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VARIATIONS ON BROWDER’S THEOREM

H. ZARIOUH and H. ZGUITTI

Abstract. In this note we introduce and study the new spectral properties (Bb),

(Bab) and (Baw) as continuation of [7, 8, 12] which are variants of the classical
Browder’s theorem.

1. Introduction and terminology

This paper is a continuation of previous papers of the first author and Berkani [7, 8]
and the paper [12], where the generalization of Weyl’s theorem and Browder’s
theorem is studied. The purpose of this paper is to introduce and study the new
properties (Bb), (Bab) and (Baw) (see later for definitions) in connection with
known Weyl type theorems and properties ([3, 5, 7, 8, 12, 13]), which play roles
analogous to Browder’s theorem and Weyl’s theorem, respectively.

To introduce all these concepts, we begin with some preliminary definitions
and results. Let L(X) denote the Banach algebra of all bounded linear operators
acting on a complex infinite-dimensional Banach space X. For T ∈ L(X), let
T ∗, N(T ), R(T ), σ(T ) and σa(T ) denote the dual, the null space, the range, the
spectrum and the approximate point spectrum of T , respectively If R(T ) is closed
and α(T ) := dimN(T ) < ∞ (resp. β(T ) := codimR(T ) < ∞), then T is called
an upper (resp. a lower) semi-Fredholm operator. If T is either an upper or a
lower semi-Fredholm operator, then T is called a semi-Fredholm operator, and
the index of T is defined by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are
finite, then T is called a Fredholm operator. If T is Fredholm operator of index
zero, then T is said to be a Weyl operator. The Weyl spectrum of T is defined by
σW (T ) = {λ ∈ C : T −λI is not Weyl} and the Weyl essential approximate point
spectrum is defined by σSF−+ (T ) = {λ ∈ C : T−λI is not an upper semi-Fredholm
with ind(T−λI) ≤ 0}.

Following [10], we say that Weyl’s theorem holds for T ∈ L(X) if σ(T ) \
σW (T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}. Here and
elsewhere in this paper, for A ⊂ C, isoA is the set of all isolated points of A. Ac-
cording to Rakočević [17], an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem
if σa(T )\σSF−+ (T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T−λI) <∞}.
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It is known [17] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s the-
orem, but the converse does not hold in general.

For T ∈ L(X) and a nonnegative integer n, define T[n] to be the restriction of
T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular, T[0] = T ). If
for some integer n, the range space R(Tn) is closed and T[n] is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-
B-Fredholm operator. In this case the index of T is defined as the index of the
semi-Fredholm operator T[n], see [6]. Moreover, if T[n] is a Fredholm operator,
then T is called a B-Fredholm operator, see [4]. A semi-B-Fredholm operator is
an upper or a lower semi-B-Fredholm operator. An operator T is said to be a B-
Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum
σBW (T ) of T is defined by σBW (T ) = {λ ∈ C : T −λI is not a B-Weyl operator}.

Following [5], an operator T ∈ L(X) is said to satisfy generalized Weyl’s theorem
if σ(T ) \ σBW (T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : α(T − λI) > 0} is the
set of all isolated eigenvalues of T . It is proven in [5, Theorem 3.9] that an
operator satisfying generalized Weyl’s theorem satisfies also Weyl’s theorem, but
the converse does not hold in general.

Recall that the ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N :
N(Tn) = N(Tn+1)} and the descent δ(T ) of T is defined by δ(T ) = inf{n ∈ N :
R(Tn) = R(Tn+1)} with inf ∅ =∞. Let Πa(T ) denote the set of all left poles of T
defined by Πa(T ) = {λ ∈ C : a(T−λI) <∞ and R((T−λI)a(T−λI)+1) is closed};
and let Π0

a(T ) denote the set of all left poles of T of finite rank, that is Π0
a(T ) =

{λ ∈ Πa(T ) : α(T−λI) <∞}. According to [11], we say that a-Browder’s theorem
holds for T ∈ L(X) if σa(T ) \ σSF−+ (T ) = Π0

a(T ).

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the
set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) :
α(T−λI) <∞}. According to [14], a complex number λ is a pole of the resolvent of
T if and only if 0 < max (a(T −λI), δ(T −λI)) <∞. Moreover, if this is true, then
a(T − λI) = δ(T − λI). Also according to [14], the space R((T − λI)a(T−λI)+1) is
closed for each λ ∈ Π(T ). Hence we have always Π(T )⊂Πa(T ) and Π0(T )⊂Π0

a(T ).
We say that Browder’s theorem holds for T ∈ L(X) if σ(T )\σW (T ) = Π0(T ), and
generalized Browder’s theorem holds for T ∈ L(X) if σ(T ) \ σBW (T ) = Π(T ). It
is proven in [1, Theorem 2.1] that generalized Browder’s theorem is equivalent to
Browder’s theorem.

An approximate point spectrum variant of Weyl’s theorem was introduced by
Rakočević [16], property (w). Recall that T ∈ L(X) possesses property (w) if
σa(T ) \ σSF−+ (T ) = E0(T ). It is proven in [16, Corollary 2.3] that property (w)
implies Weyl’s theorem, but not conversely.

Following [12], an operator T ∈ L(X) is said to possess property (Bw) if
σ(T ) \ σBW (T ) = E0(T ). It is shown [12, Theorem 2.4] that an operator pos-
sessing property (Bw) satisfies generalized Browder’s theorem. According to [8],
an operator T ∈ L(X) is said to possess property (gaw) if σ(T )\σBW (T ) = Ea(T ),
where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λI) > 0} and is said to possess property
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(gab) if σ(T ) \ σBW (T ) = Πa(T ). It is proven in [8, Theorem 3.5] that prop-
erty (gaw) implies property (gab) but not conversely. The two last properties
are extensions to the context of B-Fredholm theory, of properties (aw) and (ab),
respectively, see [8]. Recall [8] that an operator T ∈ L(X) is said to possess
property (aw) if σ(T ) \ σW (T ) = E0

a(T ) and is said to possess property (ab) if
σ(T ) \ σW (T ) = Π0

a(T ).
An operator T ∈ L(X) is said to have the single valued extension property at

λ0 ∈ C (abbreviated SVEP at λ0) if for every open neighborhood U of λ0, the
only analytic function f : U −→ X which satisfies the equation (T − λI)f(λ) = 0
for all λ ∈ U , is the function f ≡ 0. An operator T ∈ L(X) is said to have the
SVEP if T has this property at every λ ∈ C (see [15]). Trivially, every operator
T has the SVEP at λ ∈ isoσ(T ).

2. Property (Bb)

In this section we investigate a new variant of Browder’s theorem. We introduce
the property (Bb) which is intermediate between property (Bw) and Browder’s
theorem. We also give characterizations of operators possessing property (Bb).
Before that we start by some remarks about property (Bw).

Remark 2.1.
1. The property (Bw) is not intermediate between Weyl’s theorem and generalized
Weyl’s theorem (resp. a-Weyl’s theorem). Indeed, the operator U defined below
as in Example 2.5 satisfies a-Weyl’s theorem and as E(U) = {0, 1}, then U satisfies
also generalized Weyl’s theorem, but it does not possess property (Bw). Now let
T = 0 ⊕ S be defined on the Banach space `2(N) ⊕ `2(N), where S is defined
on `2(N) by S(x1, x2, x3, . . .) = (0, 1

2x1,
1
3x2, . . .). Then σ(T ) = σBW (T ) = {0}

and E(T ) = {0}. So σ(T ) \ σBW (T ) 6= E(T ), i.e. T does not satisfy generalized
Weyl’s theorem. But since E0(T ) = ∅, then σ(T ) \ σBW (T ) = E0(T ), i.e. T
possesses property (Bw). On the other hand, the operator T = R ⊕ S where R
is the unilateral right shift operator defined on `2(N) and S is defined on `2(N)
by S(x1, x2, x3, x4, . . .) = ( 1

2x2,
1
3x3,

1
4x4, . . .). Then σ(T ) = σBW (T ) = D(0, 1)

which is the closed unit disc in C, σa(T ) = C(0, 1) ∪ {0} where C(0, 1) is the unit
circle of C and E0(T ) = Π0

a(T ) = ∅. This implies that σ(T ) \ σBW (T ) = E0(T ),
i.e. T possesses property (Bw), but it does not satisfy a-Weyl’s theorem because
σa(T ) = σSF−+

(T ) = C(0, 1) ∪ {0} and E0
a(T ) = {0}, so that σa(T ) \ σSF−+ (T ) 6=

E0
a(T ).

2. The property (Bw) is not transmitted from an operator to its dual. To see this,
if we consider the operator S defined as in part 1), then S possesses property (Bw)
since σ(S) = σBW (S) = {0} and E0(S) = ∅. But its adjoint which is defined on
`2(N) by S∗(x1, x2, x3, . . .) = ( 1

2x2,
1
3x3, . . .) does not possess this property, since

σ(S∗) = σBW (S∗) = {0} and E0(S∗) = {0}.

It is signaled in [12] (precisely after Definition 2.11) that if T ∈ L(X) is an
operator possessing property (Bw) and satisfying the condition isoσ(T ) = ∅, then
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T satisfies Weyl’s theorem. But the following theorem gives a stronger version of
this remark.

Theorem 2.2. Let T ∈ L(X). T possesses property (Bw) if and only if T
satisfies Weyl’s theorem and σBW (T ) = σW (T ).

Proof. Suppose that T possesses property (Bw), that is σ(T ) \ σBW (T ) =
E0(T ). Let λ ∈ σ(T ) \ σW (T ), as σ(T ) \ σW (T ) ⊂ σ(T ) \ σBW (T ) then λ ∈
σ(T )\σBW (T ). Thus λ ∈ E0(T ) and σ(T )\σW (T ) ⊂ E0(T ). Now let us consider
λ ∈ E0(T ). As σ(T ) \ σBW (T ) = E0(T ), then T − λI is a B-Weyl operator. Since
α(T − λI) < ∞, by virtue of [7, Lemma 2.2], we deduce that T − λI is a Weyl
operator. It follows that λ ∈ σ(T ) \ σW (T ), and hence σ(T ) \ σW (T ) = E0(T ),
i.e. T satisfies Weyl’s theorem. Then we have σBW (T ) = σ(T ) \ E0(T ) and
σW (T ) = σ(T ) \ E0(T ). So σBW (T ) = σW (T ).

Conversely, the condition σBW (T ) = σW (T ) entails that σ(T ) \ σBW (T ) =
σ(T ) \ σW (T ). Weyl’s theorem for T implies that σ(T ) \ σBW (T ) = E0(T ) and T
possesses property (Bw). �

Definition 2.3. A bounded linear operator T ∈ L(X) is said to possess prop-
erty (Bb) if σ(T ) \ σBW (T ) = Π0(T ).

The property (Bb) is not intermediate between Browder’s theorem and a-
Browder’s theorem. Indeed, let R and L denote the unilateral right shift operator
and the unilateral left shift operator, respectively on the Hilbert space `2(N) and
we consider the operator T defined by T = L⊕R⊕R. Then α(T ) = 1, β(T ) = 2
and so 0 6∈ σSF−+

(T ). Since a(T ) = ∞, then T does not have the SVEP at 0.
Hence T does not satisfy a-Browder’s theorem. Since σ(T ) = σBW (T ) = D(0, 1)
and Π0(T ) = ∅, then T possesses property (Bb). On the other hand, it is easily
seen that the operator T defined by T (x1, x2, x3, . . .) = (0, 1

2x1, 0, 0, . . .) satisfies
a-Browder’s theorem. But it does not possess property (Bb), since σ(T ) = {0}
and σBW (T ) = Π0(T ) = ∅.

However, we have the following characterizations of operators possessing prop-
erty (Bb).

Theorem 2.4. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bb).

(ii) T satisfies Browder’s theorem and Π(T ) = Π0(T ).
(iii) T satisfies Browder’s theorem and σBW (T ) = σW (T )

Proof. (i)=⇒(ii) Assume that T possesses property (Bb), that is σ(T )\σBW (T )
= Π0(T ) and let λ 6∈ σBW (T ) be arbitrary. If λ ∈ σ(T ), then λ ∈ σ(T )\σBW (T ) =
Π0(T ). Consequently, λ ∈ isoσ(T ) which implies that T has the SVEP at λ. If
λ 6∈ σ(T ), then obviously T has the SVEP at λ. In the two cases, we have T has the
SVEP at λ, and this is equivalent [2, Proposition 2.2] to the saying that T satisfies
generalized Browder’s theorem and then Browder’s theorem. Thus Π(T ) = Π0(T ).

(ii)=⇒ (iii) Assume that T satisfies Browder’s theorem and Π(T ) = Π0(T ).
Since Browder’s theorem is equivalent to generalized Browder’s theorem, then
σBW (T ) = σ(T ) \Π(T ) = σ(T ) \Π0(T ) = σW (T ).

(iii)=⇒(i) Obvious. �
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The following example shows that in general Weyl’s theorem or Browder’s the-
orem do not imply property (Bw) or property (Bb), respectively.

Example 2.5. Let U ∈L(`2(N)) be defined by U(x1, x2, x3, . . .)=(0, x2, x3, . . .),
∀(x) = (xi) ∈ `2(N). Then σa(U) = σ(U) = {0, 1}, σSF−+ (U) = σW (U) = {1} and

E0
a(U) = E0(U) = {0}. Thus σa(U) \ σSF−+ (U) = E0

a(U) and σ(U) \ σW (U) =

E0(U), i.e. U satisfies a-Weyl’s theorem and Weyl’s theorem. On the other hand,
Π(U) = {0, 1} and Π0(U) = Π0

a(U) = {0}, and consequently σa(U) \ σSF−+ (U) =

Π0
a(U) and σ(U) \ σW (U) = Π0(U), so that U satisfies a-Browder’s theorem and

Browder’s theorem. Moreover, σBW (U) = ∅. Hence σ(U) \ σBW (U) 6= E0(U)
and σ(U) \ σBW (U) 6= Π0(U), i.e. U does not possess either property (Bw) no
property (Bb). Here Π(U) 6= Π0(U).

From Theorem 2.2 and Theorem 2.4 we deduce that property (Bw) implies
property (Bb). But the converse is not true in general as shown by the following
example.

Example 2.6. Let T ∈ L(`2(N)) be defined by T (x1, x2, x3, . . .) = ( 1
2x2,

1
3x3,

1
4x4, . . .). Then T possesses (Bb) because σ(T ) = σBW (T ) = {0} and Π0(T ) = ∅,
while T does not possess property (Bw) because E0(T ) = {0}. Note that Π(T ) = ∅.

Moreover, we give conditions for the equivalence of property (Bw) and property
(Bb) in the next theorem.

Theorem 2.7. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bw).

(ii) T possesses property (Bb) and E0(T ) = Π0(T ).
(iii) T possesses property (Bb) and E0(T ) = Π(T ).

In particular, if T is polaroid (i.e. isoσ(T ) = Π(T )), then the properties (Bw)
and (Bb) are equivalent.

Proof. (i) =⇒ (ii) Assume that T possesses property (Bw). Then from The-
orem 2.2, T satisfies Weyl’s theorem, which implies from [3, Corollary 5] that
E0(T ) = Π0(T ). Thus σ(T ) \ σBW (T ) = Π0(T ), i.e. T possesses property (Bb)
and E0(T ) = Π0(T ).

(ii) =⇒ (iii) Follows directly from Theorem 2.4.
(iii) =⇒ (i) Assume that T possesses property (Bb) and E0(T ) = Π(T ). Again

by Theorem 2.4, σ(T ) \ σBW (T ) = Π(T ) and as E0(T ) = Π(T ), then
σ(T ) \ σBW (T ) = E0(T ) and T possesses property (Bw).

In the special case when T is polaroid, the condition E0(T ) = Π0(T ) is always
satisfied. Therefore the two properties (Bw) and (Bb) are equivalent. �

3. Properties (Baw) and (Bab)

In this section we investigate a new variant of property (aw) (resp. property (ab)).
We introduce the property (Baw) which is intermediate between property (Bw)
and property (aw). We also introduce the property (Bab) which is intermediate
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between property (Bb) and property (ab). Furthermore, we shows that property
(Bab) is a week version of property (Baw).

Definition 3.1. A bounded linear operator T ∈ L(X) is said to possess prop-
erty (Baw) if σ(T ) \ σBW (T ) = E0

a(T ), and is said to possess property (Bab) if
σ(T ) \ σBW (T ) = Π0

a(T ).

Theorem 3.2. Let T ∈ L(X). Then T possesses property (Baw) if and only if
T possesses property (Bab) and E0

a(T ) = Π0
a(T ). In particular, if T is a-polaroid

(i.e. isoσa(T ) = Πa(T )), then the properties (Baw) and (Bab) are equivalent.

Proof. Suppose that T possesses property (Baw), that is σ(T ) \ σBW (T ) =
E0
a(T ). If λ ∈ σ(T ) \ σBW (T ), then λ ∈ E0

a(T ) and so λ ∈ isoσa(T ). As λ 6∈
σBW (T ), in particular, T − λI is an upper semi-B-Fredholm operator, then from
[5, Theorem 2.8], we have λ ∈ Πa(T ). Since α(T − λI) is finite, λ ∈ Π0

a(T ).
Therefore σ(T ) \ σBW (T ) ⊂ Π0

a(T ). Now if λ ∈ Π0
a(T ), as Π0

a(T ) ⊂ E0
a(T ) is

always true, then λ ∈ E0
a(T ) = σ(T ) \ σBW (T ). Hence σ(T ) \ σBW (T ) = Π0

a(T ),
i.e. T possesses property (Bab) and E0

a(T ) = Π0
a(T ). The converse is trivial.

Moreover, if T is an a-polaroid, then E0
a(T ) = Π0

a(T ), and hence, in this case
the two properties (Baw) and (Bab) are equivalent. �

In the next theorem, we give a characterization of operators possessing property
(Baw).

Theorem 3.3. Let T ∈ L(X). T possesses property (Baw) if and only if T
possesses property (aw) and σBW (T ) = σW (T ).

Proof. Suppose that T possesses property (Baw) and let λ ∈ σ(T ) \ σW (T ).
Then λ ∈ σ(T ) \ σBW (T ) = E0

a(T ). Therefore σ(T ) \ σW (T ) ⊂ E0
a(T ). Now if

λ ∈ E0
a(T ), then λ ∈ σ(T ) \ σBW (T ). This implies that λ 6∈ σBW (T ), and since

α(T −λI) is finite, then as it had been already mentioned, we have λ 6∈ σW (T ), so
that λ ∈ σ(T ) \ σW (T ). Hence σ(T ) \ σW (T ) = E0

a(T ) and T possesses property
(aw). Then we have σBW (T ) = σ(T ) \ E0

a(T ) and σW (T ) = σ(T ) \ E0
a(T ). So

σBW (T ) = σW (T ).
Conversely, suppose that T possesses property (aw) and σBW (T ) = σW (T ).

Then σ(T ) \ σW (T ) = E0
a(T ) and σBW (T ) = σW (T ). Thus σ(T ) \ σBW (T ) =

E0
a(T ) and T possesses property (Baw). �

Remark 3.4.
1. From Theorem 3.3, if T ∈ L(X) possesses property (Baw), then T pos-
sesses property (aw). However, the converse is not true in general: for exam-
ple, the operator U defined as in Example 2.5 possesses property (aw) because
σ(U) \ σW (U) = E0

a(U) = {0}, but it does not possess property (Baw) because
σ(U) \ σBW (U) = {0, 1}.
2. Generally, the two properties (gaw) and (Baw) are independent. For this, it is
easily seen that the operator T =0⊕S defined as in Remark 2.1 possesses property
(Baw), but it does not possess property (gaw) and the operator defined as in
Example 2.5 possesses property (gaw), but it does not possess property (Baw).
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3. The property (Baw) as well as property (Bw), do not pass from an oper-
ator to its dual. Indeed, the operator S defined as in part 2) of Remark 2.1
possesses property (Baw) since E0

a(S) = ∅. But its adjoint S∗ does not possess
this property since E0

a(S∗) = {0}. Similarly, property (Bab) is not transmit-
ted from an operator to its dual. To see this, we consider the operator T de-
fined by T (x1, x2, x3, . . .) = (εx1, 0, x2, x3, . . .) for fixed 0 < ε < 1 on the Hilbert
space `2(N). Then σ(T ) = σ(T ∗) = D(0, 1), σBW (T ) = σBW (T ∗) = D(0, 1) and
Π0
a(T ) = ∅. This implies that T possesses property (Bab), but since Π0

a(T ∗) = {ε},
then T ∗ does not possess property (Bab).

Corollary 3.5. Let T ∈ L(X). T possesses property (Baw) if and only if T
possesses property (Bw) and E0(T ) = E0

a(T ).

Proof. Suppose that T possesses property (Baw), then by Theorem 3.3,
T possesses property (aw) which implies by virtue of [9, Theorem 2.5] that E0(T ) =
E0
a(T ). Since σ(T ) \ σBW (T ) = E0

a(T ), then σ(T ) \ σBW (T ) = E0(T ) and T pos-
sesses property (Bw). Conversely, suppose that T possesses property (Bw) and
E0(T ) = E0

a(T ). Then σ(T ) \ σBW (T ) = E0(T ) = E0
a(T ) and hence T possesses

property (Baw). �

From Theorem 3.2 and Corollary 3.5, we have if T ∈ L(X) possesses property
(Baw), then T possesses property (Bab) and property (Bw). But the converses do
not hold in general as shown by the following example. Let T = R⊕ S be defined
as in Remark 2.1. Then σ(T ) = σBW (T ) = D(0, 1), σa(T ) = C(0, 1) ∪ {0} and
E0(T )=Π0

a(T )=∅. This implies that σ(T )\σBW (T )=E0(T ) and σ(T )\σBW (T ) =
Π0
a(T ), i.e. T possesses property (Bw) and property (Bab). But it does not possess

property (Baw) because E0
a(T ) = {0}, so that σ(T ) \ σBW (T ) 6= E0

a(T ).
Now we give characterizations of operators possessing property (Bab) in the

next theorem.

Theorem 3.6. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bab).

(ii) T possesses property (ab) and σBW (T ) = σW (T ).
(iii) T possesses property (ab) and Π(T ) = Π0

a(T ).

Proof. (i)⇐⇒(iii) Suppose that T possesses property (Bab). If λ∈σ(T )\σW (T ),
then λ ∈ σ(T ) \ σBW (T ) = Π0

a(T ). Thus σ(T ) \ σW (T ) ⊂ Π0
a(T ). If λ ∈ Π0

a(T ),
then λ ∈ σ(T )\σBW (T ) and T−λI is a B-Fredholm operator with ind(T−λI) = 0.
As a(T − λI) < ∞, then a(T − λI) = δ(T − λI) < ∞ and λ ∈ Π0(T ). Therefore
α(T − λI) = β(T −λI) < ∞. Consequently, λ 6∈ σW (T ) and σ(T ) \ σW (T ) ⊃
Π0
a(T ). Hence σ(T ) \ σW (T ) = Π0

a(T ) and T possesses property (ab). Moreover,
we have that σ(T ) \ σW (T ) = Π0(T ), i.e. T satisfies Browder’s theorem and then
generalized Browder’s theorem. Thus Π(T ) = Π0

a(T ). Conversely, suppose that T
possesses property (ab) and Π(T ) = Π0

a(T ). Then from [8, Theorem 2.4], T satisfies
generalized Browder’s theorem σ(T ) \ σBW (T ) = Π(T ), and as Π(T ) = Π0

a(T ),
then σ(T ) \ σBW (T ) = Π0

a(T ) and T possesses property (Bab).
(i) ⇐⇒ (ii) Suppose that T possesses property (Bab), then T possesses prop-

erty (ab). Thus σBW (T ) = σ(T ) \ Π0
a(T ) and σW (T ) = σ(T ) \ Π0

a(T ). So
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σBW (T ) = σW (T ). Conversely, suppose that T possesses property (ab) and
σBW (T ) = σW (T ). Then σ(T ) \ σW (T ) = Π0

a(T ) and σBW (T ) = σW (T ). Thus
σ(T ) \ σBW (T ) = Π0

a(T ) and T possesses property (Bab). �

Remark 3.7.
1. From Theorem 3.6, if T ∈ L(X) possesses property (Bab), then T possesses
property (ab). But the converse is not true in general as shown by the following
example. Let T the operator defined by T (x1, x2, x3, . . .) = (0, 1

2x1, 0, 0, . . .) on the
Hilbert space `2(N). Then σ(T ) = {0}, Π0

a(T ) = ∅, σW (T ) = {0}. So T possesses
property (ab). But it does not possess property (Bab), since σBW (T ) = ∅. Note
that Π(T ) = Πa(T ) = {0}.
2. The property (Bab) is not intermediate between property (gab) and property
(ab). Indeed, the operator defined as in the first part of this remark possesses
property (gab), but it does not possess property (Bab). On the other hand, if we
consider the operator T = 0⊕R defined on the Banach space `2(N)⊕`2(N), where
R is the unilateral right shift operator, then T possesses property (Bab) because
σ(T ) = σBW (T ) = D(0, 1) and Π0

a(T ) = ∅, but it does not possess property (gab)
because Πa(T ) = {0}.

Corollary 3.8. Let T ∈ L(X). Then the following assertions are equivalent:
(i) T possesses property (Bab).

(ii) T possesses property (Bb) and Π0(T ) = Π0
a(T ).

(iii) T possesses property (Bb) and Π(T ) = Π0
a(T ).

Proof. (i) ⇐⇒ (ii) Suppose that T possesses property (Bab), that is σ(T ) \
σBW (T ) = Π0

a(T ). From Theorem 3.6, we deduce that T satisfies Browder’s
theorem and σBW (T ) = σW (T ). Hence σ(T ) \ σBW (T ) = Π0(T ), i.e. T possesses
property (Bb) and Π0(T ) = Π0

a(T ). Conversely, suppose that T possesses property
(Bb) and Π0(T ) = Π0

a(T ). Then σ(T )\σBW (T ) = Π0(T ) and Π0(T ) = Π0
a(T ). So

σ(T ) \ σBW (T ) = Π0
a(T ) and T possesses property (Bab).

(ii) ⇐⇒ (iii) Follows directly from Theorem 2.4. �

From Corollary 3.8, if T ∈ L(X) possesses property (Bab), then T possesses
property (Bb). However, the converse is not true in general as shown in the
following example.

Example 3.9. Let T be defined on the Banach space `2(N) ⊕ `2(N) by
T = R ⊕ U , where R is the unilateral right shift operator on `2(N) and U is
defined as in Example 2.5. Then σ(T ) = σBW (T ) = D(0, 1), Π0

a(T ) = {0} and
Π(T ) = Π0(T ) = ∅. This shows that T possesses property (Bb), but it does not
possess property (Bab).

4. Summary of results

In this last part we give a summary of the results obtained in this paper. We use
the abbreviations (Bw), (Baw), (gaw), (aw), (w), W , gW and aW to signify that
an operator T ∈ L(X) obeys property (Bw), property (Baw), property (gaw),
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property (aw), property (w), Weyl’s theorem, generalized Weyl’s theorem and
a-Weyl’s theorem, respectively. Similarly, the abbreviations (Bb), (Bab), (gab),
(ab), aB, B and gB have analogous meaning with respect to the properties intro-
duced in this paper or to the properties introduced in [8] or to Browder’s theorems.

The following table summarizes the meaning of various theorems and properties.

(Bw) σ(T ) \ σBW (T ) = E0(T ) (Bb) σ(T ) \ σBW (T ) = Π0(T )

(Baw) σ(T ) \ σBW (T ) = E0
a(T ) (Bab) σ(T ) \ σBW (T ) = Π0

a(T )

(gaw) σ(T ) \ σBW (T ) = Ea(T ) (gab) σ(T ) \ σBW (T ) = Πa(T )

(aw) σ(T ) \ σW (T ) = E0
a(T ) (ab) σ(T ) \ σW (T ) = Π0

a(T )

(w) σa(T ) \ σSF−+ (T ) = E0(T ) aB σa(T ) \ σSF−+ (T ) = Π0
a(T )

W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = Π0(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = Π(T )

aW σa(T ) \ σSF−+ (T ) = E0
a(T )

In the following diagram arrows signify implications between Weyl’s theorems,
Browder’s theorems, property (w), property (Bw), property (Bb), property (Baw)
and property (Bab). The numbers near the arrows are references to the results in
the present paper (numbers without brackets) or to the bibliography therein (the
numbers in square brackets).

(w) (gaw)
[9]−−−−→ gW gWy[16]

y[8]

y[5]

aW
[17]−−−−→ W

[9]←−−−− (aw) 3.3←−−−− (Baw) 3.5−−−−→ (Bw) 2.2−−−−→ Wy[5]

y[3]

y[8]

y3.2

y2.7

y[3]

aB −−−−→
[11]

B ←−−−−
[8]

(ab) ←−−−−
3.6

(Bab) −−−−→
3.8

(Bb) −−−−→
2.4

Bx[8] m [1]

(gab) ←−−−−
[8]

(gaw) gB
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