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ON THE GEODESIC TORSION OF A TANGENTIAL

INTERSECTION CURVE OF TWO SURFACES IN R3

B. UYAR DÜLDÜL and M. ÇALIŞKAN

Abstract. In this paper, we find the unit tangent vector and the geodesic torsion of

the tangential intersection curve of two surfaces in all three types of surface-surface
intersection problems (parametric-parametric, implicit-implicit and parametric-imp-

licit) in three-dimensional Euclidean space.

1. Introduction

We know that the curvatures of a curve can be calculated easily if the curve is
given by its parametric equation. But the curvature calculations become harder
when the curve is given as an intersection of two surfaces in three-dimensional
Euclidean space.

In differential geometry the surfaces are generally given by their parametric or
implicit equations. For that reason, the surface-surface intersection (SSI) problems
can be three types: parametric-parametric, implicit-implicit, parametric-implicit.
The SSI is called transversal or tangential if the normal vectors of the surfaces
are linearly independent or linearly dependent, respectively at the intersecting
points. In transversal intersection problems, the tangent vector of the intersec-
tion curve can be found easily by the vector product of the normal vectors of the
surfaces. Because of this, there are many studies related to the transversal inter-
section problems in literature on differential geometry. Also there are some studies
about tangential intersection curve and its properties. Some of these studies are
mentioned below.

Willmore [1] describes how to obtain the Frenet apparatus of the transversal
intersection curve of two implicit surfaces in Euclidean 3-space. Using the implicit
function theorem, Hartmann [2] obtains formulas for computing the curvature κ
of the transversal intersection curve for all three types of SSI problems. Ye and
Maekawa [3] present algorithms for computing the differential geometry properties
of intersection curves of two surfaces and give algorithms to evaluate the higher-
order derivatives for transversal as well as tangential intersections for all three
types of intersection problems. Wu, Aléssio and Costa [4], using only the normal
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vectors of two regular surfaces, present an algorithm to compute the local geomet-
ric properties of the transversal intersection curve. Goldman [5], using the classical
curvature formulas in differential geometry, provides formulas for computing the
curvatures of intersection curve of two implicit surfaces. Using the implicit func-
tion theorem, Aléssio [6] gives a method to compute the Frenet vectors and also the
curvature and the torsion of the intersection curve of two implicit surfaces. Aléssio
[7] presents algorithms for computing the differential geometry properties of inter-
section curves of three implicit surfaces in R4, using the implicit function theorem
and generalizing the method of Ye and Maekawa. Düldül [8] gives a method for
computing the Frenet vectors and the curvatures of the transversal intersection
curve of three parametric hypersurfaces in four-dimensional Euclidean space. In
our recent study [9], we give the geodesic curvature and the geodesic torsion of the
intersection curve of two transversally intersecting surfaces in Euclidean 3-space.
Aléssio [10] presents formulas on geodesic torsion, geodesic curvature and normal
curvature of the intersection curve of n− 1 implicit hypersurfaces in Rn.

In this study, first we find the unit tangent vector of the tangential intersection
curve of two surfaces in all three types of SSI problems. Then we calculate the
geodesic torsion of the intersection curve and give examples related to the subject.

2. Preliminaries

Consider a unit-speed curve α : I → R3, parametrized by arclength function s. Let
{t(s),n(s),b(s)} be the moving Frenet frame along α, where t, n and b denote
the tangent, the principal normal and the binormal vector fields, respectively. The
vector t′ = α′′(s) is called the curvature vector and the length of this vector de-
notes the curvature κ(s) of the curve α.

Let {t(s),V(s),N(s)} be the moving Darboux frame on the curve α, where
N(s) is the surface normal restricted to α and V(s) = N(s)× t(s). Then, we have

t′ = κgV + κnN

V′ = −κgt + τgN

N′ = −κnt− τgV
(1)

where κn, κg and τg are the normal curvature of the surface in the direction of t,
the geodesic curvature and the geodesic torsion of the curve α, respectively, [11].
Thus from (1), the normal curvature, the geodesic curvature and the geodesic
torsion of the curve α are

κn = 〈t′,N〉, κg = 〈t′,V〉, τg = 〈V′,N〉,

where 〈, 〉 denotes the scalar product.
We know that the geodesic curvature and the geodesic torsion of the transversal

intersection curve of the surfaces A and B with the parametric equations X(u, v)



ON THE GEODESIC TORSION OF A TANGENTIAL INTERSECTION 179

and Y(p, q), respectively, with respect to the surface A are given by

κAg =
1√

EG− F 2

{[(
Fu −

Ev
2

)
〈Xu, t〉 −

Eu
2
〈Xv, t〉

]
(u′)

2

+ (Gu〈Xu, t〉 − Ev〈Xv, t〉)u′v′

+

[
Gv
2
〈Xu, t〉 −

(
Fv −

Gu
2

)
〈Xv, t〉

]
(v′)

2
}

+
√
EG− F 2(u′v′′ − v′u′′)

(2)

and

τAg =
1√

EG− F 2

{
(EM − FL) (u′)

2
+ (EN −GL)u′v′

+ (FN −GM) (v′)
2
}(3)

in which u′ and v′ can be found by [3]

u′ =
1

EG− F 2
(G〈t,Xu〉 − F 〈t,Xv〉)

v′ =
1

EG− F 2
(E〈t,Xv〉 − F 〈t,Xu〉)

(4)

where E, F , G and L, M , N , respectively, are the first and the second fundamental
form coefficients of the surface A (Eqs. (2) and (3) can be found in classic books
on differential geometry). The values u′′ and v′′ in Eq. (2) can be computed from
the linear equation system [9]

〈Xu,N
B〉u′′ + 〈Xv,N

B〉v′′ = 〈Λ,NB〉
〈Xu, t〉u′′ + 〈Xv, t〉v′′ = −〈Xuu, t〉(u′)2 − 2〈Xuv, t〉u′v′ − 〈Xvv, t〉(v′)2

where Λ = Ypp(p
′)2 + 2Ypqp

′q′ + Yqq(q
′)2 −Xuu(u′)2 − 2Xuvu

′v′ −Xvv(v
′)2.

p′ =
1

eg − f2
(g〈t,Yp〉 − f〈t,Yq〉)

q′ =
1

eg − f2
(e〈t,Yq〉 − f〈t,Yp〉)

(5)

and e, f , g and l, m, n, respectively, denote the first and the second fundamental
form coefficients of the surface B.

Also, the geodesic curvature of the transversal intersection curve of the surfaces
A and B with respect to the surface A is

κAg =
1

‖∇f‖
{(y′z′′ − y′′z′)fx + (z′x′′ − z′′x′)fy + (x′y′′ − x′′y′)fz},(6)

where t = (x′, y′, z′), t′ = (x′′, y′′, z′′) and f(x, y, z) = 0 denotes the implicit
equation of A [12].
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2.1. Tangential intersection curve of parametric-parametric surfaces

Let A and B be two regular surfaces given by parametric equations X(u, v) and
Y(p, q), respectively. Let us assume that these surfaces intersect tangentially along
the intersection curve α(s). Then, the unit normal vectors of the surfaces A and
B are given by

NA =
Xu ×Xv

‖Xu ×Xv‖
, NB =

Yp ×Yq

‖Yp ×Yq‖
.

Since the surfaces intersect tangentially, the normals NA and NB are parallel
at all points of α. It can be assumed that NA = NB = N by orienting the surfaces
properly. In this case, we can not find the unit tangent vector t of the intersection
curve by the vector product of the normal vectors. Therefore, we have to find new
methods to compute the geometric properties of the intersection curve α.

Since VA = NA×t and VB = NB×t, let us denote VA = VB = V. Thus from
(1), the geodesic torsions of the intersection curve α with respect to the surfaces
A and B are

τAg = τBg = 〈V′,N〉.

Also, we may write α(s) = X(u(s), v(s)) = Y(p(s), q(s)) which yield

t = α′(s) = Xuu
′ + Xvv

′ = Ypp
′ + Yqq

′.(7)

If we take the vector product of both hand sides of (7) with Yp and Yq, and then
take the dot product of both hand sides of these equations with N, we have

p′ = b11u
′ + b12v

′

q′ = b21u
′ + b22v

′,
(8)

where

b11 =
det(Xu,Yq,N)√

eg − f2
, b12 =

det(Xv,Yq,N)√
eg − f2

,

b21 =
det(Yp,Xu,N)√

eg − f2
, b22 =

det(Yp,Xv,N)√
eg − f2

.

Thus from (3), we have

D1(u′)2 +D2u
′v′ +D3(v′)2 = d1(p′)2 + d2p

′q′ + d3(q′)2,(9)

where

D1 =
EM − FL√
EG− F 2

, D2 =
EN −GL√
EG− F 2

, D3 =
FN −GM√
EG− F 2

,

d1 =
em− fl√
eg − f2

, d2 =
en− gl√
eg − f2

, d3 =
fn− gm√
eg − f2

.

Substituting (8) into (9), we have

c1(u′)2 + c2u
′v′ + c3(v′)2 = 0,(10)
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where
c1 = d1b

2
11 + d2b11b21 + d3b

2
21 −D1,

c2 = 2d1b11b12 + d2(b11b22 + b12b21) + 2d3b21b22 −D2,

c3 = d1b
2
12 + d2b12b22 + d3b

2
22 −D3.

If we denote ρ = u′

v′ when c1 6= 0, or ν = v′

u′ when c1 = 0 and c3 6= 0, Eq. (10)
becomes

c1ρ
2 + c2ρ+ c3 = 0

or

c3ν
2 + c2ν = 0.

Let ∆ = c22 − 4c1c3. If ∆ > 0, then solving the above equations according to ρ
or ν, two different values are found. For these values of ρ and ν, let us consider
the vectors

ri =
ρiXu + Xv

‖ρiXu + Xv‖
or ri =

Xu + νiXv

‖Xu + νiXv‖
, i = 1, 2.(11)

We need to determine the vector which denotes the tangent vector r1 and/or r2
at the intersection point P .

Let R1 denotes the plane determined by the common surface normal N and the
vector r1 at P . R1 has the parametric equation Z(r, w). Since the normals of the
plane R1 and the surface A are perpendicular, the intersection of these surfaces
is the transversal intersection at P . Let us denote the normal vector of the plane
R1 by N1 = N× r1. Then, the unit tangent vector of the transversal intersection
curve of the surface A and the plane R1 is determined by

t1 =
N×N1

||N×N1||
.

From (2), the geodesic curvature κAg1 of this intersection curve with respect to R1

is

κAg1 =
√
E1G1 − F 2

1 (r′w′′ − r′′w′),(12)

where E1 = 〈Zr,Zr〉, F1 = 〈Zr,Zw〉, G1 = 〈Zw,Zw〉 and

r′ =
1

E1G1 − F 2
1

(G1〈t1,Zr〉 − F1〈t1,Zw〉) ,

w′ =
1

E1G1 − F 2
1

(E1〈t1,Zw〉 − F1〈t1,Zr〉) .
(13)

The unit tangent vector of the transversal intersection curve of A and R1 is

t1 = Zrr
′ + Zww

′ = Xuu
′ + Xvv

′,

where u′ and v′ can be calculated by taking t1 instead of t in Eq. (4). Since
Zrr = Zrw = Zww = (0, 0, 0),

t′1 = Zrr
′′ + Zww

′′ = Xuu
′′ + Xvv

′′ + ΛA
1 ,(14)
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where ΛA
1 = Xuu(u′)2 + 2Xuvu

′v′ + Xvv(v
′)2. By taking the dot product of both

hand sides of (14) with N, we get

〈Zr,N〉r′′ + 〈Zw,N〉w′′ = 〈ΛA
1 ,N〉.(15)

Since t′1 is perpendicular to t1,

〈Zr, t1〉r′′ + 〈Zw, t1〉w′′ = 0(16)

is also obtained. (15) and (16) constitute a linear system with respect to r′′ and w′′

which has nonvanishing coefficients determinant, i.e., δ = −‖Zr×Zw‖·‖N×N1‖ 6=
0. Thus, r′′ and w′′ can be computed by solving this linear system. So, from
Eq. (12), κAg1 is calculated.

On the other hand, the unit tangent vector of the transversal intersection curve
of the surface B and the plane R1 is also t1. Then, the geodesic curvature of this
intersection curve with respect to R1 is

κBg1 =
√
E1G1 − F 2

1 (r′w′′ − r′′w′),(17)

where r′ and w′ are calculated by Eq. (13). Let us find r′′ and w′′. The unit
tangent vector of the transversal intersection curve of B and R1 is

t1 = Zrr
′ + Zww

′ = Ypp
′ + Yqq

′,

where p′ and q′ can be computed by taking t1 instead of t in Eq. (5). Also,

t′1 = Zrr
′′ + Zww

′′ = Ypp
′′ + Yqq

′′ + ΛB
1 ,(18)

where ΛB
1 = Ypp(p

′)2 +2Ypqp
′q′+Yqq(q

′)2. If we solve Eq. (16) and the equation
obtained by taking the dot product of both hand sides of (18) with N, we find the
unknowns r′′ and w′′. Thus, κBg1 is calculated from Eq. (17).

Similarly, if we denote the plane determined by the common surface normal N
and the vector r2 at P by R2, we can calculate the geodesic curvatures κAg2 and

κBg2 (with respect to R2) of the intersection curve of the plane R2 with A and R2

with B, respectively.

We have the following cases for ∆ > 0:

1) If κAg1 = κBg1 , then the transversal intersection curve of both R1 with A and

R1 with B is the same curve around the point P , i.e., t = r1. If κAg2 = κBg2 ,
then the transversal intersection curve of both R2 with A and R2 with B
is the same curve around the point P , i.e., t = r2. Hence, P is a branch
point.

2) If κAg1 = κBg1 and κAg2 6= κBg2 (or κAg1 6= κBg1 and κAg2 = κBg2), then the intersec-
tion curve is unique, i.e., t = r1 (or t = r2).

3) If κAg1 6= κBg1 and κAg2 6= κBg2 , then P is an isolated contact point.

We have the following cases for ∆ = 0:

1) If c1 = c2 = c3 = 0, then P is an isolated contact point when κAg1 6= κBg1 ,

or the surfaces have at least second order contact at P when κAg1 = κBg1
obtained by taking any tangent vector r1.
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2) If c21 + c22 + c23 6= 0, then r1 = r2. In this case, t = r1 when κAg1 = κBg1 or P

is an isolated contact point when κAg1 6= κBg1 .

If ∆ < 0, then P is an isolated contact point.
Thus, using the unit tangent vector t of the tangential intersection curve of the

surfaces A and B, u′ and v′ can be calculated from Eq. (4). Substituting these
values into (3), the geodesic torsion of the intersection curve with respect to the
surfaces A and B at P is obtained.

Example 1. Let A and B be two surfaces given by the parametric equations,
respectively,

X(u, v) =

(
3 cosu− cosu cos v +

1√
10

sinu sin v, 3 sinu− sinu cos v

− 1√
10

cosu sin v, u+
3√
10

sin v

)
and

Y(p, q) = (2 cos p, 2 sin p, q),

where 0 ≤ u, v, p, q ≤ 2π (Figure 1). Let us find the unit tangent vector and the
geodesic torsions with respect to the surfaces A and B of the intersection curve at
the point P = X(0, 0) = Y(0, 0) = (2, 0, 0).

The partial derivatives of the surface A are Xu = (0, 2, 1), Xv = (0,− 1√
10
, 3√

10
),

Xuu = (−2, 0, 0), Xuv = ( 1√
10
, 0, 0) and Xvv = (1, 0, 0) at P . Thus we find the

unit normal vector and the first and the second fundamental form coefficients of
A at P as NA = (1, 0, 0), E = 5, F = 1√

10
, G = 1, L = −2, M = 1√

10
, N = 1.

Similarly, for the surface B at the point P , we get NB = (1, 0, 0), Yp = (0, 2, 0),
Yq = (0, 0, 1), Ypp = (−2, 0, 0), Ypq = Yqq = (0, 0, 0), e = 4, g = 1, l = −2,
f = m = n = 0.

Figure 1. The tangential intersection of the cylinder and the canal surface.
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Figure 2. Tangential intersection of a cylinder and sphere.

Also, we have D1 = d2 = 1, D2 =
√

10, D3 = d1 = d3 = 0 and b11 = b21 = 1,
b12 = − 1

2
√
10

, b22 = 3√
10

. Therefore, we obtain 5
√

10ν + ν2 = 0, i.e., ∆ = 250 > 0.

By solving this equation, the values ν1 = 0 and ν2 = −5
√

10 are found. So, from
(11), we obtain r1 = (0, 2√

5
, 1√

5
) and r2 = (0, 1√

5
,− 2√

5
).

Let us denote the common unit normal vectors of the surfaces A and B by N.
Since the normal vector of R1 determined by N and r1 is N1 = (0,− 1√

5
, 2√

5
),

R1 has the parametric equation Z(r, w) = (r, 2w,w). Then, Zr = (1, 0, 0),
Zw = (0, 2, 1), E1 = 1, F1 = 0, G1 = 5, t1 = (0,− 2√

5
,− 1√

5
), r′ = 0,

w′ = − 1√
5
, r′′ = − 2

5 , w′′ = 0. So, we have κAg1 = − 2
5 . Similarly, we get

κBg1 = − 2
5 . On the other hand, we find κAg2 = 238

245 , κBg2 = −1
10 . Since κAg1 = κBg1

and κAg2 6= κBg2 , the vector r1 is the tangent vector of the tangential intersection

curve of the surfaces A and B at P , i.e., t = (0, 2√
5
, 1√

5
). Also, we find u′ = 1√

5
,

v′ = 0 and p′ = q′ = 1√
5
. Thus, we obtain the geodesic torsions τAg = τBg = 1

5 of

the tangential intersection curve at the point P .
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Figure 3. Tangential intersection of two cylinders.
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Example 2. Let us consider the parametric surfaces A and B, respectively, with

X(u, v) = (cosu cos v,−1 + sinu cos v, sin v), Y(p, q) = (cos q, 1 + sin q, p),

where −π < u < π, −π2 < v < π
2 , −1 < p < 1,−π < q < π.

These surfaces intersect tangentially at the origin. We have c1 = 0, c2 =
−1, c3 = 0, i.e. ∆ > 0. Applying the explained method for r1 = (0, 0, 1) and
r2 = (−1, 0, 0), we find κAg1 = −1, κBg1 = 0, κAg2 = −1, κBg2 = 1. Since κAg1 6= κBg1
and κAg2 6= κBg2 , P is an isolated contact point (Figure 2).

Example 3. The surfaces A . . .X(u, v) = (cosu, sinu, v) and B . . .Y(p, q) =
(p, 2 + cos q, sin q) (0 < u, q < 2π, −1 < v, p < 1) intersect tangentially at the
point P = (0, 1, 0). We obtain ∆ = 0 with c1 = c2 = c3 = 0. Thus, by taking
r1 = (−1, 0, 0), we have κAg1 6= κBg1 . Hence, P is an isolated contact point (Figure 3).

Example 4. Let us consider the parametric surfaces A andB respectively, with

X(u, v) = (u, v, v4), Y(p, q) = (p, q, 0), −1 < u, v, p, q < 1,

which are intersect tangentially at origin. For these surfaces we find ∆ = 0 with
c1 = c2 = c3 = 0. By taking r1 = (1, 0, 0) we have κAg1 = κBg1 . Thus, the surfaces
have at least second order contact at origin (Figure 4).
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Figure 4. Tangential intersection with higher order contact.

2.2. Tangential intersection curve of implicit-implicit surfaces

Let A and B be two regular tangentially intersecting surfaces with implicit equa-
tions f(x, y, z) = 0 and g(x, y, z) = 0, respectively. Since ∇f = (fx, fy, fz) 6= 0
and ∇g = (gx, gy, gz) 6= 0, the normal vectors of the surfaces are

NA =
∇f
‖∇f‖

, NB =
∇g
‖∇g‖

.

By orienting the surfaces properly, we can assume NA = NB = N along the
intersection curve α. Let us denote the unit tangent vector of α with α′(s) = t =
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(x′, y′, z′). Since τAg = 〈(VA)′,NA〉 and VA = NA × t, we have

τAg =
1

‖∇f‖
{(a3fy − a2fz)x′ + (a1fz − a3fx)y′ + (a2fx − a1fy)z′},(19)

where (NA)′ = (a1, a2, a3) and

ai =
1

‖∇f‖
(
fxixix

′
i + fxixjx

′
j + fxixk

x′k
)

− 1

‖∇f‖3
[
f2xi

(
fxixi

x′i + fxixj
x′j + fxixk

x′k
)

+ fxi
fxj

(
fxjxi

x′i + fxjxj
x′j + fxjxk

x′k
)

+ fxi
fxk

(
fxkxi

x′i + fxkxj
x′j + fxkxk

x′k
) ]

with x1 = x, x2 = y, x3 = z (i, j, k = 1, 2, 3 cyclic).
Similarly, for the geodesic torsion of the intersection curve with respect to the

surface B, we find

τBg =
1

‖∇g‖
{(b3gy − b2gz)x′ + (b1gz − b3gx)y′ + (b2gx − b1gy)z′},(20)

where (NB)′ = (b1, b2, b3) and

bi =
1

‖∇g‖
(
gxixi

x′i + gxixj
x′j + gxixk

x′k
)

− 1

‖∇g‖3
[
g2xi

(
gxixix

′
i + gxixjx

′
j + gxixk

x′k
)

+ gxigxj

(
gxjxix

′
i + gxjxjx

′
j + gxjxk

x′k
)

+ gxigxk

(
gxkxix

′
i + gxkxjx

′
j + gxkxk

x′k
) ]

with x1 = x, x2 = y, x3 = z (i, j, k = 1, 2, 3 cyclic).
Since the surfaces A and B intersect tangentially along the intersection curve,

τAg = τBg is valid. Then, from Eq. (19) and (20), we obtain

λ1x
′ + λ2y

′ + λ3z
′ = 0,(21)

where

λ1 =
a3fy − a2fz
||∇f ||

+
b2gz − b3gy
||∇g||

,

λ2 =
a1fz − a3fx
||∇f ||

+
b3gx − b1gz
||∇g||

,

λ3 =
a2fx − a1fy
||∇f ||

+
b1gy − b2gx
||∇g||

.

Also, since the tangent vector t is perpendicular to the gradient vector ∇f , we
have

fxx
′ + fyy

′ + fzz
′ = 0.(22)
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Eq. (21) and Eq. (22) constitute a linear system with unknowns x′, y′ and z′.
Since at least one of the fx, fy and fz is non-zero, we assume fz is non-zero. Then

we get z′ = − fxx
′+fyy

′

fz
from Eq. (22). Substituting this value of z′ into (21), we

find

µ1x
′ + µ2y

′ = 0,(23)

where µ1 = λ1fz−λ3fx and µ2 = λ2fz−λ3fy. Since x′, y′ and z′ are components

of the unit tangent vector, x′ and y′ both can not be zero. If we denote ρ = x′

y′

when y′ 6= 0, or ν = y′

x′ when x′ 6= 0, and solve (23) for ρ or ν, then

r1 =
(ρy′, y′,−ρfx+fyfz

y′)

‖(ρy′, y′,−ρfx+fyfz
y′)‖

or r2 =
(x′, νx′,− fx+νfyfz

x′)

‖(x′, νx′,− fx+νfyfz
x′)‖

are found. Now, let us determine the vector which corresponds to the tangent
vector at the point P . If we denote the plane determined by N and r1 with R1,
then R1 has the implicit equation h(x, y, z) = 0. The intersection of R1 and A
is the transversal intersection. Thus, the unit tangent vector of this intersection
curve is

t1 =
N×N1

||N×N1||
= (x′1, y

′
1, z
′
1),

where the vector N1 = N × r1 is the normal vector of the plane R1. Then the
geodesic curvature κAg1 of the transversal intersection curve with respect to R1 is
found from Eq. (6) as

κAg1 =
1

||∇h||
{(y′1z′′1 − y′′1 z′1)hx + (x′′1z

′
1 − x′1z′′1 )hy + (x′1y

′′
1 − x′′1y′1)hz},(24)

where t′1 = (x′′1 , y
′′
1 , z
′′
1 ). If the linear equation system consisting of the equations

x′1x
′′
1 + y′1y

′′
1 + z′1z

′′
1 = 0,

hxx
′′
1 + hyy

′′
1 + hzz

′′
1 = 0,

fxx
′′
1 + fyy

′′
1 + fzz

′′
1 = −{fxx(x′1)2 + fyy(y′1)2 + fzz(z

′
1)2

+2(fxyx
′
1y
′
1 + fxzx

′
1z
′
1 + fyzy

′
1z
′
1)}

is solved, the unknowns x′′1 , y′′1 and z′′1 can be found. Substituting these values
into Eq. (24) yield the geodesic curvature κAg1 . Similarly, the geodesic curvature

κBg1 of the transversal intersection curve of the surface B and the plane R1 can be
found.

By using the previous method given in paramteric-parametric intersection, we
determine the tangent vector at P of the tangential intersection curve of the sur-
faces A and B. Then the geodesic torsion τAg (or τBg ) of the intersection curve
with respect to A (or B) is calculated by Eq. (19) (or Eq. (20)).

Example 5. The implicit surface A is given by f(x, y, z) = (
√
x2 + y2− 2)2 +

(z − 1)2 − 1 = 0 and the implicit surface B is given by g(x, y, z) = z − 2 = 0
(Figure 5).

We have ∇f = (0, 0, 2) and ∇g = (0, 0, 1) at the point P = (0, 2, 2) on the
intersection curve of the surfaces A and B. At the intersection point we have
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Figure 5. The tangential intersection of the torus and the plane.

‖∇f‖ = 2, NA = (0, 0, 1), (∇f)′ = (0, 2y′, 2z′), (NA)′ = (0, y′, 0) for the surface
A and ‖∇g‖ = 1, NB = (0, 0, 1), (∇g)′ = (NB)′ = (0, 0, 0) for the surface B.
Also, the vectors r1, r2 are calculated as r1 = (0, 1, 0) and r2 = (1, 0, 0), and the
geodesic curvatures are found as κAg1 = −1, κBg1 = 0, κAg2 = 0, κBg2 = 0. Since

κAg1 6= κBg1 and κAg2 = κBg2 , the unit tangent vector of the tangential intersection
curve of the surfaces A and B at P is the vector r2, i.e., t = (1, 0, 0). Then the
geodesic torsions τAg and τBg are calculated as zero at P .

2.3. Tangential intersection curve of parametric-implicit surfaces

Let A be a regular surface given by the parametric equation X(u, v) and B be
a regular surface given by the implicit equation g(x, y, z) = 0. The unit normal
vectors of the surfaces A and B on the intersection curve α are given by

NA =
Xu ×Xv

‖Xu ×Xv‖
, NB =

∇g
‖∇g‖

.

Let us denote the common surface normal by N = NA = NB . The unit tangent
vector of the curve α is

t = Xuu
′ + Xvv

′ = (x′, y′, z′).(25)

We know the geodesic torsions of α with respect to the surfaces A and B, respec-
tively, as

τAg = D1(u′)2 +D2u
′v′ +D3(v′)2(26)

and

τBg = E1x
′ + E2y

′ + E3z
′,(27)

where E1 =
b3gy−b2gz
‖∇g‖ , E2 = b1gz−b3gx

‖∇g‖ , E3 =
b2gx−b1gy
‖∇g‖ . Since the surfaces A and

B intersect tangentially along the curve α, τAg is equal to τBg , and so

D1(u′)2 +D2u
′v′ +D3(v′)2 − E1x

′ − E2y
′ − E3z

′ = 0.(28)
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If we substitute the values of x′, y′, z′ in terms of u′ and v′ into Eq. (28), we
obtain a quadratic equation similar to (10). Solving this quadratic equation and
applying the same method, the unit tangent vector of the intersection curve at P
is found. Also, substituting u′ and v′ into Eq. (26) or x′, y′, z′ into Eq. (27), the
geodesic torsions of α are obtained.

Acknowledgment. The authors would like to thank the referee for useful
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