, namely,

ab|M and d|(a + b)

for some a, b ∈ N. Evidently,

E(t′) ⊆ E(t) whenever t|t′.

It is easy to see that

E(1) = E(2) = N.(1)

Indeed, suppose first that t = 1. Then, for each n ∈ N selecting a = 2n + 1, b = 1,
M = ab = 2n + 1 and d = (a + b)/2 = n + 1, we find that

n = 2n + 1− (n + 1) = M − d,
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giving E(1) = N. In case t = 2, for each n ∈ N we may choose a = n + 1, b = 1,
M = ab = n + 1 and d = a + b = n + 2. Then 2M − d = 2(n + 1)− (n + 2) = n,
so that E(2) = N.

Apart form (1) the situation with t ≥ 3 is not clear. In this context, the sets
E(4) and E(5) are of special interest because an integer n belongs to the set E(t)
if and only if

n = tM − d = tuab− (a + b)/v

with some a, b, u, v ∈ N. Therefore, n ∈ E(t) yields the representation
t

n
=

1
x

+
1
y

+
1
z

with positive integers

x := uab, y := uvna, z := uvnb.

Thus if n ∈ E(t), then the fraction t/n is expressible by the sum of three unit
fractions. In particular, if every prime number p belongs to the set E(4), then
the Erdős-Straus conjecture (asserting that for each integer n ≥ 2, the fraction
4/n is expressible by the sum 1/x + 1/y + 1/z with x, y, z ∈ N) is true, whereas
if every prime number p belongs to E(5), then the corresponding conjecture of
Sierpiński (asserting that for each n ≥ 4, the fraction 5/n is expressible by the
sum 1/x + 1/y + 1/z) is true [10]. In this context, the most general Schinzel’s
conjecture asserts that the fraction t/n for each n ≥ n(t) is expressible by the sum
1/x + 1/y + 1/z. This clearly holds for t ≤ 3, but is open for each fixed t ≥ 4.
Conjecture 5 given in Section 3 implies that there is an integer C(t) such that each
prime number p > C(t) belongs to E(t). This would imply Schinzel’s conjecture
as well.

Yamamoto [12], [13] and Mordell [8] observed that it is sufficient to prove the
Erdős-Straus conjecture for those prime numbers p which modulo 840 are 1, 121,
169, 289, 361 or 529. Vaughan [11] showed that the Erdős-Straus conjecture is
true for almost all positive integers n. See also the list of references in D11 for the
literature concerning the conjectures of Erdős-Straus, Sierpiński and Schinzel on
Egyptian fractions. More references on the Erdős-Straus (including recent ones)
can be found in a paper of Elsholtz and Tao [4] on the average number of solutions
of the equation 4/p = 1/x+1/y+1/z with prime numbers p. At the computational
side the calculations of Swett http://math.uindy.edu/swett/esc.htm show that
the Erdős-Straus conjecture holds for integers n up to 1014.

In this note we observe that the following holds

Theorem 1. The set E(4) does not contain perfect squares and the numbers
288, 336, 4545.

Suppose k2 ∈ E(4), i.e., there exist u, v, a, b, k ∈ N such that

v(4uab− k2) = a + b.(2)

To show that k2 /∈ E(4), we shall use the following fact

Lemma 2. The equation (2) has no solutions in positive integers u, v, a, b, k.
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Lemma 2 implies that −d is a quadratic nonresidue modulo 4ab if d|(a + b).
Indeed, if the number −d were a quadratic residue modulo 4ab, then by selecting
the positive integer v := (a+ b)/d, we would see that the equation k2 = −d+4uab
with u ∈ N has a solution k ∈ N, which is impossible in view of Lemma 2. Note
that the set of divisors of a+ b, when a < b both run through the set {1, 2, . . . , n},
contains the set {1, 2, . . . , 2n− 1}. Thus, by Lemma 2, it holds

Corollary 3. For each positive integer n the 2n− 1 consecutive integers

4n!− 2n + 1, 4n!− 2n + 2, . . . , 4n!− 1

are quadratic nonresidues modulo 4n!.

Corollary 3 gives the example of at least (2 − ε) log m/ log log m consecutive
quadratic nonresidues modulo m = 4n! (by a completely elementary method). In
this direction, the most interesting problem is to determine how many consecutive
quadratic residues and consecutive quadratic nonresidues modulo m may occur
for prime numbers m. See, e.g., [3], [5], where it is shown that we have at least
c1 log m log log log m consecutive quadratic residues modulo m for infinitely many
primes m, and [7], where the factor log log log m is replaced by log log m under
assumption of the generalized Riemann hypothesis.

A set of positive integers which is a subset of ∪∞q=0E(4q + 3) was recently
considered in [1]. For M = ab and d = a + b, where a, b are positive integers and
b ≡ 3 (mod 4), put

E∗(t) := {n : n = tab− a− b}.
Evidently, E∗(t) ⊆ E(t). In [1] it was shown that the set E := ∪∞q=0E

∗(4q + 3)
does not contain perfect squares and that all prime numbers of the form 4s + 1
less than 1010 belong to E.

2. Proof of Theorem 1

Lemma 2 was apparently first proved by Yamamoto [13]. See also [9, Lemma 2]
and [4, Proposition 1.6]. Here is a short proof.

Since a = vd− b, equality (2) yields

k2 = 4u(vd− b)b− d = (4buv − 1)d− 4b2u.

So if (2) has a solution in positive integers, then the Jacobi symbol
(
−4b2u
4buv−1

)
=(

k2

4buv−1

)
must be equal to 1. Indeed, since −4b2u and 4buv − 1 are relatively

prime, we have
(
−4b2u
4buv−1

)
6= 0, and so

(
k2

4buv−1

)
= 1. We will show, however,

that the Jacobi symbol
(
−4b2u
4buv−1

)
is equal to −1. Indeed, write u ∈ N in the

form u = 2ru0, where r ≥ 0 is an integer and u0 ≥ 1 is an odd integer. Using(
−1

4buv−1

)
= −1 and also

(
2

4buv−1

)
= 1 in case u is even, i.e., r ≥ 1, we find that(

−4b2u

4buv − 1

)
=
(
−2r+2b2u0

4buv − 1

)
= −

(
2ru0

4buv − 1

)
= −

(
u0

4buv − 1

)
.
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Further, by the quadratic reciprocity law, in view of u0|u we conclude that

−
(

u0

4buv − 1

)
= −(−1)(u0−1)/2

(
4buv − 1

u0

)
= −(−1)(u0−1)/2

(
−1
u0

)
= −1.

Lemma 2 implies that k2 /∈ E(4). To complete the proof of Theorem 1 we need
to show that 288, 336, 4545 /∈ E(4).

The case n = 288 can be easily checked ‘by hand’. Observe that 288 = 4M − d
implies that d = 4s and M = (288 + 4s)/4 = 72 + s. Furthermore, from

72 + s = M ≥ ab ≥ a + b− 1 ≥ d− 1 = 4s− 1

we find that 1 ≤ s ≤ 24. So for each s = 1, 2, . . . , 24, it remains to check that
there are no positive integers a, b for which 4s|(a + b) and ab|(72 + s).

Note first that for s ≥ 11 we must have a + b = 4s and ab = 72 + s. Indeed, if
a + b > 4s, then a + b ≥ 8s and so

72 + s = M ≥ ab ≥ a + b− 1 ≥ 8s− 1,

which is impossible, because s ≥ 11. If ab < 72 + s, then 2ab ≤ 72 + s, so that

72 + s ≥ 2ab ≥ 2(a + b− 1) ≥ 2(d− 1) = 2(4s− 1) = 8s− 2,

which is a contradiction again. However, from a+b = 4s and ab = 72+s it follows
that

(4s)2 − 4(72 + s) = 4(4s2 − s− 72)
is a perfect square. So 4s2 − s − 72 must be a perfect square. It remains to
check the values of s between 11 and 24 which modulo 4 are 0 or 3, namely,
s = 11, 12, 15, 16, 19, 20, 23, 24. For none of these values, 4s2 − s− 72 is a perfect
square.

The values of s between 1 and 10 can also be excluded, because there are no
a, b with ab|(72 + s) for which 4s divides a + b; see the Table 1 below.

To complete the proof of the theorem, observe that if n = tM − d, then

n ≥ tab− a− b ≥ ta2 − 2a

in case a ≤ b. Hence (at − 1)2 ≤ nt + 1 and b ≤ (a + n)/(ta − 1). Therefore, all
values from 1 to 10000 which do not belong to E(4) can be found with Maple as
follows:

for n from 1 to 10000 do s := true ;
for a from 1 by 1 while (s and (at− 1)2 ≤ tn + 1) do

B := (a + n)/(ta− 1) ;
for b from a by 1 while (s and b ≤ B ) do

i f a + b (mod tab− n (mod tab)) = 0 then s := fa l se endif ;
endfor ;

endfor ;
i f s then k := k + 1 ;

p r i n t (n ) ;
endif ;

endfor ;
p r i n t (k ) :
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s 1 2 3 4 5 6 7 8 9 10
4s 4 8 12 16 20 24 28 32 36 40

72 + s 73 2·37 3·52 22 ·19 7·11 2·3·13 79 24 ·5 34 2·41

Table 1

For every particular value of n from 1 to 10000, we check all the pairs (a, b)
which satisfy the above inequalities for the existence of an appropriate value of d,
i.e., for the divisibility of a + b by some positive integer of the form d = tuab− n.
However, d ≤ a + b ≤ tab which means that there is only one possible such integer
d. Take a unique integer in the interval [1, tab] which equals −n modulo tab. It can
be expressed as tab− n (mod tab), as in the pseudocode describing our algorithm
above. To obtain a code for Maple, one only needs to change both ’endfor’ and
’endif’ to ’end’.

As a result (in less than three seconds), we got that only 100 perfect squares
and three exceptional numbers 288, 336, 4545 less than 10000 do not lie in E(4).
This completes the proof of Theorem 1.

The calculation to the bound 106 with Maple took us almost 40 minutes, so all
the calculations of the next section to the bound 2 · 109 have been performed with
C++.

3. Some speculations concerning the sets E(t)

As we already observed in (1), the sets N \ E(1) and N \ E(2) are empty. By
Lemma 2, the equation v(4uab− k2) = a + b has no solutions in positive integers
u, v, a, b, k. In particular, if t is a positive integer divisible by 4 and s ∈ N is such
that 4s|t, then the equation vs(4(t/4s)uab−k2) = a+b has no solutions in positive
integers u, v, a, b, k. The latter is equivalent to the equation v(tuab−sk2) = a+b.
Consequently, we obtain the following corollary

Corollary 4. The set E(t), where 4|t, does not contain the numbers of the
form sk2, where s ∈ N satisfies 4s|t and k ∈ N.

In particular, this implies that the set N\E(t) is infinite when 4|t. We conjecture
that all other sets, namely, N \ E(t) with t ∈ N which is not a multiple of 4 are
finite. More precisely, we get next conjecture

Conjecture 5. There exists an integer C(t) ∈ N ∪ {0} such that the set E(t)
contains all integers greater than or equal to C(t) + 1 if 4 does not divide t and
all integers greater than or equal to C(t) + 1 except for sk2, where 4s|t and k ∈ N,
if 4|t.

By (1), we have C(1) = C(2) = 0. It is known that the total number of
representations of t/n by the sum 1/x + 1/y + 1/z does not exceed c(ε)(n/t)2/3nε,
where ε > 0 (see [2]). We know that if n ∈ E(t) then t/n is expressible by the sum
of three unit fractions, so this bound also holds for the number of representations
of n in the form tM − d. On the other hand, by the above mentioned result of
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Vaughan [11], almost all positive integers are expressible by the sum of three unit
fractions. It is easy to see that for each fixed t ≥ 3, almost all positive integers
belong to the set E(t).

In fact, one can easily show a much stronger statement that almost all positive
integers can be written in the form pa−1 with some prime number p ≡ −1 (mod t)
and some a ∈ N. If n ∈ N can be written in this way, then

n = pa− 1 = (p + 1)a− a− 1 = tM − d ∈ E(t)

with b = 1, d = a + 1 and M = (p + 1)a/t. By the above, it suffices to show that
the density of positive integers n that have no prime divisors of the form p ≡ −1
(mod t) is zero. This can be easily done using a standard sieve argument. Let
p1 < p2 < p3 < . . . denote consecutive primes in the arithmetic progression kt−1,
k = 1, 2, 3, . . . . By Dirichlet’s theorem, the sum

∑∞
j=1 1/pj diverges. Thus for

each ε > 0, we can pick s ∈ N for which
∏s

j=1(1− 1/pj) < ε/2. Further, for each
N ≥ P := p1p2 . . . ps, select a unique k ∈ N for which kP ≤ N < (k + 1)P . The
number of positive integers n ≤ N without prime divisors in the set {p1, . . . , ps}
does not exceed the number of such positive integers in the interval [1, (k + 1)P ].
The latter, by the inclusion-exclusion principle, is equal to

(k + 1)P
s∏

j=1

(
1− 1

pj

)
≤ (k + 1)Pε

2
≤ (1 + 1/k)Nε

2
≤ 2Nε

2
= Nε.

This implies the claim.
Coming back to Conjecture 5, by calculation with C++, in the range [1, 2 · 109]

we found only three exceptional integers 6, 36, 3600 which do not belong to the
set E(3). So we conjecture that

E(3) = N \ {6, 36, 3600} and C(3) = 3600.

For t = 4, we have
288, 336, 4545, N2 ∈ N \ E(4),

and we conjecture that C(4) = 4545.
There are much more integers which do not lie in E(5). In the range [1, 2 · 109]

there are 48 such integers:
1, 2, 5, 6, 10, 12, 20, 21, 30, 32, 45, 46, 50, 60, 92, 102, 105, 126, 141, 182,

192, 210, 282, 320, 330, 366 , 406, 600, 650, 726, 732, 842, 846, 920, 992, 1020,

1446, 1452, 1905, 1920, 2100, 2250, 2262, 3962, 7320, 9050, 11520, 40500.

We conjecture that this list is full, i.e., C(5) = 40500. The list of integers in
[1, 2 · 109] which do not lie in E(6) contains 108 numbers, the largest one being
684450. We are more cautious to claim that C(6) = 684450 since this number is
quite large compared to the computation bound 2 · 109. Here is a result of our
calculations with C++ for 3 ≤ t ≤ 9.

In Table 2 for t = 4, all squares k2 are excluded, whereas for t = 8, all squares k2

and all numbers of the form 2k2 are excluded (see Corollary 4 and Conjecture 5).

Acknowledgment. We thank the referee for some useful comments.
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t computation bound number of exceptions largest exception
3 2 · 109 3 3600
4 2 · 109 3 4545
5 2 · 109 48 40500
6 2 · 109 108 684450
7 109 270 9673776
8 109 335 3701376
9 109 932 18481050

Table 2
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