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DERIVATIVES
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ABSTRACT. In this manuscript, we study the uniqueness and Ulam-stability type
of solutions for nonlinear sequential Duffing problem with two Caputo-Hadamard-
type fractional derivatives. The uniqueness of solutions is derived by Banach’s fixed
point theorem. Also, we prove the Ulam-Hyers stability and the Ulam-Hyers-Rassias
stability of considered problem. An example is provided to illustrate our results.
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1. INTRODUCTION AND PRELIMINARIES

Differential equations of fractional order involving different fractional operators can
be used for modeling phenomena in mechanics, biology, chemistry, control theory,
etc. These equations have attracted great attention of several researchers, see for
example [1, 3, 9, 12, 23, 25] and the references cited therein. Also nonlinear dif-
ferential equations with fractional derivative are one of the most important mathe-
matical tools used to model real world problems in several domains of science, see
[10, 11, 19, 20, 24] and reference therein. The Duffing equation one of these nonlin-
ear equations, which has become very important in the engineering sciences, see for
example [4, 6, 15, 21]. The classical form of Duffing equation [5] is given by:

D%y (t) + €Dy (t) = f(t) — ¢ (ty (1), t€Q:=1[0,1], >0,
with y (0) = di, D'y (0) = da,d; € R, (i =1,2), f and ¢ are continuous real func-

tions. Recently, considerable attention has been given to the study of the unique-
ness, existence and Ulam-stability of solutions for fractional version of the Duffing
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problem, see [2, 8, 16, 17, 22] and the references cited therein. In [7] the authors
considered the fractional Duffing problem:

CDey (t) +£ CD,Yy (t) = sin (Et) — vy (t) - U2y3 (t> 7£7€>’Uz‘ > 07,5 = 1727

for each t € , under conditions: v (0) = d; =0, ¢cD% (0) =dy = 0,d; € R,i = 1,2,
where 1 < 6 < 2,0 <~ < 1and ¢D*, s € {0,7} are the Caputo fractional deriva-
tives. Also, in [18], the authors studied the following fractional Duffing problem:

cDPy () + €Dy (t)=f(t) — ¢ty (1), t€Q £>0,
with the conditions: y(to) = yo, D'y (to) = y1, where 6 € (1,2), v € (0,1) and
oD, € {0,~} are of the Caputo. In this current manuscript, we study the unique-

ness and the Ulam stability of solutions for the following fractional Duffing equation
with two Caputo-Hadamard-type fractional derivatives:

c.uD? [c.uDVy (t)]
=f(t)—&p(t,y(t),cm D"y (t)) — ¢ (t,y(t),u Iy (1))

y(1)=A,cuDVy(1) =B, f1 c.uD"y(N) = B2 c.uDVy(e),

teQ:=[le,a>0,¢>0,1<A<eAB,pieRi=1,2,

where 1 < § < 2,0 < vy < 1,r < and ¢c.yD? o € {0,7,r} are the Caputo-
Hadamard fractional derivatives, i I¢ is the Hadamard fractional integral and ¢, ¢ :
QxR =R and f:Q — R are given continuous functions. The operator #I7 is
the Hadamard fractional integral [14] given by:

t AUI0)
P =1 =
walPh(t) = ) /a (log s> ds, p>0,

S

where T' (p) = fooo e 2P~ tdx. The operator ¢y D” is the Caputo-Hadamard
fractional derivative [14] defined by:

t t\" "t _h
c.uDPh(t) = r(nl_p)/ <log s> 5nﬂd3,

S

da

where n — 1 < p < n,n = [p| + 1,0 = tg,

log (.) =log, (.).
We recall the following lemma [13].

[p] denotes the integer part of p and
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Lemma 1. Let y € C§ ([a,b] ,R). Then

|
—

n

al? (c.uDPy) () = y(t) — > ci(logt)’, ¢ €R,

)

Il
o

where CF ([a,b],R) = {¢ : [a,b] > R: 6" 'y € C ([a,b] ,R)} .
Now, let us introduce the space
W={y:yeC(,R) and c.yD"y € C(Q,R)},
endowed with the norm

lyllw = lyll + lc.aD"yl| = sup |y (t)| + sup |c.a D"y (t)].
teQ teQ

Then it is well known that (W, |.||y;;) is a Banach space.

Now, we prove anauxiliary lemma which is pivotal to define the solution for the

problem (1).

Lemma 2. Let p1log(\) # B2. Given h € C(Q,R), the unique solution of the

problem
caD? [cuDYy ()] =h(t), teQ,
w(l)=A,cn Dy (1) =B, BicuDVy () = B2c.aDVy(e),
1<0<2,0<y<,1<A<e A B,Bi,i=1,2,
s given by

Bs (log())"™! e e \0-1 h(s)
a0 - e o ] , (s ) e

B ,81 (log(t))'y—O—l A i 6—1 @
(Br log () — B2) Ty + 2>r<9>/ 1 <1°g<s>> s

(B2 — 1) B (log(t))"*" B (log(t))” A
(Brlog(A) = B2) D(y+2) = (Brlog(A) = B2) T(v+1)
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Proof. Using Lemma 1, we get

c.uD [y(t)] = wI’[y(t)] + co + c1 log(t). (4)
It follows that

log(t))” | 1 (log(t)"*!
1) = I [yt +CO( + + c9, 5
1) = nI" (o) + B + LD 6
where ¢;,7 = 0, 1,2 are arbitrary constants.

Using the boundary conditions (2), we finnd that

C(]:B, CQZA,

and

_ B2 € ou( € =1 h(s) )
“ = wllog(A)—m)r(e)/ , (102D) a

B A AN h(s)
_(51 log(\) — 2) I'(0) /1 <log(s)> s ds

n (B2 —p1) B
(Brlog(N) — B2)

Substituting the value of ¢;,7 = 0,1,2 in (5), we obtain (3).

2. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we will use the the contraction mapping principle to prove the unique-
ness of solutions the above problem. In view of Lemma 2, we define an operator
G:W =W as

1 t t NI (f (s) — €8 (5) — o3 (1))
W0 = g/, (log“> s

B (log(t))"*! ¢ e 01 (f(s) —€pf (s) — ¢ (1))
(Brlog\) — B2) T (7 + 2)L() / (10s(5)) ds

B (log(t))" oMY ) —€ep () -9y (1)
(Bilog(\) — B2) T(7 + 2>r<9>/ ' <1°g(s)> s ‘

(B2 — 1) B (log(t))"*! B (log(t))” A
(Brlog(A) = B2)T(v+2)  (Bilog(N) = Bo)T(y+1)

1
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For computational convenience, we set

L@ +~y+1)  [Bilog(A) — B T(y+2)L(0+1)
o . — 1 N |B2| + |B1] (log(N)”
FO@+~vy—r+1) |Blog(A\) =B T(y—r+2)L(O+1)’
B B2 — B1] | B |B|
M = e — mITG +2) T [Brosh) - st + 1) A
A |B2 — B1] | B |B|

.
Bilog(\) — Bl T(y —r+2) * [Bilog(\) — &I T(y—r +1)
We give the following main result:

Theorem 3. Let o, ¢ : Q@ x R? — R and f : Q — R be continuous functions. In
addition we suppose that:

(C1) : There exists constant ki > 0,ko > 0 such that for all t € Q and x;,y; €
R,i=1,2, we have

|(10 (t’ylvl'l) - @(ta y2,$2)| < kl (|y1 - y2| + ’xl - $2|)7
and
f (L, u1,v1) — @ (L, t,u1,v1)] < ko (Jur — uz| + [vr —val).

If

(E+DT(a+1)+1)(©4+0") <T(a+1)k7", (8)
where k = max {k;,i = 1,2}, O and ©* given by (7). Then the problem (1) has a
unique solution.

Proof. We set N = max{N;,i = 1,2,3}, where N; are finite numbers given by N; =
supseq | (£,0,0,0)[, N2 = sup;cq [¢ (¢,0,0,0)] and N3 = sup,cq [f (£)] . Setting

N(©+O)(E+2)N+ M+ M _
EE+ DT (at+n)+1 =M

1-(©+6%)

I'(a+1)
we show that GB,, C By, where B, = {y € W : |y|ly, < n}. By (C1), we can write
oy 0] = le(ty(t).cm Dy (2))l

S ’90 (t,y (t) sC.H Dry (t)) - (t7070)‘ + ‘90 (ta 07 0)|

IN

kvllylly + N2 < kip+ N,
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and

EAGIE
< ety (@),m Iy () — & (t,0,0)[ +[¢(2,0,0)|
(10)

(1% 1
k Ny < ko[ 1 N.
QOmmﬂﬁxa+n LR R we s K

For y € B, we have

IN

I1G ()]
1 e N (F(s) — €0l (s) — 05 (1))
< i, () sl
|B2| (log(#))* (o) LU ) —Eoy () — a3 )]
TBrlog(\) — Bl Dy + 2)T ()/1 (10e(5)) s d

81| (log (#))"* Mo MY I () — €0 (5) — 85 (1)
TR0 - BT I <l g(s)> ;
(

B2 — B1||B| (log(t))"*! | B (log(t))”
|B1log(A) — Bo| T'(v +2)  [Bilog(A) — B2| T'(y + 1)

Using (9) and (10), we get

G ()]

ds

+|A].

1 n 82| +181] (log(N))”
L@+~v+1)  |Bilog(A) — B2 T'(y +2)I'(0 + 1)

IN

k<§+l+P(a1+1)>“

1 |B2| + |B1] (log(N) o (E+2)N

)
LO+~+1)  |Bilog(A) — Bo| T(y +2)(0 +1)

|32 — B1] | B| n | B
|B1log(A) — B2 T'(v +2)  |Bilog(A) — B2| I'(y +1)
E[(E+ )T (a+1)+1]

= Flar ) Ou+0(E+2)N + M.

+ 4]
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On the other hand, we have

HCHDTG(
O |(f (5) - €8 (5) — 68 (1))
9+'y—7" <10g > s ds
|B2| (log(#)) " © e |(f(s) = Ewy (s) — ¢y ()]
TBilog\) = ol T(y —r + 2)T <9>/ (D) P ds

181] (log (1)) AN (5) — €63 () — 63 (1)
B0 ATl T (k)g(s)) ; o

182 = 81| 1B| (log(#)™ |B| (log(t))" ™"
1B11og(A) — Bo|T(y —7+2) ' [Brlog(N) — Bo|T(y =7+ 1)

Thanks to (9) and (10), we can write

leaD"G (y)]

1 n 8] + |81] (log(M)°
TO+6—r+1)  |[Bilog(N\) — 2| T(6 —r +2)T(A + 1)

k<§+1+F(al+1)>u

TO+5—r+1)  |Bilog()) — AT —r + 2T+ 1)
G- plIBL B
Brloa(\) — BTG —r+2) T [Brlog(N) = AITG —r + 1)

E[(E+ D) (a+1)+1] ., . .
NEES O 1+ O (E+2)N + M*.

_l’_

Consequently,

G (W)l

= k[(fJ“;)(l;(fI;lHl] O+0")u+(O©+0%)(E+2)N+ M+ M <p,
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which implies that GB,, C By,. For x,y € B, we have

IG () = G (@)]
Lt T E i () — b (s)] + |0 (1) — ¢2 (1)
T(9+7)/1 (1 (8)> $ -

e \0-1
1Bl (log(8)) ! I (1085) " ¢ 8 () — 0 ()] + |65, () — 62, (1)

|B1log(A) — B2 T(v+2)) 1 T(0) s

ds

ds

A 0—1
18] (log(£))"*! /k <1°g<s>> €@ (5) — o2 (5)] + |8 (1) — 62 (8)]

|B1log(A) — Ba| T'(y + 2)

E+DT(a+1)+1
e D o gy

Also for z, y € B,,, we have

1 I'(0) s

<

le.uD"G(y) — c.uD"G (z)|

1 t (S (5) =€y (s) — ¢y (1)
F(G—l—v—r)/l <10g(5)> ds

IN

e \0—1
1Ba] (log (1)) / (108(5)) |(7 (s) — €02 (5) — 05, (1)]

|B11og(A) — Ba| T'(y — 7+ 2)

by 0—1
pltosy P ) 0 —g ) =) .

|B11og(A) — B2| T(y —r +2)

_ E+DT@+D+1Y gy
= (AT eyl

From the definition of ||.||y;, , we have

1 PQ) S

1G(y) —G@)llw = 1GW) —-G@)I+lecaDG(y) —cu DG ()]

E[(E+1)T (a+1)+1]
- I'(a+1)

(©+607) Iy —zlw -

By (8), we can see that G is a contraction. Consequently, by the contraction mapping

principle, problem (1) has a uniqueness solution.
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3. ULAM-HYERS-RASSIAS STABILITY

In this section, we consider the Ulam-stability type for the sequential fractional
Duffing problem (1).

Definition 1. The problem (1) is stable in Ulam-Hyers sense if there exists a real
number p, 4 > 0 such that for each X > 0 and for each solution x € W of the
inequality

cuD’ loaDa ()] = (f () — 93 () = ¢5 (1) <A, tEQ, (11)
there exists a solution u € W of fractional boundary value problem (1) with
1z = yllw < ppgA, t € Q.

Definition 2. The fractional boundary value problem (1) is generalized Ulam-Hyers
stable if there exists hy, g € C(Ry,Ry),hy e (0) = 0, such that for each solution
x € W of the inequality (2) there exists a solution y € W of the fractional boundary
value problem (1) with

[z = ylly < heg(X), t€Q

Definition 3. The fractional boundary value problem (1) is Ulam-Hyers-Rassias
stable with respect to g € W if there exists a real number p, 4, > 0 such that for each
A > 0 and for each solution x € W of the inequality

cuD’ [caDa ()] = (f (1) =93 () = 65 (1) < Ag (1), t€Q, (12)
there exists a solution y € W of problem (1) with

|z =yl < hppAg (t), t €S

Definition 4. The fractional boundary value problem (1) is generalized Ulam-Hyers-
Rassias stable with respect to g € W if there exists a real number py,y 4 > 0 such
that for each solution x € W of the inequality

caD’ louDVx (1)) = (f (1) — ¢} (1) — 65 (1)| < g(t) teQ, (13)
there exists a solution y € W of problem (1) with

[0 () =u ()] < Hppgeg (1), T €

Remark 1. A function v € W is a solution of the inequality (11) if and only if
there exists a function F : [1,e] — R such that

F(t) <X ic.

cuD [eaDlx ()] = (f (1) — @5 () = ¢3 (1) = F (1), t € Q.
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Theorem 4. Let o, ¢ : QxR? = R and f : Q — R be continuous functions. Assume
that the assumption (Cy) and (8) hold, then problem (1) is Ulam-Hyers stable.

Proof. Let x € W be a solution of the inequality (11), i.e.
c.aD’ oDV ()] = (f (t) — 3 (1) — 63 ()| < A\t € Q,
and let us denote by y € W the unique solution of the fractional problem
( cuD? leuDVy ()] = f(t) — &g} () — 0} (1)
y()==2Q1), crD’y(1) = cuD’x(1),

(14)
cuDy(N) = cuD "z (\), cuDVy(e) = c.uDVy(e),

L teQ, 1<0<2 0<y<l, £€>0,

By integration of the inequality (11), we have

co (log(t))” 1 (log(t))"™!
L(y+1) [(y+2)

a(t) — gl [ha(t)] - — e

A

TO+7+1) (log(t))**7,

where h,(t) = f (t) — ¢ (t) — ¢% (t) . By Lemma 2, we can write

(1) — Cn(t)| < o (log(0)"7, 1 e,

O+~v+1)
and

A

< log(t)fT . teQ
I_F(9+7_r+1)(0g()) , teQ,

lc.uD"x(t) — c.uD"Gx(t)

which imply that

A A
+ :
0+~v+1) T@O+y—r+1)

o =G @)l < 5
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On the other hand, we have

e =yllw < llz—=G@)ly+16 @) - ylly

IN

|z = G (@)l + |G () = G (Y)llw

A A
+
F@+~v+1) T@+~y—r+1)

E[(E+DT (a+1)+1]

(©+0%) |z —ylly -

I'(a+1)
Thus,
1 n 1
o — gl < LOF7+D) TO+7—r+1)
yW_1_k[(§+1)f‘(a+1)+1](@+@*) ’
I'(a+1)
if we put
1 1
+
oy = re+~+1) T@+y—r+1)
20T R[4+ )T (a+ 1)+ 1] N
1-— T (ot 1) (6 + 6%)
then

I = yllw < ppgA
This shows that the problem (1) is Ulam-Hyers stability.

Theorem 5. Let ¢, ¢ : Q x R?2 = R and f : Q@ — R be continuous functions and
suppose that the condition (C1) and (8) hold,. Suppose there exist wy > 0 and o4

such that
oI [g(t)] < weg(t) and g1 [g(t)] < 0g9(t),

for any t € Q, where g € C([1,¢e],R) is nondecreasing. Then the fractional Duffing

problem (1) is Ulam-Hyers-Rassias stable.
Proof. Let x € W be a solution of the inequality (13), i.e.

() = G ()] < 1" [9(0)] < g senal)
and
D" ()~ enlGolt) < ul" " 0(0] < frrr—r 20000
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Then we get

IN

|z — yllw |z —Tzlly + 1Tz — ylly

IN

le = Ta| +lleaD'w — caD Tzl + Tz = Tyl ,

where y € W the unique solution of the problem (14). Thanks to (C;)i=1,2, we can
write

Wy Qg
lo=vhw = (s + gt ) 70

E[(E+1)T (a+1)+1]
I'(a+1)

(©+07) |z —yllw

which implies that

Wy 4 Qg
ro+~) TO+~y-—1)

lz —ylly < E[(E+ DT (a+1)+1] 9(t),
1- Tt D) (© + 0%)
If we take w
g + Qg
Heogg * k[(ri( iﬁ)v %( 1;(?)171]— : ’
s (0%
1= T(a+1) (©+67)
then

2 =yl < pep,g9(t), t €.
So, the problem (1) is generalized Ulam-Hyers-Rassias stable.
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4. APPLICATION
Consider the following nonlinear fractional Duffing equation with Hadamard-Caputo
type fractional derivatives

2

5 1
cuDs3 [C.HD% (t)}

1
n 1 1 ly (¢)] N arctan |c. g D3y (t) | g
1072 | 3v8+1t \ e™ (14 [y (1)) 1+arctan|%D%y(t)\
(16)
. (H— (t)+ uI? (t)) Letvi t e
— S = ;€ ; ;€1
5V 112 Yy HLz?Y 3
2 Vée 5 7\ 11
1) =25D° ~—, —cnD’% (<) — = caD’z(e) =0
=200 =5 L cunts (1) - g cnD’ 0 =0,

For thi 1 have: § = 3,y = 1 p—1lg—3¢_— 1 > p=
or this example, we have: —g,y—i,r—g,a_i,g_m7 5B =
6 5) 11 7

\/faﬁl = T?,BQ = E’)\ = T So, it is easy to see that £ log(\) # fo.

On the other hand,
1 || arctan |y 1>
t,$7 - + +e )
elhzy) 3v8+t (e“ (1+|z|) 1+ arctan|y|
Plhay) = —sin(t+ ), 60 = 2
y Ly = — ———=SIn xr 5 = —€ .
Y NCERE Y 3

For z;,y; € R,i=1,2 and t € (), we have

lo (t,z1,91) — @ (tw2,92) | < = (|21 — 22| + Y1 — ¥2]),

O =

®

—1
‘w (t7x17y1) - ¢(t7$273/2) ‘ < ﬁ (’1131 - .1'2‘ =+ ’yl - yQD .

So, we can take

1 e 1

— ko= —, k= ki,ko) = = = 13.4646.
97 2 15 ; ma'X( 1, 2) 97 H¢|’

We also have

©;1 ~ 1.1101, ©2 ~0.1977, ©] ~ 1.4196, ©5 ~ 0.2673,

P = 1405, 1y, = 0.38982.
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It follows that
(E+1D)T(a+1)+1)(©+60*) =339 < (a+1)k~! =11.964.

By Theorem 3, we conclude that the problem (16) has a unique solution, and from
Theorem 9, problem (16) is Ulam-Hyers stable with

| =yl < 1.4051X, A > 0.

If we take g(t) = ¢2, then we obtain

i o) =1} < ()

and

H[%%*% {g(t) — 3

N

Hence, the condition (1) s satistied with g(t) — ¢4 and wy — ~2) g, — L)
ence, the condition (15) is satisfied with g(¢) = ¢2 and w, = F(Q)’Qg = ED
3

3
It follows from Theorem 10, problem (16) is Ulam-Hyers-Rassias stable with

2.

|z — ylly, < 0.38982M2, A >0, t € [1,¢].
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