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ON M-PROJECTIVE CURVATURE TENSOR

OF A GENERALIZED SASAKIAN SPACE FORM

VENKATESHA and B. SUMANGALA

Abstract. In the present paper, we have studied M -projectively flat generalized

Sasakian space form, η-Einstein generalized Sasakian space form and irrotational
M -projective curvature tensor on a Sasakian space form.

1. Introduction

A Riemannian manifold with constant sectional curvature C is known as real-
space-form and its curvature tensor is given by

R(X,Y )Z = C{g(Y, Z)X − g(X,Z)Y }.

A Sasakian manifold (M,φ, ξ, η, g) is said to be a Sasakian space form [3], if all
the φ-sectional curvatures K(X∧φX) are equal to a constant C, where K(X∧φX)
denotes the sectional curvature of the section spanned by the unit vector field X,
orthogonal to ξ and φX. In such a case, the Riemannian curvature tensor of M is
given by

R(X,Y )Z =
C + 3

4
{g(Y,Z)X − g(X,Z)Y }

+
C − 1

4
{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
C − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.

(1.1)

As a natural generalization of these manifolds, P. Alegre, D. E. Blair and A. Car-
riazo [3], [1] introduced the notion of generalized Sasakian space form.

Sasakian space form and Generalized Sasakian space form have been studied
by several authors, viz., [3], [2], [6], [14], [10].
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In 1971, G. P. Pokhariyal and R. S. Mishra [13] defined a tensor field W ∗ on a
Riemannian manifold as

W ∗(X,Y )Z = R(X,Y )Z − 1

4n
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]
(1.2)

Such a tensor field W ∗ is known as M -projective curvature tensor.
The properties of the M -projective curvature tensor in Sasakian and Kaehler

manifold were studied by R. H. Ojha [11] [12]. He showed that it bridges the gap
between the conformal curvature tensor, coharmonic curvature tensor and concir-
cular curvature tensor. S. K. Chaubey and R. H. Ojha [8] studied the properties of
the M -projective curvature tensor in Riemannian and Kenmotsu manifold. S. K.
Chaubey [9] also studied the properties of M -projective curvature tensor in LP-
Sasakian manifold. C. S. Bagewadi, E. Girish Kumar and Venkatesha [4] studied
irrotational D-conformal curvature tensor in Kenmotsu and trans-Sasakian man-
ifolds. C. S. Bagewadi, Venkatesha and N. S. Basavarajappa [5] proved that if
pseudo projective curvature tensor in a LP-Sasakian manifold is irrotational, then
the manifold is Einstein. Motivated by these ideas, in the present paper, we made
an attempt to study the properties of M -projective curvature tensor in generalized
Sasakian space form. The present paper is organized as follows.

In Section 2, we review some preliminary results. In Section 3, we study M -
projectively flat generalized Sasakian space form and obtain necessary and suffi-
cient conditions for a generalized Sasakian space form to be M -projectively flat.
And in Section 4, we study η-Einstein generalized Sasakian space form satisfying
W ∗(ξ,X) · R = 0. Finally in Section 5, we prove that M -projective curvature
tensor in an η-Einstein generalized Sasakian space form is irrotational if and only
if f3 = 3f2

(1−2n) .

2. Preliminaries

An odd-dimensional Riemannian manifold (M, g) is called an almost contact man-
ifold if there exists a (1, 1) tensor field φ, a vector field ξ and a 1-form η on M ,
such that

φ2(X) = −X + η(X)ξ,(2.1)

η(φX) = 0,(2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.3)

φξ = 0, η(ξ) = 0, g(X, ξ) = η(X),(2.4)

for any vector fields X,Y on M .
If in addition, ξ is a Killing vector field, then M is said to be a K-contact

manifold. It is well known that a contact metric manifold is a K-contact manifold
if and only if

(∇Xξ) = −φ(X)(2.5)

for any vector field X on M .
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On the other hand, the almost contact metric structure on M is said to be nor-
mal if [φ, φ](X,Y ) = −2dη(X,Y )ξ for any X,Y, where [φ, φ] denotes the Nijenhuis
tensor of φ given by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ].

A normal contact metric manifold is called a Sasakian manifold. It can be
proved that Sasakian manifold is K-contact, and that an almost contact metric
manifold is Sasakian if and only if

(∇Xφ)(Y ) = g(X,Y )ξ − η(Y )X.(2.6)

Given an almost contact metric manifold (M,φ, ξ, η, g), we say that M is an
generalized Sasakian space form if there exists three functions f1, f2 and f3 on M
such that

R(X,Y )Z = f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}

(2.7)

for any vector fields X,Y, Z on M , where R denotes the curvature tensor of
M . This kind of manifold appears as a natural generalization of the well-known
Sasakian space form M(C), which can be obtained as particular cases of general-
ized Sasakian space form by taking f1 = C+3

4 and f2 = f3 = C−1
4 .

Further in a (2n+ 1)-dimensional generalized Sasakian space form, we have [1]

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ,(2.8)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )− (3f2 + (2n− 1)f3)η(X)η(Y ),(2.9)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3,(2.10)

R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ],(2.11)

R(ξ,X)Y = (f1 − f3)[g(X,Y )ξ − η(Y )X],(2.12)

η(R(X,Y )Z) = (f1 − f3)[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.13)

S(X, ξ) = 2n(f1 − f3)η(X).(2.14)

3. M-projectively flat generalized Sasakian space form

For a (2n+ 1)-dimensional (n > 1) M -projectively flat generalized Sasakian space
form, from (1.2), we have

R(X,Y )Z =
1

4n
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY ].(3.1)
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In view of (2.8) and (2.9), the equation (3.1) takes the form

R(X,Y )Z =
1

4n
[2(2nf1 + 3f2 − f3){g(Y, Z)X − g(X,Z)Y }

− (3f2 + (2n− 1)f3){η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ}].

(3.2)

Using (2.7), the equation (3.2) reduces to

f1{g(Y,Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X}+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}

=
1

4n
[2(2nf1 + 3f2 − f3){g(Y,Z)X − g(X,Z)Y }

− (3f2 + (2n− 1)f3){η(Y )η(Z)X

− η(X)η(Z)Y + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ}].

(3.3)

Replacing Z by φZ in (3.3), we obtain

f1{g(Y, φZ)X − g(X,φZ)Y }
+ f2{g(X,φ2Z)φY − g(Y, φ2Z)φX + 2g(X,φY )φ2Z}
+ f3{g(X,φZ)η(Y )ξ − g(Y, φZ)η(X)ξ}

=
1

4n
[2(2nf1 + 3f2 − f3){g(Y, φZ)X − g(X,φZ)Y }

− (3f2 + (2n− 1)f3){g(Y, φZ)η(X)ξ − g(X,φZ)η(Y )ξ}].

(3.4)

Putting X = ξ in (3.4), we get

4nf1g(Y, φZ)ξ − 4nf3g(Y, φZ)ξ

= [4nf1 + 3f2 − (1 + 2n)f3]g(Y, φZ)ξ.
(3.5)

Simplifying (3.5), we get

[(1− 2n)f3 − 3f2]g(Y, φZ)ξ = 0.(3.6)

Since g(Y, φZ) 6= 0, it follows from (3.6) that

f3 =
3f2

(1− 2n)
.(3.7)

Conversely, suppose that

f3 =
3f2

(1− 2n)

holds. Then in view of (2.7) and (2.9), we can write the equation (1.2) as

Ẁ ∗(X,Y, Z,W ) = f2{g(X,φZ)g(φY,W )− g(Y, φZ)g(φX,W )

+ 2g(X,φY )g(φZ,W )}+ f3{η(X)η(Z)g(Y,W )

− η(Y )η(Z)g(X,W ) + g(X,Z)η(Y )η(W )

− g(Y,Z)η(X)η(W ) + g(Y, Z)g(X,W )− g(X,Z)g(Y,W )},

(3.8)
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where Ẁ ∗(X,Y, Z,W ) = g(W ∗(X,Y )Z,W ).
Replacing X by φX and Y by φY in (3.8), we get

Ẁ ∗(φX, φY, Z,W ) = f2{g(φX, φZ)g(φ2Y,W )− g(φY, φZ)g(φ2X,W )

+ 2g(φX, φ2Y )g(φZ,W )}+ f3{g(φY,Z)g(φX,W )

− g(φX,Z)g(φY,W )}.
(3.9)

Putting Y = W = ei where {ei}, is an orthonormal basis of the tangent space at
each point of the manifold, and taking summation over i (1 ≤ i ≤ 2n+ 1), we get

2n+1∑
i=1

Ẁ ∗(φX, φei, Z, ei) = f2{−g(φX, φZ)g(φei, φei)

+ g(φ2Z, φ2X) + 2g(φ2X,φ2Z)}
− f3g(φZ, φX).

(3.10)

Putting X = Z = ei, where ei, is an orthonormal basis of the tangent space at
each point of the manifold, and taking summation over i (1 ≤ i ≤ 2n+ 1), we get
after simplification that f2 = 0. But then f3 = 0 by (3.7).

Therefore,

R(X,Y )Z = f1[g(Y,Z)X − g(X,Z)Y ].(3.11)

The above equation gives

S(X,Y ) = 2nf1g(X,Y ).(3.12)

Hence in view of (1.2), we have W ∗(X,Y )Z = 0. This leads us to state the
following.

Theorem 3.1. A (2n+1)-dimensional (n > 1) generalized Sasakian space form

is M -projectively flat if and only if f3 = 3f2
1−2n .

But in [14], the author proved that if a (2n+1)-dimensional (n > 1) generalized

Sasakian space form is Ricci semisymmetric, then f3 = 3f2
1−2n . Hence we conclude

the following.

Corollary 3.1. If a (2n + 1)-dimensional (n > 1) generalized Sasakian space
form is Ricci semisymmetric, then it is M-projectively flat.

4. An η-Einstein generalized Sasakian space form satisfying
W ∗(ξ,X)R = 0

In view of (2.4), (2.8), (2.9) and (2.12), (1.2) becomes

W ∗(ξ,X)Y =
1

4n
[(1− 2n)f3 − 3f2]{g(X,Y )ξ − η(Y )X}.(4.1)

Now we have

(W ∗(ξ,X)R)(Y,Z)U = W ∗(ξ,X)R(Y, Z)U −R(W ∗(ξ,X)Y, Z)U

−R(Y,W ∗(ξ,X)Z)U −R(Y,Z)W ∗(ξ,X)U.
(4.2)
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But as we assume W ∗(ξ,X)R = 0, (4.2) takes the form

W ∗(ξ,X)R(Y,Z)U −R(W ∗(ξ,X)Y,Z)U

− R(Y,W ∗(ξ,X)Z)U −R(Y,Z)W ∗(ξ,X)U = 0.
(4.3)

Using (2.4), (2.11), (2.12), (2.13) and (4.1) in (4.3), we get

1

4n
[(1− 2n)f3 − 3f2][R̀(X,Y, Z, U)ξ + η(Y )R(X,Z)U

+ η(Z)R(Y,X)U + η(U)R(Y,Z)X − (f1 − f3){g(Z,U)η(Y )X

− g(Y,U)η(Z)X + g(X,Y )g(Z,U)ξ − g(X,Y )η(U)Z

− g(X,Z)g(Y, U)ξ + g(X,Z)η(U)Y + g(X,U)η(Z)Y

− g(X,U)η(Y )Z}] = 0,

(4.4)

where

R̀(X,Y, Z, U) = g(X,R(Y, Z)U).(4.5)

Taking inner product of (4.4) with respect to the Riemannian metric g and then
using (2.4) and (2.13), we have

1

4n
[(1− 2n)f3 − 3f2][R̀(X,Y, Z, U)− (f1 − f3){g(X,Y )g(Z,U)

− g(X,Z)g(Y, U)}] = 0.
(4.6)

Then

f3 =
3f2

(1− 2n)
or

R̀(X,Y, Z, U) = (f1 − f3){g(X,Y )g(Z,U)− g(X,Z)g(Y, U)}.(4.7)

Using (2.4) and (4.5) in (4.7), we get

R(Y, Z)U = (f1 − f3){g(Z,U)Y − g(Y, U)Z}.(4.8)

Contracting (4.8) with respect to the vector field Y , we find

S(Z,U) = 2n(f1 − f3)g(Z,U).(4.9)

Therefore,

QZ = 2n(2n+ 1)(f1 − f3)Z.(4.10)

Hence,

r = 2n(2n+ 1)(f1 − f3) and so f3 =
3f2

(1− 2n)
.(4.11)

Thus, we state following theorem.

Theorem 4.1. A (2n+1)-dimensional (n > 1) η-Einstein generalized Sasakian

space form satisfies the condition W ∗(ξ,X)R = 0 if and only if f3 = 3f2
(1−2n) .

In the light of Theorems 3.1 and 4.1, we state next collorary.
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Corollary 4.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space
form satisfies the condition W ∗(ξ,X)R = 0 if and only if it is M-projectively flat.

5. The irrotational M-projective curvature tensor

Definition 5.1. The rotation (curl) of M -projective curvature tensor W ∗ on
a Riemannian manifold is given by [1]

RotW ∗ = (∇UW
∗)(X,Y )Z + (∇XW

∗)(U, Y )Z

+ (∇YW
∗)(X,U)Z − (∇ZW

∗)(X,Y )U.
(5.1)

By virtue of second Bianchi identity, we have

(∇UW
∗)(X,Y )Z + (∇XW

∗)(U, Y )Z + (∇YW
∗)(X,U)Z = 0.

Therefore, (5.1) becomes

RotW ∗ = −(∇ZW
∗)(X,Y )U.(5.2)

If the M -projective curvature tensor is irrotational, then curlW ∗ = 0, and so by
(5.2) we get

(∇ZW
∗)(X,Y )U = 0.

Thus,

(∇ZW
∗)(X,Y )U = W ∗(∇ZX,Y )U +W ∗(X,∇ZY )U

+W ∗(X,Y )∇ZU.
(5.3)

Replacing U = ξ in (5.3), we have

(∇ZW
∗)(X,Y )ξ = W ∗(∇ZX,Y )ξ +W ∗(X,∇ZY )ξ

+W ∗(X,Y )∇Zξ.
(5.4)

Now, substituting Z = ξ in (1.2) and then using (2.4), (2.8), (2.11) and (2.14), we
obtain

(∇ZW
∗)(X,Y )ξ = k[η(Y )X − η(X)Y ],(5.5)

where

k =
1

4n
[(1− 2n)f3 − 3f2].(5.6)

Using (5.5) in (5.4), we obtain

W ∗(X,Y )φZ = k[g(Z, φX)Y − g(Z, φY )X].(5.7)

Replacing Z by φZ in (5.7) and simplifying by using (2.1) and (2.3), we get

W ∗(X,Y )Z = k[g(Z, Y )X − g(Z,X)Y ].(5.8)

Also equations (1.2) and (5.8) give

k[g(Z, Y )X − g(Z,X)Y ] = R(X,Y )Z − 1

4n
[S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ].
(5.9)
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Contracting the above equation with respect to the vector X and then using (5.6),
we find

S(Y,Z) = 2n(f1 − f3)g(Y,Z),(5.10)

which gives

r = 2n(2n+ 1)(f1 − f3).(5.11)

In consequence of (1.2), (5.6), (5.8), (5.10) and (5.11) we can find

R(X,Y )Z = −(f1 − f3)[g(Y, Z)X − g(X,Z)Y ].(5.12)

Therefore, we can state the following theorem.

Theorem 5.1. The M -projective curvature tensor in an η-Einstein generalized
Sasakian space form is irrotational if and only if f3 = 3f2

(1−2n) .

Theorem 4.1 together with Theorem 5.1 lead to the following corollaries.

Corollary 5.1. A (2n+1)-dimensional (n > 1) generalized Sasakian space form
satisfies the condition W ∗(ξ,X)R = 0 if and only if the M -projective curvature
tensor is irrotational.

Corollary 5.2. A (2n + 1)-dimensional (n > 1) generalized Sasakian space
form is irrotational if and only if it is M-projectively flat.
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