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COMPOSITION OPERATOR ON THE SPACE OF FUNCTIONS
TRIEBEL-LIZORKIN AND BOUNDED VARIATION TYPE

M. MOUSSAI

Abstract. For a Borel-measurable function f : R→ R satisfying f(0) = 0 and

sup
t>0

t−1

Z
R

sup
|h|≤t

|f ′(x + h)− f ′(x)|p dx < +∞, (0 < p < +∞),

we study the composition operator Tf (g) := f◦g on Triebel-Lizorkin spaces F s
p,q(Rn)

in the case 0 < s < 1 + (1/p).

1. Introduction and the main result

The study of the composition operator Tf : g → f ◦ g associated to a Borel-
measurable function f : R → R on Triebel-Lizorkin spaces F sp,q(Rn), consists in
finding a characterization of the functions f such that

Tf (F sp,q(Rn)) ⊆ F sp,q(Rn).(1.1)

The investigation to establish (1.1) was improved by several works, for example
the papers of Adams and Frazier [1, 2], Brezis and Mironescu [6], Maz’ya and
Shaposnikova [9], Runst and Sickel [12] and [10]. There were obtained some
necessary conditions on f ; from which we recall the following results. For s > 0,
1 < p < +∞ and 1 ≤ q ≤ +∞
• if Tf takes L∞(Rn)∩ F sp,q(Rn) to F sp,q(Rn), then f is locally Lipschitz con-

tinuous.
• if Tf takes the Schwartz space S(Rn) to F sp,q(Rn), then f belongs locally to
F sp,q(R).

The first assertion is proved in [3, Theorem 3.1]. The proof of the second assertion
can be found in [12, Theorem 2, 5.3.1].

Bourdaud and Kateb [4] introduced the functions class U1
p (R), the set of

Lipschitz continuous functions f such that their derivatives, in the sense of distri-
butions, satisfy

Ap(f ′) :=
(

sup
t>0

t−1

∫
R

sup
|h|≤t

|f ′(x+ h)− f ′(x)|p dx
)1/p

< +∞,(1.2)
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and are endowed with the seminorm

‖f‖U1
p (R) := inf(‖g‖∞ +Ap(g)),

where the infimum is taken over all functions g such that f is a primitive of g. In
[4] the authors, proved the acting of the operator Tf on Besov space Bsp,q(Rn) for
1 ≤ p < +∞, 1 < s < 1 + (1/p) and f ∈ U1

p (R) with f(0) = 0. In [5] the same
result holds for 0 < s < 1 + (1/p).

In this work we will study the composition operator Tf on F sp,q(Rn) for a func-
tion f which belongs to U1

p (R), then we will obtain a result of type (1.1). To do
this, we introduce the set Vp(Rn) of the functions g : Rn → R such that

‖g‖Vp(Rn) :=
n∑
j=1

(∫
Rn−1

‖gx′j‖
p
BV 1

p (R)dx
′
j

)1/p

< +∞

where BV 1
p (R) is the Wiener space of the primitives of functions of bounded

p-variation (see Subsection 2.2 below for the definition) and

gx′j (y) := g(x1, . . . , xj−1, y, xj+1, . . . , xn), y ∈ R, x ∈ Rn.(1.3)

We will prove the following statement.

Theorem 1.1. Let 0 < p, q < +∞ and 0 < s < 1 + (1/p). Then there exists a
constant c > 0 such that the inequality

‖f ◦ g‖F s
p,q(Rn) ≤ c ‖f‖U1

p (R)

(
‖g‖p + ‖g‖Vp(Rn)

)
(1.4)

holds for all functions g ∈ Lp(Rn)∩Vp(Rn) and all f ∈ U1
p (R) satisfying f(0) = 0.

Moreover, for all such f , the operator Tf takes Lp(Rn) ∩ Vp(Rn) to F sp,q(Rn).

Remark. (i) Since F sp,q(Rn) ↪→ Lp(Rn), then Tf maps from F sp,q(Rn)∩Vp(Rn)
to F sp,q(Rn) under the assumptions of Theorem 1.1.
(ii) Since the Bessel potential spaces Hs

p(Rn) = F sp,2(Rn), 1 < p <∞, Theorem 1.1
covers the results of composition operators in case Hs

p(Rn) instead of F sp,q(Rn).

The paper is organized as follows. In Section 2 we collect some properties of the
needed function spaces F sp,q(Rn) and BV 1

p (R). Section 3 is devoted to the proof of
the main result where in a first step we study the case of 1-dimensional which is
the main tool when we prove Theorem 1.1. Also, our proof uses various Sobolev
and Peetre embeddings, Fubini and Fatou properties, etc. In Section 4 we give
some corollaries and prove the sharp estimate of (1.4).

Notation. We work with functions defined on the Euclidean space Rn. All
spaces and functions are assumed to be real-valued. We denote by Cb(Rn) the
Banach space of bounded continuous functions on Rn endowed with the supremum.
Let D(Rn) (resp. S(Rn) and S ′(Rn)) denotes the C∞-functions with compact
support (resp. the Schwartz space of all C∞ rapidly decreasing functions and its
topological dual). With ‖ · ‖p we denote the Lp-norm. We define the differences
by ∆hf := f(· + h) − f for all h ∈ Rn. If E is a Banach function space on
Rn, we denote by E`oc the collection of all functions f such that ϕf ∈ E for all
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ϕ ∈ D(Rn). As usual, constants c, c1, . . . are strictly positive and depend only on
the fixed parameters n, s, p, q; their values may vary from line to line.

2. Function spaces

2.1. Triebel-Lizorkin spaces

Let 0 < a ≤ ∞. For all measurable functions f on Rn, we set

Ms,u,a
p,q (f) :=

(∫
Rn

(∫ a

0

t−sq
( 1
tn

∫
|h|≤t

|∆hf(x)|u dh
)q/u dt

t

)p/q
dx
)1/p

.

Definition 2.1. Let 0 < p < +∞ and 0 < q ≤ +∞. Let s be a real satisfying

1 < s < 2 and s > nmax
(1
p
− 1,

1
q
− 1
)
.

Then, a function f ∈ Lp(Rn) belongs to F sp,q(Rn) if

‖f‖F s
p,q(Rn) := ‖f‖p +

n∑
j=1

Ms−1,1,∞
p,q (∂jf) < +∞.

The set F sp,q(Rn) is a quasi Banach space for the quasi-norm defined above.
For the equivalence of the above definition with other characterizations we refer
to [15, Theorem 3.5.3] from which we recall the following statement.

Proposition 2.2. Let 0 < p < +∞ and 0 < q, u ≤ +∞. Let s be a real
satisfying

1 < s < 2 and s > nmax
(1
p
− 1
u
,

1
q
− 1
u

)
.

Then, a function f ∈ Lp(Rn) belongs to F sp,q(Rn) if and only if

‖f‖p +Ms,u,∞
p,q (f) < +∞(2.1)

and the expression (2.1) is an equivalent quasi-norm in F sp,q(Rn). Moreover, this
assertion remains true if one replaces Ms,u,∞

p,q by Ms,u,a
p,q for any fixed a > 0.

The argument of the equivalence of above quasi-norms that we can replace the
integration for t ∈]0,+∞[ by t ≤ a for a fixed positive number a is the part of the
integral for which t > a can be easily estimated by the Lp-norm.

Embeddings. Triebel-Lizorkin spaces are spaces of equivalence classes w.r.t. al-
most everywhere equality. However, if such an equivalence class contains a contin-
uous representative, then usually we work with this representative and call also the
equivalence class a continuous function. Later on we need the following continuous
embeddings:

(i) The spaces F sp,q(Rn) are monotone with respect to s and q, more exactly
F sp,∞(Rn) ↪→ F tp,q(Rn) ↪→ F tp,∞(Rn) if t < s and 0 < q ≤ ∞.

(ii) With Besov spaces, we have Bsp,1(Rn) ↪→ F sp,q(Rn) ↪→ Bsp,∞(Rn).
(iii) If either s > n/p or s = n/p and 0 < p ≤ 1, then F sp,q(Rn) ↪→ Cb(Rn).

For various further embeddings we refer to [14, 2.3.2, 2.7.1] or [12, 2.2.2, 2.2.3].
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The Fatou property. Well-known the Triebel-Lizorkin space has the Fatou prop-
erty, cf. [8]. We will briefly recall it. Any f ∈ F sp,q(Rn) can be approximated (in
the weak sense in S ′(Rn)) by a sequence (fj)j≥0 such that any fj is an entire
function of exponential type

fj ∈ F sp,q(Rn) and lim sup
j→+∞

‖ fj‖F s
p,q(Rn) ≤ c ‖ f‖F s

p,q(Rn)

with a positive constant c independent of f . Vice versa, if for a tempered distri-
bution f ∈ S ′(Rn), there exists a sequence (fj)j≥0 such that

fj ∈ F sp,q(Rn) and A := lim sup
j→+∞

‖ fj‖F s
p,q(Rn) < +∞ ,

and limj→+∞ fj = f in the sense of distributions, then f belongs to F sp,q(Rn) and
there exists a constant c > 0 independent of f such that ‖f‖F s

p,q(Rn) ≤ cA.

2.2. Functions of bounded variation

For a function g : R→ R, we set

νp(g) := sup
( N∑
k=1

|g(bk)− g(ak)|p
)1/p

,(2.2)

taken over all finite sets {]ak, bk[ ; k = 1, . . . , N} of pairwise disjoint open intervals.
A function g is said to be of bounded p-variation if νp(g) < +∞. Clearly, by
considering a finite sequence with only two terms, we obtain |g(x)− g(y)| ≤ νp(g),
for all x, y ∈ R, hence g is a bounded function. The set of (generalized) primitives
of functions of bounded p-variation is denoted by BV 1

p (R) and endowed with the
seminorm

‖f‖BV 1
p (R) := inf νp(g),

where the infimum is taken over all functions g whose f is the primitive. For more
details about this space we refer to [11] or [5]. However, we need to recall some
embeddings

BV 1
p (R) ↪→ U1

p (R)(2.3)

(equality in case p = 1), see [5, Theorem 5] for the proof which is given for
1 < p < +∞ and can be easily extended to 0 < p ≤ 1, see also [7, Theorem 9.3].
The Peetre embedding theorem

Ḃ
1+(1/p)
p,1 (R) ↪→ BV 1

p (R) ↪→ Ḃ1+(1/p)
p,∞ (R) , (1 ≤ p < +∞),(2.4)

where the dotted space is the homogeneous Besov space.

Example. Let α ∈ R. We put uα(x) := |x+ α| − |α| for all x ∈ R, and

fα(x, y) := uα(x)χ[0,1](y) + uα(y)χ[0,1](x), ∀x, y ∈ R,

where χ[0,1] denotes the indicatrix function of [0, 1]. Clearly that νp(u′α) = 2 and
‖χ[0,1]‖BV 1

p (R) = 0. Then it holds fα ∈ Vp(R2) with ‖fα‖Vp(R2) = 4. The Vp(Rn)
space is defined in Section 1.
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3. Proof of the result

Theorem 1.1 can be obtained from the following statement.

Proposition 3.1. Let 0 < p, q < +∞, 0 < u < min(p, q) and 0 < s < 1/p.
Then there exists a constant c > 0 such that the inequality

Ms,u,∞
p,q ((f ◦ g)′) ≤ c‖f‖U1

p (R) ‖g‖BV 1
p (R)(3.1)

holds for all f ∈ U1
p (R) ∩ C1(R) and all real analytic functions g in BV 1

p (R).

Proof. For a better readability we split our proof in two steps.
Step 1. Let us prove

Ms,u,a
p,q ((f ◦ g)′) ≤ c a(1/p)−s ‖f‖U1

p (R) ‖g‖BV 1
p (R)(3.2)

for all a > 0 and all f ∈ U1
p (R)∩C1(R) and all real analytic functions g in BV 1

p (R).
Assume first a = 1. By the assumptions on f and g it holds (f ◦g)′ = (f ′ ◦g) g′.

We have ‖(f ◦ g)′‖∞ ≤ ‖f ′‖∞ ‖g′‖∞ and

|∆h((f ′ ◦ g)g′)(x)| ≤ ‖f ′‖∞ |∆hg
′(x)| + |g′(x)| |∆h(f ′ ◦ g)(x)|.

Hence
Ms,u,1
p,q ((f ◦ g)′) ≤ ‖f ′‖∞Ms,u,1

p,q (g′) + V (f ; g),
where

V (f ; g)

:=
(∫

R

(∫ 1

0

t−sq
(1
t

∫ t

−t
|∆h(f ′ ◦ g)(x)|u|g′(x)|udh

)q/u dt
t

)p/q
dx
)1/p

.
(3.3)

Estimate of Ms,u,1
p,q (g′). By writing

∫ 1

0
· · · =

∑∞
j=0

∫ 2−j

2−j−1 · · · and by an elementary
computation, we have∫ 1

0

t−sq
(1
t

∫ t

−t
|∆hg

′(x)|u dh
)q/u dt

t
≤ c1

∞∑
j=0

∫ 2−j

2−j−1
t−sq sup

|h|≤t
|∆hg

′(x)|q dt
t

≤ c2
∞∑
j=0

2jsq sup
|h|≤2−j

|∆hg
′(x)|q.

Let α := min(1, p/q). By using the monotonicity of the `r-norms (i.e. `1 ↪→ `1/α)
and by the Minkowski inequality w.r.t Lp/(αq), since q < +∞, we obtain

Ms,u,1
p,q (g′) ≤ c1

(∫
R

( ∞∑
j=0

2jsαq sup
|h|≤2−j

|∆hg
′(x)|αq

)p/(αq)
dx
)1/p

≤ c2
( ∞∑
j=0

2jsαq
(∫

R
sup
|h|≤2−j

|∆hg
′(x)|p dx

)(αq)/p)1/(αq)

≤ c3
( ∞∑
j=0

2j(s−(1/p))αq
)1/(αq)

‖g‖U1
p (R).

From the embedding (2.3) and the assumption on s, the desired estimate holds.
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Estimate of V (f ; g). In (3.3) the integral with respect to h can be limited to the
interval [0, t] denoting the corresponding expression by V+(f ; g). Let us notice
that the estimate with respect to [−t, 0] will be completely similar.

Again, by applying the Minkowski inequality twice, it holds

V+(f ; g)

≤
(∫

R

(∫ 1

0

(∫ 1

h

t−(s+(1/u))q |∆h(f ′ ◦ g)(x)|q |g′(x)|q dt
t

)u/q
dh
)p/u

dx
)1/p

≤
(∫ 1

0

(∫
R
|∆h(f ′ ◦ g)(x)|p |g′(x)|p dx

)u/p(∫ ∞
h

t−(s+(1/u))q dt
t

)u/q
dh
)1/u

≤ c
(∫ 1

0

h−(su+1)

(∫
R
|∆h(f ′ ◦ g)(x)|p |g′(x)|p dx

)u/p
dh
)1/u

.

Case 1: Assume that g′ does not vanish on R. By the Mean Value Theorem and
by the change of variable y = g(x), we find

V+(f ; g)

≤ c1‖g′‖1−(1/p)
∞

(∫ 1

0

h−(su+1)
(∫

R
sup

|v|≤h‖g′‖∞
|f ′(v + y)− f ′(y)|pdy

)u/p
dh
)1/u

≤ c2‖f‖U1
p (R) ‖g′‖∞

(∫ 1

0

hu((1/p)−s)−1dh
)1/u

≤ c3 ‖f‖U1
p (R) ‖g‖BV 1

p (R) .

Case 2: Assume that the set of zeros of g′ is nonempty. Then it is a discrete set
whose complement in R is the union of a family (Il)l of open disjoint intervals.
For any h > 0, we denote by I ′l,h the set of x ∈ Il whose distance to the boundary
of Il is greater than h. We set

I ′′l,h := Il \ I ′l,h and gl := g|Il
.

Clearly the function gl is a diffeomorphism of Il onto g(Il). Let us notice that I ′l,h
is an open interval, possibly empty. In case it is not empty, we have

| g(g−1
l (y) + h)− y | ≤ h sup

Il

|g′|, ∀y ∈ gl(I ′l,h).(3.4)

The set I ′′l,h is an interval of length at most 2h or the union of two such intervals,
and g′ vanishes at one of the endpoints of these or those intervals.

We write V+(f ; g) ≤ V1(f ; g) + V2(f ; g), where

V1(f ; g) :=
(∫ 1

0

h−(su+1)

(∑
l

∫
I′l,h

|∆h(f ′ ◦ g)(x)|p |g′(x)|p dx
)u/p

dh
)1/u

and V2(f ; g) is defined in the same way by replacing I ′l,h by I ′′l,h.
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Estimate of V1(f ; g). By the change of variable y = gl(x) and by (3.4), we deduce

V1(f ; g) ≤
(∫ 1

0

h−(su+1)

(∑
l

sup
Il

|g′|p−1

×
∫
g(I′l,h)

sup
|v|≤h supIl

|g′|
|f ′(v + y)− f ′(y)|p dy

)u/p
dh
)1/u

≤ c1 ‖f‖U1
p (R)

(∑
l

sup
Il

|g′|p
)1/p(∫ 1

0

hu((1/p)−s)−1 dh
)1/u

≤ c2 ‖f‖U1
p (R)

(∑
l

sup
Il

|g′|p
)1/p

.

Hence it suffices to show(∑
l

sup
t∈Il

|g′(t)|p
)1/p

≤ c ‖g‖BV 1
p
.(3.5)

Indeed, by the assumption on g, for any Il there exists ξl ∈ Il such that

|g′(ξl)| = sup
t∈Il

|g′(t)|.

Furthermore, set βl the right endpoint of Il. The open intervals { ]ξl, βl[ }l are
pairwise disjoint. Then the assertion (3.5) follows from∑

l

sup
t∈Il

|g′(t)|p =
∑
l

|g′(ξl)− g′(βl)|p ≤ νp(g′)p.

(See (2.2) for the definition of νp).

Estimate of V2(f ; g). Using both the elementary inequality |∆h(f ′ ◦ g)(x)| ≤
2‖f ′‖∞ and the properties of I ′′l,h, it holds

V2(f ; g) ≤ c1 ‖f ′‖∞
(∑

l

sup
Il

|g′|p
)1/p(∫ 1

0

hu((1/p)−s)−1 dh
)1/u

≤ c2 ‖f‖U1
p (R)‖g‖BV 1

p (R).

Hence we obtain (3.2) with a = 1. We put gλ(x) := g(λx) for all x ∈ R and all
λ > 0. Then (3.2) can be obtained for all a > 0 since ‖ga‖BV 1

p (R) = a‖g‖BV 1
p (R)

and
Ms,u,a
p,q ((f ◦ g)′) = a(1/p)−s−1Ms,u,1

p,q ((f ◦ ga)′).

Step 2: Proof of (3.1). Let a > 0. Let f and g be as in Proposition 3.1. By
Proposition 2.2 it holds

Ms,u,∞
p,q ((f ◦ g)′) ≤ ‖(f ◦ g)′‖F s

p,q(R) = ‖(f ◦ g)′‖p +Ms,u,a
p,q ((f ◦ g)′).

Applying (3.2), we obtain

Ms,u,∞
p,q ((f ◦ g)′) ≤ ‖f ′‖∞‖g′‖p + c1 a

(1/p)−s ‖f‖U1
p (R) ‖g‖BV 1

p (R)(3.6)
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with a positive constant c1 depending only on s, p and q (see the end of Step 1).
Now, by replacing g by gλ in (3.6), (gλ is defined in Step 1), and by using the
equality

Ms,u,∞
p,q

(
(f ◦ gλ)′

)
= λs+1−(1/p)Ms,u,∞

p,q ((f ◦ g)′),

we deduce
Ms,u,∞
p,q ((f ◦ g)′)

≤ λ−s‖f ′‖∞‖g′‖p + c1a
(1/p)−sλ(1/p)−s‖f‖U1

p (R)‖g‖BV 1
p (R)

(3.7)

for all a, λ > 0. Taking a = 1/λ. Now letting λ → +∞ in (3.7), we obtain the
desired result. �

Remark. Proposition 3.1 is also valid in the n-dimensional case. The inequality
(3.1) becomes

Ms−1,u,∞
p,q (∂j(f ◦ g)) ≤ c‖f‖U1

p (R) ‖g‖Vp(Rn), (j = 1, . . . , n)

for all f ∈ U1
p (R) ∩ C1(R) and all real analytic functions g in Vp(Rn).

Proof of Theorem 1.1. Step 1. Observe that the conditions f(0) = 0 and f ′ ∈
L∞(R) imply

‖f ◦ g‖p ≤ ‖f ′‖∞ ‖g‖p
which is sufficient for the estimate Tf (g) with respect to Lp(Rn)-norm.

Step 2: The case 1 < s < 1 + (1/p) and n = 1. We first consider a function
f ∈ U1

p (R), of class C1 and a function g real analytic in Lp(R) ∩ BV 1
p (R). By

Proposition 3.1, it holds

‖f ◦ g‖F s
p,q(R) ≤ c ‖f‖U1

p (R)

(
‖g‖p + ‖g‖BV 1

p (R)

)
.(3.8)

Now we prove (3.8) in the general case. Let g ∈ Lp(R) ∩BV 1
p (R) and f ∈ U1

p (R).
We introduce a function ρ ∈ D(R) satisfying ρ(0) = 1, and we set ϕj(x) :=
2jnF−1ρ(2jx) for all x ∈ R and all j ∈ N; here F−1ρ denotes the inverse Fourier
transform of ρ. We set also

fj := ϕj ∗ f − ϕj ∗ f(0) and gj := ϕj ∗ g.

Then the function gj is real analytic and gj → g in Lp(R). We have also

‖gj‖BV 1
p (R) ≤ c ‖g‖BV 1

p (R) , ∀j ∈ N.(3.9)

To prove (3.9), let {]ak, bk[, k = 1, . . . , N} be a set of pairwise disjoint intervals.
By the Minkowski inequality, it holds( N∑

k=1

∣∣∣ ∫
R
ϕj(y)

(
g′(bk − y)− g′(ak − y)

)
dy
∣∣∣p)1/p

≤
∫

R
|ϕj(y)|

( N∑
k=1

∣∣∣g′(bk − y)− g′(ak − y)
∣∣∣p)1/p

dy.
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Now, for all y ∈ R, the intervals ]ak−y, bk−y[ (k = 1, . . . , N) are pairwise disjoint.
Then ( N∑

k=1

|g′j(bk)− g′j(ak)|p
)1/p

≤ ‖F−1ρ‖1νp(g′) , ∀j ∈ N.

Hence we obtain (3.9).
The functions fj are C∞ such that fj(0) = 0 and satisfy

‖fj‖U1
p (R) ≤ c ‖f‖U1

p (R) , ∀j ∈ N.(3.10)

To prove (3.10), for all t > 0 and all h ∈ [−t, t] we trivially have

|ϕj ∗ f ′(x+ h)− ϕj ∗ f ′(x)| ≤
∫

R
|ϕj(y)| sup

|z|≤t
|f ′(x− y + z)− f ′(x− y)|dy.

By the Minkowski inequality, we have∫
R

sup
|h|≤t
|ϕj ∗ f ′(x+ h)− ϕj ∗ f ′(x)|pdx

≤
(∫

R
|ϕj(y)|

(∫
R

sup
|z|≤t
|f ′(x− y + z)− f ′(x− y)|pdx

)1/p

dy
)p

≤ t‖F−1ρ‖p1 Ap(f ′)p, (see (1.2) for the definition of Ap).

Consequently,

Ap(f ′j) + ‖f ′j‖∞ ≤ ‖F−1ρ‖1(Ap(f ′) + ‖f ′‖∞)

and we obtain the desired result.
On the other hand, we have

lim
j→+∞

‖fj − f‖∞ = 0.(3.11)

To prove (3.11), since limj→+∞ ϕj ∗ f(0) = f(0) = 0, the Lipschitz continuous of
f yields

|fj(x)− f(x)| ≤ ‖f ′‖∞
∫

R
|x− y||ϕj(x− y)|dy + |ϕj ∗ f(0)|

≤ c 2−j‖f ′‖∞ + |ϕj ∗ f(0)|.
Then the desired result holds. By the same argument, we obtain

‖gj − g‖∞ ≤ c 2−j‖g′‖∞.(3.12)

Now we apply (3.8) to fj and gj . Then by (3.9) and (3.10), we obtain

‖fj ◦ gj‖F s
p,q(R) ≤ c ‖f‖U1

p (R)

(
‖g‖p + ‖g‖BV 1

p (R)

)
.(3.13)

The elementary inequality

‖f ◦ g − fj ◦ gj‖∞ ≤ ‖f ′‖∞‖g − gj‖∞ + ‖f − fj‖∞
complemented by (3.11)–(3.12) yields the convergence of the sequence {fj ◦gj}j∈N
to f ◦ g in L∞(R). Since

|〈fj ◦ gj − f ◦ g, ψ〉| ≤ ‖fj ◦ gj − f ◦ g‖∞‖ψ‖1, ∀ψ ∈ D(R),
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thus we conclude that limj→+∞ fj ◦gj = f ◦g in the sense of distributions. Hence,
by the Fatou property of F sp,q(R), see Subsection 2.1, we deduce (3.8).

Step 3: The case 1 < s < 1 + (1/p) and n ≥ 2. We use the notation (1.3). Since
Triebel-Lizorkin space has the Fubini property (see [12, p. 70]), by (3.1) it holds

‖f ◦ g‖F s
p,q(Rn) ≤ c1

n∑
j=1

(∫
Rn−1

‖f ◦ gx′j‖
p
F s

p,q(R)dx
′
j

)1/p

≤ c2 ‖f‖U1
p (R)

n∑
j=1

(∫
Rn−1

(
‖gx′j‖

p
p + ‖gx′j‖

p
BV 1

p (R)

)
dx′j
)1/p

≤ c3 ‖f‖U1
p (R)

(
‖g‖p + ‖g‖Vp(Rn)

)
.

Step 4: The case 0 < s ≤ 1. Due to the monotonicity of the Triebel-Lizorkin
scale with respect to the smoothness parameter s, the result holds. Indeed, let
1 < t < 1 + (1/p). From Step 3, we have (1.4) with ‖f ◦ g‖F t

p,q(Rn) instead of
‖f ◦ g‖F s

p,q(Rn). Now we apply the continuous embedding F tp,q(Rn) ↪→ F sp,q(Rn).
This completes the proof. �

Remark. In case n = 1 and 1 ≤ p, q < +∞ the inequality (1.4) becomes

‖f ◦ g‖F s
p,q(R) ≤ c‖f‖U1

p (R)

(
‖g‖F s

p,q(R) + ‖g‖BV 1
p (R)

)
for all g ∈ Lp(R) ∩ BV 1

p (R), since F sp,q(R) ∩ BV 1
p (R) = Lp(R) ∩ BV 1

p (R) if s <

1 + (1/p). To prove this equality, we have Ḃ1+(1/p)
p,∞ (R) ∩ Lp(R) = B

1+(1/p)
p,∞ (R)

(see [12, 2.6.2, p. 95]). Then by (2.4) and by both B
1+(1/p)
p,∞ (R) ↪→ Bsp,1(R) and

Bsp,1(Rn) ↪→ F sp,q(Rn), it holds Lp(R) ∩BV 1
p (R) ↪→ F sp,q(R).

4. Concluding remarks

4.1. Some corollaries

In this section we fix a smooth cut-off function ϕ ∈ D(R) such that ϕ(x) = 1 for
|x| ≤ 1. We put ϕt(x) := ϕ

(
t−1x

)
, ∀x ∈ R and for all t > 0. Also for brevity we

introduce the space Fsp,q(Rn) := F sp,q(Rn)∩L∞(Rn) endowed with the quasi-norm

‖f‖Fs
p,q(Rn) := ‖f‖F s

p,q(Rn) + ‖f‖∞.

Theorem 1.1 has a consequence for the case of functions f which are only locally
in U1

p (R).

Corollary 4.1. Let s, p, q be real numbers as in Theorem 1.1. Then there exists
a constant c > 0 such that the inequality

‖f ◦ g‖Fs
p,q(Rn) ≤ c‖fϕ‖g‖∞‖U1

p (R)

(
‖g‖Fs

p,q(Rn) + ‖g‖Vp(Rn)

)
(4.1)

holds for all functions g ∈ Fsp,q(Rn) ∩ Vp(Rn) and all f ∈ U1,`oc
p (R) satisfying

f(0) = 0. Moreover, for all such functions f , the composition operator Tf takes
Fsp,q(Rn) ∩ Vp(Rn) to Fsp,q(Rn).
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Proof. Since f ◦ g = (fϕ‖g‖∞) ◦ g and (fϕt)(0) = 0, the result follows from
Theorem 1.1. �

There is consequence of Theorem 1.1 that we can obtain the equivalence of
acting condition and boundedness.

Corollary 4.2. Let s, p, q be real numbers as in Theorem 1.1. Let f be a func-
tion in U1,`oc

p (R) satisfying f(0) = 0. Then the following assertions are equivalent:
(i) Tf satisfies the acting condition Tf (Fsp,q(Rn) ∩ Vp(Rn)) ⊆ Fsp,q(Rn).

(ii) Tf maps bounded sets in Fsp,q(Rn)∩ Vp(Rn) into bounded sets in Fsp,q(Rn).

Proof. Let t > 0. By (4.1), it holds

‖f ◦ g‖Fs
p,q(Rn) ≤ c t‖fϕt‖U1

p (R)(4.2)

for all g ∈ Fsp,q(Rn) ∩ Vp(Rn) such that ‖g‖Fs
p,q(Rn) + ‖g‖Vp(Rn) ≤ t. Now, from

(4.2), we conclude that Tf maps bounded sets in Fsp,q(Rn)∩Vp(Rn) into bounded
sets in Fsp,q(Rn). �

Remark. If n/p < s < 1 + (1/p), then we can replace Fsp,q(Rn) by F sp,q(Rn) in
Corollaries 4.1–4.2, since F sp,q(Rn) ↪→ Cb(Rn).

We show that Theorem 1.1 can be extended to the case of the boundedness
between Besov spaces and Triebel-Lizorkin spaces.

Corollary 4.3. Let 1 ≤ p, q < +∞ and 0 < s < 1 + (1/p). Then there exists a
constant c > 0 such that the inequality

‖f ◦ g‖F s
p,q(Rn) ≤ c ‖f‖U1

p (R) ‖g‖B1+(1/p)
p,1 (Rn)

holds for all functions g ∈ B1+(1/p)
p,1 (Rn) and all f ∈ U1

p (R) satisfying f(0) = 0.

Moreover, for all such functions f , the operator Tf takes B1+(1/p)
p,1 (Rn) to F sp,q(Rn).

Proof. This is an easy consequence of Theorem 1.1 and the following continuous
embedding

B
1+(1/p)
p,1 (Rn) ↪→ Vp(Rn).(4.3)

To prove (4.3), we use the notation (1.3) and the equivalent norm in Besov space
given by

‖f‖p +
n∑
j=1

(∫ 1

0

t−sq ‖∆2
tej
f‖qp

dt
t

)1/q

, (0 < s < 2),

where {e1, . . . , en} denotes the canonical basis of Rn, see [15, p. 96].
Let f ∈ B1+(1/p)

p,1 (Rn). Since Ḃ1+(1/p)
p,1 (R) ∩ Lp(R) = B

1+(1/p)
p,1 (R) (in the sense

of equivalent norms, see, e.g. [15]), then by (2.4), we get

‖f‖Vp(Rn) ≤ c
n∑
j=1

(∫
Rn−1

‖fx′j‖
p

B
1+(1/p)
p,1 (R)

dx′j

)1/p

.
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Using the Minkowski inequality with respect to Lp(Rn−1), it follows∫
Rn−1

(∫ 1

0

t−(1+(1/p)) ‖∆2
tek
fx′j‖p

dt
t

)p
dx′j ≤

(∫ 1

0

t−(1+(1/p)) ‖∆2
tek
f‖p

dt
t

)p
for j, k ∈ {1, . . . , n}. Then we obtain the desired result. �

Remark. As in Corollary 4.1 we can see the case when the function f associated
to the composition operator Tf belongs locally to U1

p (R). Indeed, if 1 ≤ p, q < +∞
and 0 < s < 1 + (1/p), it holds that

‖f ◦ g‖F s
p,q(Rn) ≤ c ‖fϕ‖g‖∞‖U1

p (R) ‖g‖B1+(1/p)
p,1 (Rn)

for all f ∈ U1,`oc
p (R) such that f(0) = 0 and all g ∈ B1+(1/p)

p,1 (Rn) ∩ L∞(Rn).

4.2. Sharpness of estimate

For simplicity we define

‖g‖ := ‖g‖F s
p,q(Rn) + ‖g‖Vp(Rn).

According to Corollary 4.1, there is a substantial class of nonlinear functions f for
which there exist constants cf = c(f) > 0 such that

‖ f ◦ g ‖F s
p,q(Rn) ≤ cf ‖g‖, ∀g ∈ F sp,q(Rn) ∩ Vp(Rn).

In this form the inequality is optimal if we avoid linear functions in the following
sense.

Proposition 4.4. Let Ω: [0,+∞)→ [0,+∞) be a continuous function satisfy-
ing

lim
t→+∞

t1/p Ω(t) = 0.(4.4)

If f is a function such that the inequality

‖f ◦ g‖F s
p,q(Rn) ≤ Ω(‖g‖)(4.5)

holds for all g ∈ F sp,q(Rn) ∩ Vp(Rn), then f is an affine function (linear, if we
assume that f(0) = 0).

Proof. Let us define a smooth function ϕ ∈ D(Rn) such that ϕ(x) = 1 on the
cube Q := [−1, 1]n and ϕ(x) = 0 if x /∈ 2Q. We put ∆2

h := ∆h ◦∆h and

ga(x) := ax1ϕ(x) , (x = (x1, x
′) ∈ R× Rn−1, a > 0).

We have ‖ga‖ ∼ a and

∆2
h(f ◦ ga)(x) = ∆2

ah1
f(ax1), (∀x ∈ 1

2(
√
n)
Q, ∀h ∈ 1

4(
√
n)
Q, ∀a > 0).

On the other hand, for all h ∈ 1
4(
√
n)
Q (i.e. |h| ≤ 1/4), we have

‖∆2
h(f ◦ ga)‖p ≥

(∫
x∈(1/(2

√
n))Q

|∆2
h(f ◦ ga)(x)|pdx

)1/p

≥ c a−1/p
(∫ a/(2

√
n)

−a/(2
√
n)

|∆2
ah1

f(y)|pdy
)1/p

.
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By the above inequality, the embedding F sp,q(Rn) ↪→ Bsp,∞(Rn) and the assumption
(4.5), we obtain(∫ a/(2

√
n)

−a/(2
√
n)

|∆2
ah1

f(y)|p dy
)1/p

≤ c1 |h|s a1/p Ω(‖ga‖)

≤ c2 a1/p Ω(‖ga‖), (∀h : |h| ≤ 1/4).

By setting u := ah1, we deduce that(∫ a/(2
√
n)

−a/(2
√
n)

|∆2
uf(y)|p dy

)1/p

≤ c1 a1/p Ω(c2a), ∀a > 0, ∀u : |u| ≤ a.

By applying the assumption (4.4) on Ω and taking a to +∞, we obtain∫ +∞

−∞
|f(y + 2u)− 2f(y + u) + f(y)|p dy = 0, ∀u ∈ R.

Hence f(y + 2u)− 2f(y + u) + f(y) = 0 a.e., ∀y, u ∈ R. Then

f ′(y + 2u)− f ′(y + u) = 0, i.e.,

it implies f ′(u) = f ′(0) (∀u ∈ R). We deduce that f ′ is a constant. �
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