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GENERALIZED OSBORN LOOPS OF ORDER 4N

A.O. ISERE, J.O. ADENIRAN, T.G. JAIYEOQLA

ABSTRACT. The smallest non-associative Osborn loop is of order 16. Attempts
in the past to construct higher orders have been very difficult. In this work, we
develop a new method of constructing examples of generalized Osborn loops of order
4n . Two of such examples are presented. They are shown to be non-associative
Osborn loops. These are further classified up to isomorphism to establish their
existence as distinct Osborn loops of order 4n.

2010 Mathematics Subject Classification: 20N05, 08 A05.

Keywords: Osborn loops, classification, isomorphism.

1. INTRODUCTION

By a loop G(:) we shall mean a non-empty set G together with a binary
operation (-) such that the following properties hold: (i) given a,b € G the equations
a-x =b,y-a = b have unique solutions z, y respectively, in G; (ii) G(-) possesses an
identity element, i.e. there exists e € G such that ez = z-e =z for all z € G [27].
An overview of loop theory can be found in Jaiyéola [13].

A loop is called an Osborn loop [26, 3] if it obeys any of the following:

(@M\y) - 2z = 2(yz - 2) (1)

or
x(yz-z) = (v -yEy) - zz ¥V z,y,2€ G (2)

where E, = RyRye = (Lo L)™' = Ry LR 'L, !
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Among the class of Bol-Moufang type of loops is the Bol loop. A loop L is
called a Bol loop if and only if:

(xy - 2)y = z(yz - y) for all z,y,z € L (3)
Strictly speaking, (3) defines a right Bol loop. A left Bol-loop (L, -) is defined as:
x(y-xzz) = (z-yx)z for all x,y,z € L (4)

A Bol loop refers to a left or right Bol loop. The loop that satisfies both (3) and
(4) is called a Moufang loop. Therefore, the necessary and sufficient condition for a
loop to be a Moufang loop is that the loop is both a left Bol loop and right Bol loop.
The smallest order for which a non-associative finite Bol loop exist is 8. There are
exactly six Bol loops of order 8 that are not associative These loops were classified
by Burn [4]. Solarin and Sharma [30] determined and classified all Bol loops of order
12 that are not associative.

Every Moufang loop is a Bol loop. Therefore, a good knowledge of the classes of
Moufang loops becomes indispensable in the classification of Bol loops. Chein [5, 6]
found that Moufang loops of orders p, p?, p® or pq (where p and ¢ are primes) must
be groups and by using combinatorial type methods discovered 13 Moufang loops of
order < 31. Purtill [28] has shown that Moufang loops of orders pgr and p?q where
p, ¢ and r are distinct odd primes with p < ¢ < r are groups. See- [1] for detail.

It is to be noted that a Moufang loop is a variety of Osborn loops. Some of the
earliest examples of infinite Osborn loops were constructed by Huthnance [8] in 1968.
Other examples of Osborn loops can be found in Isere et al[9, 10]. Thus, examples
of Osborn loops are still very few. These examples are presented in Huthnance [8],
Isere et. al. [9, 10]. Some recent studies on this class of loops are by Adeniran and
Isere [2], Jaiyéold [15, 17, 18], Jaiyéold and Adéniran [22, 19, 20], Jaiyéola et. al.
[23]. The application of some identities in universal Osborn loops to cryptography
were reported in Jaiyéola [14, 16], Jaiyéold and Adéniran [21].

The generalized Osborn loops of order 4n are a ”k-construction” Osborn loops of
order 4n, where k is any integer. Given an integer k, we have a distinct Osborn loop
of order 4n constructed in this way. Thus, a generalized Osborn loop gives £ number
of Osborn loops of order 4n constructed this way. In constructing Osborn loops in
this way (as it is done in this work), ’a’ and b’ are non-negative variable integers
while ¢’ is a fixed integer. However, the combination b+ c is peculiar to Osborn loops
constructed in this way. These loops are found to be non-universal Osborn loops
except when k = 1. This work is aimed at developing a new method of constructing
non-associative, generalized Osborn loops of order 4n. Two of such examples are
presented in the next section. They are shown to be non-associative Osborn loops.
Furthermore, the constructed examples are classified upto isomorphism.
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2. MAIN RESULTS

2.1. Generalized Osborn Loops

Example 1. Let I(-) = Cy, x Co, I = {(2%,9%),0 < a <2n —1,0 < 8 < 1} such
that the binary operation I(-) is defined as follows:

(a%,€) - (2", 9%) = ("**,5") (5)

(a%,y%) - (% €) = (2", y) (6)

(2% ) - (2, %) = (2, y™*9) if a = O(mod 2),b=0(mod 2)  (7)

= (29 yo*+B) i f 4 = 0(mod 2),b = 1(mod 2) (8)

(29,y) - (2%,5%) = (@, y*H9) if o= 1(mod 2),b=1(mod 2)  (9)
(279, 4%) - (2%,5%) = (@74, ) if 0= 0(mod 2),b=0(mod 2) (1)
(2, 4) - (2%, 5%) = (@, 4250) i f 0 = O(mod 2),b=1(mod 2) (1)
(a2, y7) - (2%, 5%) = (¥+eke, y #5910 = 1(mod 2),b= 0(mod 2) (12)
(2P P - (2%, y®) = (atRetRb ot kBT i f 6 = 1(mod 2),b = 1(mod 2) (13)
where k is any integer. Then I(-) is an Osborn loop of order 4n, where n =

2.3,4,6,9,12 and 18.

Proof. We first show that I(-) satisfies Osborn identity below:
(XN\Y)-ZX =X(YZ-X)

Now, we begin:

1. Let X = (2%¢e); Y = (2%, ¢); Z = (2%¢), then by direct computations, we
have
(XMNY) - ZX = [(a%, e)\ (2", €)] - [(%, €) (2, )]

Let [(z?, )M\ (2%, )] = (z%), then (2?,¢) = (2%, e)*(z?, ) = (2972, ¢) implies
b=d—a; d=a+b.

. [(ma,e)’\\(xb,e)] _ (xa-&-b’e) - ($a+b,€) . (w‘a+c,€) _ (x2a+b+c’€).

Next, X(YZ-X) = (2% e)[(2b,e) (2% e) - (2, €)] = (2% e)[(z"", e) - (27, €)] =

(xa’ 6) (ma—&—b—i-c’ 6) — (m2a+b+c’ 6).
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2. Let X = (2% ¢e); Y = (2%, ¢); Z = (2°,97).

(XMNY) - ZX = [(2%, e)*\ (2", )] - [(2%,y7) (z% €)].

Let [(z?, )M\ (2%, €)] = (%), then (2%, e) = (2% e)(z? ) = (2972, ¢) implies
b=d—a;d=a+0b.

Lt e\ @l e)] = (@) = (2 e) - (277 y7) = (@),

Next, X(YZ-X) = (2%, ¢)[(a" e)(a%,y7) - (2% ¢)] = (¢%, e)[(a",9) - (2%, ¢)] =
(xa’ 6)(xa+b+c’ yw) _ (x2a+b+c’ yw)'

3. Let X = (2% e); Y = (2%,9%); Z = (2°,¢).
First Case: when b is even
(XNY) - ZX =[(2% e)\ (2", 47)] - [(2°, €) (2", e))].

Let [(2%,e)*\(a%,y)] = (z%,y°), then (a*,y7) = (2%, )} (2%, y°) = (297, ¢°)
implies b=d —a; d=a+ b and § = 5.

@t M@ )] = @ y7) = (@0 yT) - (@0 e) = (@20 ).

Next, X(YZ-X) = (2% ¢e)[(z,v7) (2% ¢€) - (2% ¢)] =
($a> e)[($b+ca yﬁ) ’ (:L,a7 e)] = (xa’ 6) ($a+b+c’ yﬁ) = (x2a+b+c7 yﬁ)'

The results of the remaining cases are established in the same way as
above.

Second Case: when b is odd (XM\Y) - ZX = (z2¢tkbte o8) and X (Y Z
X) — <x2a+kb+c7y5)'
Let X = (2%, y®);Y = (2%,¢); Z = (2%, ¢).
First Case: when q is even
(XMNY) - ZX = [(2%,y*) M\ (2 e)] - [(2%, €) (2, y™)].

Let [(z%,y)M\(2%,¢)] = (a%y0), the (z¥,¢) = (2% y*)Na%y’) =
(972,99~ implies b = d — a and 0 = 6 — «; implies that d =
a+b,0 =a.

L@y )N @®e)] = (270, y%) = (@) - (a0 y%) = (@ e).

Next, X(YZ-X) = (2%, 5)[(a", €)(a%,€) - (2,y%)] =
(5 (@ ) - (%, )] = (0%, ™) (0, ). = (22405 ),
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Second Case: when a is odd
(XNY) - ZX = [z, y*) M\ (2, e)] - [(2€, €) (2, y*)].

Let [(z%,y*)M\(z*, )] = (2%, ¢°), then (a¥,¢) = (z%,y*) (%, y°) =
(2~ (@k) ) (5, %) = (24-(k0) y9~2) implies b = d — (ka) and
0 =6 — «; implies that d = ka +b,0 = a.

(@ y )N )] = (@R ) (@ ) - (29 ) =
(ma+ka+b+c’ 6).

Next, X(YZ-X) = (z%y")[(z" e)(a%,¢) - (a,y)] =
(@ y™) (@ e) - ( “,y )] = (2, y) (@ y). =
(xoLJrkaerJrc7 6).
Let X = (z%e);Y = (2, 4%); Z = (2%, 7).
First Case: when b is even
(XNY) - ZX = [(@, e)\ (2", y7)] - [, y7) (2%, €)].
Let [(2% e)\(2",y7)] = (¢%,y°), then («%,y°) = (2%, )M z?,y°) =
(zd=a, 90 ) impliesb=d—a; d=a+band § = p.

@ M@y = (@ y0) = (@) - (a0 ) =
(x2a+b+c’ yﬁ-‘rv)'

Next, X(YZ-X) = (2% ¢)[(z?,y") (1) - (2 ¢)]

(2%, e)[(z"T¢, 4717 - (2%, e)] = (a%, ) (x0T, y 1) =
(:I;2a+b+07 y6+7) .

Second Case: when b is odd
(XNY) - ZX = (2% e)\(«",y")] - [(2%,57) (2%, e)].

Let [(z% e)*\(2%,97)] = (z%°), then (2°,y%) = (2%, e)*(a%,y") =
(zd= “,yé) impliessb=d—a; d=a+band § = 5.

g [(xa’ e))\\(xbayﬁ)] - (xa—&-b,yﬁ)(xa—i-b’yﬁ) : (xa—i-c’ y’y) -
($2a—|-kb—§—c7 yﬁ—l-'y)'
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Next, X(YZ-X) = (wa,e)[(xb,yﬁ)(xcjyv) (2 e)] =
(2, (", y7) - (7, )] = (&, ) (e, yP7) =

(:L,Qa—l—kb-‘rc’ yﬂ+”/) )

Let X = (2% y*);Y = (:Ub,e); Z = (2% y7).
First Case: when « is even
(XA\Y) ZX = [(xa7ya))\\(xb7e)] : [(xc,y’y)(xa’ya)].

Let [(2* 2y ON\(b,e)] = (¢,y?), then (z°,e) = (2%, y*)N (2 y’) =
(zd=a, 90 O‘) implies b = d —a and 0 = § — «; implies that d =
a+b,0 =«

.- [($a7ya)/\\(xb’e)] — (xa+b’ya) = (anrb?ya) . (xa+c’ya+'y) —
($2a+b+c’ yv)‘

Next, X(YZ - X) = (2% y*)[(a",e)(a%,y") - (z°,y*)] =
(@ y™) (@6, y7) - (2, y™)] = (@, y™) (@ 0,y ) = (220 7).
Second Case: when a is odd
(XNY) - ZX = (2% y*) M\ (2", )] - [(2°, ) (2, y*)].
Let [(z%,y*)"\ (2% e)] = (z%,9°), the (a¥,e) = (2% y*)*(«?

Nt y’) =
(20, y=0) (2, 47) = (2~ 09),3-0) implies b = d — (ka) and 0
0 — «; implies that d = ka 4+ b, = «.

. [(:Ea’ya))\\(xb’e)] — (l,ka—&—b,ya) = (:Eka—i-b’ya) . (:L,a—i—c,ya—i-v) —
(xa+ka+b+c y'y).

Next, X(YZ - X) = (2%, y®)[(2® e)(z¢,¢) - (z%,9%)] =
(xa’ yoc)[(‘,Eb—I—c’ e) . (l,a7ya)] — (xa’ya)(l,ka-‘rb—i-c’ ya—‘rw) — (xa+ka+b+c’y'y).

Let X = (a%,y°); Y = (a%,y7); Z = (<, ).

First Case: when a and b are even

(XNY) - ZX = [(2% y) M\ (2", y7)] - (2%, e) (@, y7)].
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Let [(2%,y*)M\(2%,y”)] = (2, 9°), then («*,y”) = (2%, y*)*(2%,y°) =
(%@, °) implies b =d — a;d = a + b and 6 = .

. [(xa’ya))\\(xb7yﬁ)] _ (xa-‘rb,ya—f—,@’) = (xa+b’ya+,3) . (xa—i-c’yoa) _
($2a+b+c y,B)

Next, X(YZ - X) = (a%,y")[(z",y7)(a% ) - (a*,y")] =
(%, y™) (@™, y7) - (2%, y™)] = (2%, y®) (@ 0oyt F) = (aParire P,

Second Case: when a is odd and b is even
(X)\\Y) ZX = [(.,Ea’ ya)/\\(xbv yﬁ)] : [(xc7 e)(xav ya)]

Let [(z% y*)*\(2", 7)) = (2%°), then (2°,y°) = (z,y*) (2%,y°) =
(%) 40) implies b = d — (a + ka);d = ka + b and § = 3.

@y )N\ (@b, )] = (Rt y ) = (@Rt ) - (27 e) =
(!,Ea—i-lm—i—b—i—c7 y,é’)

Next, X(YZ-X) = (z%,y")[(2", y") (% €) - (a*,y")] =
(xa’ yoz)[(xb—i-c’ yﬁ) . (xa’ ya)] — (xa7 ya)(xka+b+c, yﬁ) — (xa—&—ka—i-b—&-c’ yﬁ)'

Third Case: when ¢ is even and b is odd
(XNY) - ZX = [(2% y" )M\ (2,97)] - [(2°, e)(z, y*)]-

Let (2%, y*)*\(2",47)] = (27, 4°), then (a*,47) = (2%, y*)* (27, 4°) =
(%2, 9) implies b=d —a;d = a + b and § = f3.

(@ YN\ (@b, )] = (@, y ) = (20T, y ) - (2T ) =

(x2a+kb+c, yﬁ) )

Next, X(YZ-X) = (2%,y")[(2", ") (% €) - (a%,y")] =
(xa’ yoz)[(berc7 yﬁ) . (xa7 ya)] — (xa7 ya)(xa+kb+c7 yaJrﬁ) _ (x2a+kb+c’ yﬁ).

Fourth Case: when a and b are odd
(X)\\Y) ZX = [(J“aa ya))\\(mbayﬁ)] ) [(xc) e)(xa’ya)]'
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Let [(2%,y*)"\(2%,y7)] = (2%°), then (z*,°) = (2%, y*)*(a?,3°) =

(z (k“ ‘5 @) implies b =d — (ka);d = ka+ b and 6 = a + 3.

@y (@t Y] = (@M ) = (@M ) (a0 ) =
(l,a-l—ka—&-kb—l-c’ yﬁ).

Next, X(YZ-X) = (2% y")[(",y") (2 ¢) - (a*,y*)] =
(@, ™)@, 57) - (2%, y™)] = (a7, y™) (ahotRvre yothi) =
(Ia+ka+kb+c yﬁ)
Let X = (2%,9%); Y = (2,9°); Z = (2°,9").
First Case: when a and b are even
(XNY) - ZX = [(2% y") M\’ 7)) - [ 97) (@, y™)]-
Let [(2%,y*)M\ (2%, y%)] = (29,9°), then (zb,y®) = (2, y*)* (a4, y°) =
(%@ 4°) implies b =d — a;d = a + b and § = .

- [(:xa,ya))‘\(xb,yﬁ)] _ (wa+b7yo¢+ﬁ) = (xa+b7ya+,6’) . (anrc’yoﬁ'y) —
(x2a+b+c yﬂ—&—w)‘

Next, X(YZ-X) = (a%,y")[(2",y7)(a%,y") - (a%,y")] =

(xa’ ya)[(xb—&-c’ yﬁ—i-'y) . (xa’ ya)] _ (xa’ yoe)(xa—kb—&-c’ ya—I—,B) _
(x2a+b+67 yﬁ+’y)'

Second Case: when a is odd and b is even
(XNY) - ZX = [(2% y*)\ (2, y7)] - [(2€, y7) (2%, y™)).
Let [(z% y*)*\(2,57)] = (z%°), then (2, y7%) = (2%, y*) (2%, 1) =
(x4 (athka) 0Y implies b=d — (a + ka);d = a+ ka+ b and § = 5.

Ly 0] = (@) = (@M ) - (2 ya ) =
(xa+ka+b+c yﬁ)'

Next, X(YZ-X) = (z%,y")[(«",y”) (@ y7) - (2, y*)] =
(xa,yoz”(xb—i—c’ yﬁ+’y) ’ (xa,yoz”

— (aja’ya)(ajka—{—b—l—c’ yﬁ+7) — (xa—i-ka—l—b—l-c B—l—'y)'

Y
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Third Case: when a is even and b is odd
(XNY) - ZX = [(2% y" )M\ (2, y7)] - [(2€, y7) (2% y™)].

Let [(z,y)*\(2%, y%)] = (27, 3°), then (2°,y7) = (22, y*) (2%, y°) =
(xd*a,y‘s) impliesb=d —a; d=a+band § = .

- [(xa7ya))\\(xb7y,8)] _ (xa-&-b’ya—i-ﬁ) - (xa-&-b,ya—i-ﬁ) . (xa-i-c’yoz-&-’y) —
(x2a+kb+c yBJF’Y)'

Next, X(YZ-X) = (:):a,yo‘)[(xb,yﬁ)(xc,y“’) (% YY) =
(2%, y™) (20,577 - (2%, )] = (a, y®) (@ TRoFe yothii) =
(:L,Qa—l—kb-‘rc’ yﬁ-l-”/)_

Fourth Case: when a and b is odd

(XNY) - ZX = [,y (", y7)] - (2%, 97) (2, ™)

Let [(z%y*)M\(2?,47)] = (z%y°), then (a0, y7) = (2%, y™)* (2%, ¢°) =
(z8=(ka) 90=) implies b = d — (ka); d = ka +b and § = o + 3.

. [(SUa,ya))\\(fEb,yﬁ)] — (:Ck(H_b,yCH-B) = (xka+b’ya+ﬂ) . (:Ca+c’ya+’y) —
($a+ka+kb+c y,3+’y)
, .

Next, X(YZ-X) = (a%,y")[(z",y7)(a% ) - (a*,y")] =
()2, y"7) - (2, y™)] = (a7, y) (e HRoTe, o TR
_ (xa+ka+kb+c yﬁJr’Y)'
Since (XM\Y)-ZX = X(YZ - X) in all the 36 cases considered i.e. whenever
37 = 1(mod 2n), then n = 2,3,4,6,9,12,18. Also, (e, e) is the two sided identity.
Moreover, if X = (2%, ¢€), then X! = (z7% ). If X = (2%,y%) then
X t=(z7%y ) ifa=ecven and X ' = (z=* y7) if a = odd.

Therefore, the inverses are defined. Also for non-associativity, let X = (2% y*);Y =
(z%,yP); Z = (2°,97) where a is an even integer and b an odd integer, then

(XY)Z = [(2,y*) (2", y")|(z¢,y7) = (x*TF, y*F) (€, y7) = (x*TH0Te, y*+FH7) and

X(YZ) = (x%y")[(=", y) (@, 7)) = (&, y*) 2",y 1) = (x40, y )
Therefore, (XY)Z # X(Y Z).
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Remark 1. Thus, the Example 1 is non-associative except when n = 2 which
gives the group Cy X Co. Generally, whenever k = 1 the examples become asso-
ciative Osborn loops. Hence, they are non-associative Osborn loops of order 4n,
n=4,6,9,12 18.

Example 2. Let I(-) = Cy, x Co, I = {(2%,9%),0 < a <2n—1,0 < 8 < 1} such
that the binary operation (-) is defined as follows:

(2% e) - (2", y") = (a"**,y7) (14)

(a%,y®) - (2%, e) = (2, y) (15)

(2%, 4%) - (%, 7) = (@, 5*5) if a = 0(mod 2),b=0(mod 2)  (16)

= (x@HOHkb yatB) G f 4 = 0(mod 2),b = 1(mod 2) (17)

(z%,9%) - (b, 9°) = (x2TPTR yotkBY i f o = 1(mod 2),b = 1(mod 2) (18)

(zbT€, %) - (2%, y%) = (TP %) if a = 0(mod 2),b = 0(mod 2) (19)

(24, 47) - (2,y%) = (27O Y249 if = O(mod 2),b=1(mod 2)  (20)

) = (z

(zbe, P - (2, y®) atkatbikbre atkBty) jf ¢ = 1(mod 2),b = 1(mod 2)
(21)
Then, I(-) is an Osborn loop of order 4n, where n = 4,6,9,12 and 18, and k any
integer.

Proof. The proof is similar to that in Example 1 above.

2.2. Classification up to Isomorphism

Two loops shall be considered non-isomorphic if they contain different number
of elements of the same order. Whenever, two loops contain the same number of
elements we shall go further to consider the order of elements in their nuclei. If these
coincide in both cases, we shall consider commutative patterns of both loops.

Theorem 1. The Osborn loops in Examples 1 and 2 are non-isomorphic.
Proof. (i) Example 1
(xavya) ) (xa’ ya) = ((xzav yQa)
(2%, y%) - (%, y®) = (2%, y**) = (e, e) if a = 0(mod 2) (22)
= (x%Tka y2) = (e, e) if a = 1(mod 2)

Obviously, the only possible solution to the equation (22) are a = 0 and a = n
i.e.(z2",e) = (e,e) and (e,y®) = (e,e). Therefore, Example 1 has 3 elements
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of order 2 whenever k is a positive odd number and 2 elements of order 2
whenever k is positive even number and k£ = —2 and above; n + 3 elements of
order 2 whenever k = —1 and 2 elements whenever k is any negative number
except k = —1.

(ii) Example 2

(xa,ya) : (xa’ ya) = ((12(17 yQa)
(2% y%) - (%, y®) = (2%, y**) = (e, e) if a = 0(mod 2) (23)

= (z?¢TFa %) = (e, e) if a = 1(mod 2)

Obviously, the only possible solution to the equation (23) are a = 0 and a = n
i.e.(z?,e) = (e,e) and (e,y%) = (e,e). When k is both positive and odd even
integers,we have (z",¢), (z",y“) and (e, y®) as elements of order 2. When k = 0, it
has 3 elements of order 2. And when k < 0, it has 2 elements of order 2. Therefore,
Examples 1 and 2 are non-isomorphic since they contain different number elements
of the same order.
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