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1. Introduction

Let Σp be the class of meromorphic p−valent functions of the form:

f(z) =
1

zp
+

∞∑
n=1

an−pz
n−p (p ∈ N = {1, 2, ...}), (1)

which are analytic in the punctured unit disc U∗ = {z : z ∈ C and 0 < |z| < 1} =
U\{0}.

Let Pk(ρ) be the class of functions p(z) analytic in U satisfying the properties
p(0) = 1 and

2π∫
0

∣∣∣∣Rep(z)− ρ1− ρ

∣∣∣∣ dθ ≤ kπ, (2)

where k ≥ 2 and 0 ≤ ρ < 1. This class was introduced by Padmanabhan and
Parvatham [10]. For ρ = 0, the class Pk(0) = Pk introduced by Pinchuk [12]. Also,
P2(ρ) = P(ρ), where P(ρ) is the class of functions with positive real part greater
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than ρ and P2(0) = P, is the class of functions with positive real part. From (2),
we have p(z) ∈ Pk(ρ) if and only if there exist p1, p2 ∈ P(ρ) such that

p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z) (z ∈ U). (3)

It is known that the class Pk(ρ) is a convex set (see [7]).

The Hadamard product (or convolution) f ∗g of f(z) given by (1) and g(z) given
by

g(z) =
1

zp
+

∞∑
n=1

bn−pz
n−p, (4)

is defined by

(f ∗ g)(z) =
1

zp
+
∞∑
n=1

an−pbn−pz
n−p = (g ∗ f)(z). (5)

Define the functions

fα(z) =
1

zp
+

∞∑
n=1

(
n+ λ

λ

)α
zn−p (α ∈ N0 = N ∪ {0}; λ > 0),

and
∼
ϕ(a, b; z) =

1

zp
F (1, a; b; z) =

1

zp
+
∞∑
n=1

∣∣∣∣(a)n
(b)n

∣∣∣∣ zn−p,
where a ∈ C∗ = C\{0}, b ∈ R\Z−0 , Z−0 = {0,−1,−2, ...}, F (a, b; c; z) is the (Gaus-
sian) hypergeometric function defined by

F (a, b; c; z) =
∞∑
n=0

∣∣∣∣(a)n(b)n
(c)n(1)n

∣∣∣∣ zn (c ∈ R\Z−0 ),

and

(η)n =

{
1 if n = 0,
η(η + 1)(η + 2)...(η + n− 1) if n ∈ N.

Also, let the associated function f∗α,µ(z) be defined by the Hadamard product (or
convolution):

fα(z) ∗ f∗p,α,µ(z) =
1

zp(1− z)µ
(µ > 0; z ∈ U∗).
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Then, we have

Ip,α,λa,b,µ f(z) = f∗p,α,µ(z) ∗ ∼
ϕ(a, b; z) ∗ f(z)

=
1

zp
+
∞∑
n=1

∣∣∣∣(a)n
(b)n

∣∣∣∣ ( λ

n+ λ

)α (µ)n
(1)n

an−pz
n−p. (6)

It is easily verified from (6) that

z
(
Ip,α,λa,b,µ f(z)

)′
= µIp,α,λa,b,µ+1f(z)− (µ+ p)Ip,α,λa,b,µ f(z), (7)

and

z
(
Ip,α+1,λ
a,b,µ f(z)

)′
= λIp,α,λa,b,µ f(z)− (λ+ p)Ip,α+1,λ

a,b,µ f(z). (8)

We note that:

(i) Ip,α,`1,1,µf(z) = Iαp,µ(`)f(z) (see El-Ashwah and Aouf [4, with λ = 1]);

(ii) I1,α,λ1,1,µ f(z) = Iαλ,µf(z) (see Cho et al. [3] and Piejko and Sokol [11]) (see also
Aouf et al. [2]).

Next, by using the operator Ip,α,λa,b,µ , we introduce two subclasses of meromorphic
multivalent functions of Σp as follows:

Definition 1. A function f(z) ∈ Σp is said to be in the class Mp,α,λ
a,b,µ (β, γ, ρ, k) if it

satisfies the condition:[
(1− γ)

(
zpIp,α,λa,b,µ f(z)

)β
+ γ

(
Ip,α,λa,b,µ+1f(z)

Ip,α,λa,b,µ f(z)

)(
zpIp,α,λa,b,µ f(z)

)β]
∈ Pk(ρ),

(
k ≥ 2; a ∈ C∗; b ∈ R\Z−0 ; α ∈ N0; β, γ, µ, λ > 0; 0 ≤ ρ < 1

)
. (9)

We note that:

M1,α,λ
1,1,µ (β, γ, ρ, k) =Mα

λ,µ(β, γ, ρ, k) (see Aouf et al. [2]).

Also, we note that:

Mp,α,`
1,1,µ(β, γ, ρ, k) =Mp,α,`

µ (β, γ, ρ, k) = {f(z) ∈ Σp :[
(1− γ)

(
zpIαp,µ(`)f(z)

)β
+ γ

(
Iαp,µ+1(`)f(z)

Iαp,µ(`)f(z)

) (
zpIαp,µ(`)f(z)

)β] ∈ Pk(ρ)
}
.
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Definition 2. A function f(z) ∈ Σp is said to be in the class N p,α,λ
a,b,µ (β, γ, ρ, k) if it

satisfies the condition:[
(1− γ)

(
zpIp,α+1,λ

a,b,µ f(z)
)β

+ γ

(
Ip,α,λa,b,µ f(z)

Ip,α+1,λ
a,b,µ f(z)

)(
zpIp,α,λa,b,µ f(z)

)β]
∈ Pk(ρ),

(
k ≥ 2; a ∈ C∗; b ∈ R\Z−0 ; α ∈ N0; β, γ, µ, λ > 0; 0 ≤ ρ < 1

)
. (10)

We note that:

N 1,α,λ
1,1,µ (β, γ, ρ, k) = Nα

λ,µ(β, γ, ρ, k) (see Aouf et al. [2]).

Also, we note that:

N p,α,`
1,1,µ (β, γ, ρ, k) = N p,α,`

µ (β, γ, ρ, k) = {f(z) ∈ Σp :[
(1− γ)

(
zpIα+1

p,µ (`)f(z)
)β

+ γ
(
Iαp,µ+1(`)f(z)

Iα+1
p,µ (`)f(z)

) (
zpIα+1

p,µ (`)f(z)
)β] ∈ Pk(ρ)

}
.

2. Main results

Unless otherwise mentioned, we assume throughout this paper that k ≥ 2, a ∈
C∗, b ∈ R\Z−0 , α ∈ N0, β, γ, µ, λ > 0 and 0 ≤ ρ < 1.

To establish our results, we need the following lemma due to Miller and Mocanu [5].
Lemma 2.1 [5]. Let φ(u, v) be a complex valued function φ : D → C, D ⊂ C2 and
let u = u1 + iu2, v = v1 + iv2. Suppose that the function φ(u, v) satisfies
(i) φ(u, v) is continuous in D;
(ii) (1, 0) ∈ D and Re {φ(1, 0)} > 0;
(iii) for all (iu2, v1) ∈ D such that v1 ≤ −n

2 (1 + u22), Re {φ(iu2, v1)} ≤ 0.
Let p(z) = 1 + pnz

n + pn+1z
n+1 + ... be regular in U such that (p(z), zp′(z)) ∈ D for

all z ∈ U. If Re {φ(p(z), zp′(z))} > 0 for all z ∈ U, then Rep(z) > 0.

Employing the techniques used by Owa [9] for univalent functions, Noor and Muham-
mad [8] and Aouf and Seoudy [1] for multivalent functions and Mostafa et al. [6] for
meromorphic multivalent functions, we prove the following theorems.
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Theorem 2.1. If f(z) ∈Mp,α,λ
a,b,µ (β, γ, ρ, k), then(
zpIp,α,λa,b,µ f(z)

)β
∈ Pk(ρ1), (11)

where ρ1 is given by

ρ1 =
2µβρ+ nγ

2µβ + nγ
(0 ≤ ρ1 < 1). (12)

Proof. Let(
zpIp,α,λa,b,µ f(z)

)β
= (1− ρ1)p(z) + ρ1

=

(
k

4
+

1

2

)
[(1− ρ1)p1(z) + ρ1]−

(
k

4
− 1

2

)
[(1− ρ1)p2(z) + ρ1] ,

(13)

where pi(z) is analytic in U with pi(0) = 1 for i = 1, 2. Differentiating (13) with
respect to z, and using identity (7) in the resulting equation, we get[

(1− γ)
(
zpIp,α,λa,b,µ f(z)

)β
+ γ

(
Ip,α,λa,b,µ+1f(z)

Ip,α,λa,b,µ f(z)

)(
zpIp,α,λa,b,µ f(z)

)β]

= [(1− ρ1)p(z) + ρ1] +
γ(1− ρ1)zp′(z)

µβ
∈ Pk(ρ).

This implies that

1

1− ρ

{
[(1− ρ1)pi(z) + ρ1]− ρ+

γ(1− ρ1)zp′i(z)
µβ

}
∈ P (z ∈ U; i = 1, 2).

Defining the function

φ(u, v) = [(1− ρ1)u+ ρ1]− ρ+
γ(1− ρ1)v

µβ

where u = pi(z) = u1 + iu2, v = zp′i(z) = v1 + iv2, we have
(i) φ(u, v) is continuous in D = C2;
(ii) (1, 0) ∈ D and Re {φ(1, 0)} = 1− ρ > 0;
(iii) for all (iu2, v1) ∈ D such that v1 ≤ −n

2 (1 + u22),

Re {φ(iu2, v1)} = ρ1 − ρ+
γ(1− ρ1)v1

µβ

≤ ρ1 − ρ−
nγ(1− ρ1)(1 + u22)

2µβ

=
A+Bu22

2C
,
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where A = 2 (ρ1 − ρ)µβ−nγ(1−ρ1), B = −nγ(1−ρ1), C = µβ > 0. We note that
Re {φ(iu2, v1)} < 0 if and only if A = 0, B < 0, this is true from (12). Therefore, by
applying Lemma 2.1, pi(z) ∈ P (i = 1, 2) and consequently p(z) ∈ Pk(ρ1) for z ∈ U.
This completes the proof of Theorem 2.1.

Using similar arguments to those in the proof of Theorem 2.1 and the identity (8)

instead of (7), we obtain the following theorem for the class N p,α,λ
a,b,µ (β, γ, ρ, k).

Theorem 2.2. If f(z) ∈ N p,α,λ
a,b,µ (β, γ, ρ, k), then(
zpIp,α+1,λ

a,b,µ f(z)
)β
∈ Pk(ρ2), (14)

where ρ2 is given by

ρ2 =
2λρβ + nγ

2λβ + nγ
(0 ≤ ρ2 < 1). (15)

Theorem 2.3. If f(z) ∈Mp,α,λ
a,b,µ (β, γ, ρ, k), then(
zpIp,α,λa,b,µ f(z)

)β/2
∈ Pk(ρ3), (16)

where ρ3 is given by

ρ3 =
nγ +

√
(nγ)2 + 4(µβ + nγ)µβρ

2 (µβ + nγ)
(0 ≤ ρ3 < 1). (17)

Proof. Let(
zpIp,α,λa,b,µ f(z)

)β/2
= (1− ρ3)p(z) + ρ3

=

(
k

4
+

1

2

)
[(1− ρ3)p1(z) + ρ3]−

(
k

4
− 1

2

)
[(1− ρ3)p2(z) + ρ3] ,

(18)

where pi(z) is analytic in U with pi(0) = 1 for i = 1, 2. Differentiating (18) with
respect to z, and using identity (7) in the resulting equation, we get[

(1− γ)
(
zpIp,α,λa,b,µ f(z)

)β
+ γ

(
Ip,α,λa,b,µ+1f(z)

Ip,α,λa,b,µ f(z)

)(
zpIp,α,λa,b,µ f(z)

)β]

= [(1− ρ3)p(z) + ρ3]
2 +

2γ(1− ρ3) [(1− ρ3)p(z) + ρ3] zp
′(z)

µβ
∈ Pk(ρ).
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This implies that

1

1− ρ

{
[(1− ρ3)pi(z) + ρ3]

2 − ρ+
2γ(1− ρ3) [(1− ρ3)pi(z) + ρ3] zp′i(z)

µβ

}
∈ P (z ∈ U; i = 1, 2).

Defining the function

φ(u, v) = [(1− ρ3)u+ ρ3]
2 − ρ+

2γ(1− ρ3) [(1− ρ3)u+ ρ3] v

µβ

where u = pi(z) = u1 + iu2, v = zp′i(z) = v1 + iv2, we have
(i) φ(u, v) is continuous in D = C2;
(ii) (1, 0) ∈ D and Re {φ(1, 0)} = 1− ρ > 0;
(iii) for all (iu2, v1) ∈ D such that v1 ≤ −n

2 (1 + u22),

Re {φ(iu2, v1)} = −(1− ρ3)2u22 + ρ23 − ρ+
2γρ3(1− ρ3)v1

µβ

≤ −(1− ρ3)2u22 + ρ23 − ρ−
nγρ3(1− ρ3)(1 + u22)

µβ

=
A+Bu22

C
,

where A = µβρ23−µβρ−nγρ3(1−ρ3), B = −(1−ρ3) [µβ(1− ρ3) + γnρ3] , C = µβ >
0. We note that Re {φ(iu2, v1)} < 0 if and only if A = 0, B < 0, this is true from
(17) and 0 ≤ ρ3 < 1. Therefore, by applying Lemma 2.1, pi(z) ∈ P (i = 1, 2) and
consequently p(z) ∈ Pk(ρ3) for z ∈ U. This completes the proof of Theorem 2.3.

Using similar arguments to those in the proof of Theorem 2.3 and the identity (8)

instead of (7), we obtain the following theorem for the class N p,α,λ
a,b,µ (β, γ, ρ, k).

Theorem 2.4. If f(z) ∈ N p,α,λ
a,b,µ (β, γ, ρ, k), then(
zpIp,α+1,λ

a,b,µ f(z)
)β
∈ Pk(ρ4), (19)

where ρ4 is given by

ρ4 =
nγ +

√
(nγ)2 + 4 (λβ + nγ)λβρ

2 (λβ + nγ)
(0 ≤ ρ4 < 1). (20)

Remark. (i) Putting p = a = b = 1 in our results, we will obtain the result obtained
by Aouf et al [2];
(ii) Putting a = b = 1 in our results, we will obtain new results for the classes

Mp,α,`
µ (β, γ, ρ, k) and N p,α,`

µ (β, γ, ρ, k) mentioned in the introduction.
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