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A WEAKENED VERSION OF STRICT SCHUR NUMBERS

M. Budden and J. Clifton

Abstract. In this paper, we introduce a generalization of Schur numbers,
analogous to the weakened generalization of Ramsey numbers. Specifically, define
WSk

` (n) to be the least natural number N such that every n-coloring of {1, 2, . . . , N}
(using all n colors) contains a solution to the equation

x1 + x2 + · · ·+ xk−1 = xk, where x1 < x2 < · · · < xk,

that uses at most ` of the n colors. We provide explicit evaluations of WS3
2(n),

WSk
k−1(k), WS4

2(3), and WS5
3(4), and offer some directions for future inquiry.
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1. Introduction

While investigating the modular version of Fermat’s Last Theorem in 1916, Schur
[17] proved the finiteness of Schur numbers. Since that time, Schur numbers have
seen many generalizations, many of which have sought to determine how large the
set [1, N ] := {1, 2, . . . , N} must be in order to guarantee that every n-coloring of
[1, N ] contains a certain monochromatic equation. Although Schur’s work predates
Ramsey’s foundational paper [15], the finiteness of Schur numbers follows from Ram-
sey’s theorem. Our focus in this paper is to weaken Schur numbers in an analogous
way to that of weakened Ramsey numbers (e.g., [8], [9], [10], [12], and [13]). That
is, rather than guaranteeing the existence of a certain monochromatic equation, we
seek to guarantee an equation that uses at most ` of the n colors.

To be precise, begin by defining an exact n-coloring of [1, N ] to be a surjective
map c : [1, N ] −→ [1, n]. Given k ≥ 3, a solution to the equation

x1 + x2 + · · ·+ xk−1 = xk, where x1, x2, . . . , xk ∈ [1, N ],

is called a k-Schur solution. We say that such a solution is monochromatic if
|c({x1, x2, . . . , xk})| = 1 and is rainbow if |c({x1, x2, . . . , xk})| = k. The k-Schur
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number Sk(n) is defined to be the least natural number N such that every exact
n-coloring of [1, N ] contains a monochromatic k-Schur solution. Such numbers were
the focus of [2], [4], and [16].

For 1 ≤ ` ≤ min{n − 1, k − 1}, we weaken the problem of Schur by seeking
k-Schur solutions such that |c({x1, x2, . . . , xk})| ≤ `. Whenever ` ≥ 2, we run into
a complication since x1, x2, . . . , xk−1 are not assumed to be distinct. For example,
when ` = 2, the equation 1 + 1 = 2 uses at most 2 colors regardless of the value of
n. We resolve this issue by only considering strict k-Schur solutions:

x1 + x2 + · · ·+ xk−1 = xk, where x1 < x2 < · · · < xk

(see [1] and [14]). Such numbers are sometimes called weak Schur numbers (e.g.,
see [5] and [11]), but we will use the term “strict” to avoid two distinct uses of the
word “weak” in this paper. Define the `-weakened strict k-Schur number WSk

` (n)
to be the least natural number N such that every exact n-coloring of [1, N ] contains
a strict k-Schur solution that uses at most ` colors.

To obtain a simple lower bound for WSk
` (n), partition the set [1, jn] into n sets

(color classes) of cardinality j. Then every strict k-Schur solution

x1 + x2 + · · ·+ xk−1 = xk, where x1 < x2 < · · · < xk,

uses at least dkj e colors. It follows that

WSk
d k
j
e−1(n) > jn.

In Section 2, we offer two general theorems, giving explicit evaluations of WS3
2(n)

and WSk
k−1(k). In Section 3, we turn our attention to the evaluation of numbers

of the form WSk+1
k−1(k). Here, we show that WS4

2(3) = 11 and WS5
3(4) = 14. We

conclude with a conjecture about the values of WSk+1
k−1(k) for all k and offer a few

directions for future inquiry.

2. Some General Results

We begin our investigation with the evaluation of WS3
2(n). The following lemma

will serve us in determining the necessary upper bounds.

Lemma 1. If a coloring of the set [1, N ] (N ≥ 3) does not contain a strict 3-Schur
solution that uses at most 2 colors, then at least N−bN2 c+b

N
3 c colors must be used.

112



M. Budden and J. Clifton – A Weakened Version of Strict Schur Numbers

Proof. Consider an n-coloring of [1, N ] in which every strict 3-Schur solution is
rainbow. Such a coloring can be obtained by successively coloring each i from 1 to
N . Since 1 + 2 = 3, 1, 2, and 3 must receive distinct colors. For any i > 3 that is
even, the equations

1 + (i− 1) = i, 2 + (i− 2) = i, . . . ,
i− 2

2
+

i + 2

2
= i

force i to receive a color different from all 1 ≤ j < i, except possibly i
2 . From

i
2 + i = 3i

2 , it follows that i requires a new color if and only if 3i
2 ≤ N . For any i > 3

that is odd, the equations

1 + (i− 1) = i, 2 + (i− 2) = i, . . . ,
i− 1

2
+

i + 1

2
= i

force i to receive a color different from all 1 ≤ j < i. Overall, we find that the only
numbers that are allowed to repeat colors are those in the set

S := {i ∈ [1, N ] | 2i ∈ [1, N ] and 3i 6∈ [1, N ]},

which has cardinality bN2 c − b
N
3 c. Since all other colors must be distinct, we obtain

the statement of the theorem.

Using the above lemma, we now give an explicit evaluation of WS3
2(n) for all

n ≥ 3. Interestingly, we find that the evaluation depends upon the value of n modulo
5.

Theorem 2. For all n ≥ 3,

WS3
2(n) =



6n+5
5 if n ≡ 0 (mod 5)

6n+9
5 if n ≡ 1 (mod 5)

6n+3
5 if n ≡ 2 (mod 5)

6n+7
5 if n ≡ 3 (mod 5)

6n+6
5 if n ≡ 4 (mod 5).

Proof. We break the proof into cases, based on divisibility by 5.
Case 1 Let n ≡ 0 (mod 5) and write n = 5m. First, we provide an n-coloring of
[1, n+m] = [1, 6m] that lacks a strict 3-Schur solution that uses at most two colors.
For each i ∈ [1, 6m], whose double 2i ∈ [1, 6m], but whose triple 3i 6∈ [1, 6m], both
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i and 2i may receive the same color. This is true for all 2m < i ≤ 3m. It follows
that m colors can be repeated without forcing a strict 3-Schur solution that is not
rainbow. Hence,

WS3
2(n) ≥ n + m + 1 =

6n + 5

5
.

To prove the other direction, we must argue that every n-coloring of [1, n + m + 1]
contains a strict 3-Schur solution that uses at most two colors. If we let N =
n + m + 1 = 6m + 1, then

N −
⌊
N

2

⌋
+

⌊
N

3

⌋
= 5m + 1 = n + 1 > n.

The inequality

WS3
2(n) ≤ n + m + 1 =

6n + 5

5

then follows from the contrapositive statement to Lemma 1.
Case 2 Let n ≡ 1 (mod 5) and write n = 5m + 1. First, we provide an n-coloring
of [1, n + m + 1] = [1, 6m + 2] that lacks a strict 3-Schur solution that uses at most
two colors. For each i ∈ [1, 6m + 2], whose double 2i ∈ [1, 6m + 2], but whose triple
3i 6∈ [1, 6m + 2], both i and 2i may receive the same color. This is true for all
2m < i ≤ 3m + 1. It follows that m + 1 colors can be repeated without forcing a
strict 3-Schur solution that is not rainbow. Hence,

WS3
2(n) ≥ n + m + 2 =

6n + 9

5
.

To prove the other direction, we must argue that every n-coloring of [1, n + m + 2]
contains a strict 3-Schur solution that uses at most two colors. If we let N =
n + m + 2 = 6m + 3, then

N −
⌊
N

2

⌋
+

⌊
N

3

⌋
= 5m + 3 > n.

The inequality

WS3
2(n) ≤ n + m + 2 =

6n + 9

5

then follows from the contrapositive statement to Lemma 1.
Case 3 Let n ≡ 2 (mod 5) and write n = 5m + 2. First, we provide an n-coloring
of [1, n + m] = [1, 6m + 3] that lacks a strict 3-Schur solution that uses at most two
colors. For each i ∈ [1, 6m + 3], whose double 2i ∈ [1, 6m + 3], but whose triple
3i 6∈ [1, 6m + 3], both i and 2i may receive the same color. This is true for all
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2m < i ≤ 3m + 1. It follows that m + 1 colors can be repeated without forcing a
strict 3-Schur solution that is not rainbow. Hence,

WS3
2(n) ≥ n + m + 1 =

6n + 3

5
.

To prove the other direction, we must argue that every n-coloring of [1, n + m + 1]
contains a strict 3-Schur solution that uses at most two colors. If we let N =
n + m + 1 = 6m + 3, then

N −
⌊
N

2

⌋
+

⌊
N

3

⌋
= 5m + 3 > n.

The inequality

WS3
2(n) ≤ n + m + 1 =

6n + 3

5

then follows from the contrapositive statement to Lemma 1.

Case 4 Let n ≡ 3 (mod 5) and write n = 5m + 3. First, we provide an n-coloring
of [1, n + m + 1] = [1, 6m + 4] that lacks a strict 3-Schur solution that uses at most
two colors. For each i ∈ [1, 6m + 4], whose double 2i ∈ [1, 6m + 4], but whose triple
3i 6∈ [1, 6m + 4], both i and 2i may receive the same color. This is true for all
2m + 1 < i ≤ 3m + 2. It follows that m + 1 colors can be repeated without forcing
a strict 3-Schur solution that is not rainbow. Hence,

WS3
2(n) ≥ n + m + 2 =

6n + 7

5
.

To prove the other direction, we must argue that every n-coloring of [1, n + m + 2]
contains a strict 3-Schur solution that uses at most two colors. If we let N =
n + m + 2 = 6m + 5, then

N −
⌊
N

2

⌋
+

⌊
N

3

⌋
= 5m + 5 > n.

The inequality

WS3
2(n) ≤ n + m + 2 =

6n + 7

5

then follows from the contrapositive statement to Lemma 1.

Case 5 Let n ≡ 4 (mod 5) and write n = 5m + 4. First, we provide an n-coloring
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of [1, n + m + 1] = [1, 6m + 5] that lacks a strict 3-Schur solution that uses at most
two colors. For each i ∈ [1, 6m + 5], whose double 2i ∈ [1, 6m + 5], but whose triple
3i 6∈ [1, 6m + 5], both i and 2i may receive the same color. This is true for all
2m + 1 < i ≤ 3m + 2. It follows that m + 1 colors can be repeated without forcing
a strict 3-Schur solution that is not rainbow. Hence,

WS3
2(n) ≥ n + m + 2 =

6n + 6

5
.

To prove the other direction, we must argue that every n-coloring of [1, n + m + 2]
contains a strict 3-Schur solution that uses at most two colors. If we let N =
n + m + 2 = 6m + 6, then

N −
⌊
N

2

⌋
+

⌊
N

3

⌋
= 5m + 5 > n.

The inequality

WS3
2(n) ≤ n + m + 2 =

6n + 6

5

then follows from the contrapositive statement to Lemma 1.

From the previous theorem, it follows that WS3
2(3) = 5. We further investigate

numbers of the form WSk
k−1(k) in the following theorem.

Theorem 3. For all k ≥ 3,

WSk
k−1(k) =

k(k − 1)

2
+ 2.

Proof. First, we give a k-coloring of [1, k(k−1)2 +1] that lacks a strict k-Schur solution
using at most k − 1 colors. The only strict k-Schur solutions that apply are

1 + 2 + · · ·+ (k − 2) + (k − 1) =
k(k − 1)

2
(1)

and

1 + 2 + · · ·+ (k − 2) + k =
k(k − 1)

2
+ 1. (2)

Color 1, 2, . . . , k distinct, with k(k−1)
2 the same as k, and k(k−1)

2 + 1 the same as
k − 1. All other numbers can receive any colors. From this coloring, it follows that

WSk
k−1(k) ≥ k(k − 1)

2
+ 2.
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Now we must show that every k-coloring of [1, k(k−1)2 + 2] contains a strict k-Schur
solution using at most k − 1 colors. In addition to Equations (1) and (2), we also
have

1 + 2 + · · ·+ (k − 2) + (k + 1) =
k(k − 1)

2
+ 2 (3)

and

1 + 2 + · · ·+ (k − 3) + (k − 1) + k =
k(k − 1)

2
+ 2. (4)

From (1), it follows that 1, 2, . . . , k − 1 are assigned distinct colors. By (2) and (4),
k is distinct from the colors assigned to 1, 2 . . . , k − 1 . Equations (3) and (4) then

force k − 2 and k(k−1)
2 + 2 to receive the same color, from which it follows that

WSk
k−1(k) ≤ k(k − 1)

2
+ 2,

completing the proof.

3. A Couple of Specific Values of WSk+1
k−1(k)

A full evaluation of numbers of the form WSk+1
k−1(k) eludes us at the present time,

but we offer a few special values in this section. In particular, it is known that
WS3

1(2) = 9 (see [11]) as this is a standard strict Schur number. In the following
two theorems, we prove that WS4

2(3) = 11 and WS5
3(4) = 14.

Theorem 4. WS4
2(3) = 11.

Proof. Consider the following 3-coloring of [1, 10]:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

It follows that WS4
2(3) ≥ 11. To prove the other direction, we must argue that every

3-coloring of [1, 11] contains a strict 4-Schur solution using at most 2 colors. If false,
then there exists some 3-coloring of [1, 11] in which every strict 4-Schur solution uses
all 3 colors. Consider such a coloring. Since 1+2+3 = 6 is 3-colored, then we break
the proof down into cases, based on which two numbers receive the same color.
Case 1 Suppose that 1 and 2 receive the same color (without loss of generality,
suppose they are red). Then 3 and 6 must receive the other two colors (without loss
of generality, suppose that 3 is blue and 6 is green). From 1+2+6 = 9, it follows that
9 is blue. From 1 + 3 + 5 = 9, it follows that 5 is red. From 2 + 3 + 5 = 10, it follows
that 10 is green. Regardless of the color assigned to 8, we find that 1 + 2 + 5 = 8
uses at most 2 colors.
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Case 2 Suppose that 1 and 3 receive the same color. Without loss of generality,
suppose that 1 and 3 are red, 2 is blue, and 6 is green. Then 1 + 3 + 6 = 10 implies
that 10 must be blue. From 1 + 2 + 7 = 10 and 2 + 3 + 5 = 10, it follows that
5 and 7 are both green. From 1 + 3 + 7 = 11, it follows that 11 is blue. From
1 + 2 + 8 = 11, it follows that 8 is green. From 1 + 3 + 4 = 8, it follows that 4 is
blue. Then 2 + 4 + 5 = 11 is 2-colored.
Case 3 Suppose that 2 and 3 receive the same color. Without loss of generality,
suppose that 2 and 3 are red, 1 is blue, and 6 is green. Then 2 + 3 + 6 = 11 implies
that 11 is blue. Then 1 + 2 + 8 = 11 and 1 + 3 + 7 = 11 implies that 7 and 8 are
green. Then 1 + 4 + 6 = 11 implies that 4 is red. Then 2 + 3 + 4 = 9 uses at most 3
colors.
Case 4 Suppose that 1 and 6 receive the same color. Without loss of generality,
suppose that 1 and 6 are red, 2 is blue, and 3 is green. Then 1 + 2 + 6 = 9 implies
that 9 is green and 1 + 3 + 6 = 10 implies that 10 is blue. Then 2 + 3 + 4 = 9 and
2 + 3 + 5 = 10 imply that 4 and 5 are red. Then 1 + 4 + 5 = 10 uses 2 colors.
Case 5 Suppose that 2 and 6 receive the same color. Without loss of generality,
suppose that 2 and 6 are red, 1 is blue, and 3 is green. Then 1 + 2 + 6 = 9 implies
that 9 is green and 2 + 3 + 6 = 11 implies that 11 is blue. Then 2 + 3 + 4 = 9 implies
that 4 is blue. Then 1 + 4 + 6 = 11 uses 2 colors.
Case 6 Suppose that 3 and 6 receive the same color. Without loss of generality,
suppose that 3 and 6 are red, 1 is blue, and 2 is green. Then 1 + 3 + 5 = 9 implies
that 9 is green and 2 + 3 + 5 = 10 implies that 10 is blue. Then 2 + 3 + 4 = 9 implies
that 4 is blue and 1 + 4 + 5 = 10 is 2 colored.
In all six cases, we find that a 3-coloring must contain a strict 4-Schur solution using
at most 2 colors, implying the inequality WS4

2(3) ≤ 11, and completing the proof.

Theorem 5. WS5
3(4) = 14.

Proof. Consider the following 4-coloring of [1, 13]:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}.

It follows that WS5
3(4) ≥ 14. To prove the other direction, we must show that every

4-coloring of [1, 14] contains a strict 5-Schur solution using at most 3 colors. We
have numerous cases to consider, based on which two numbers in 1 + 2 + 3 + 4 = 10
receive the same color.
Case 1 Suppose that 1 and 2 receive the same color (without loss of generality,
suppose they are red). Then 3, 4, and 10 must receive the other three colors (without
loss of generality, suppose that 3 is blue, 4 is green, and 10 is orange). Then 1 + 2 +
3+5 = 11 implies that {5, 11} is colored green and orange. However, 1+2+4+5 = 12
prevents 5 from being green if a 3-colored strict 5-Schur solution is to be avoided.
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Thus, 5 is orange, 11 is green, and 12 is blue. Now 1 + 2 + 3 + 6 = 12 uses at most
3 colors.
Case 2 Suppose that 1 and 3 are the same color. Without loss of generality, suppose
that 1 and 3 are red, 2 is blue, 4 is green, and 10 is orange. Then 1 + 2 + 3 + 5 = 11
implies that {5, 11} is colored green and orange. However, 1 + 3 + 4 + 5 = 13
prevents 5 from being colored green. So, 5 is orange, 11 is green, and 13 is blue.
Now 1 + 2 + 3 + 7 = 13 uses at most 3 colors.
Case 3 Suppose that 1 and 4 are the same color. Without loss of generality, suppose
that 1 and 4 are red, 2 is blue, 3 is green, and 10 is orange. Then 1 + 2 + 4 + 5 = 12
implies that {5, 12} is colored green and orange. However, 1 + 3 + 4 + 5 = 13
prevents 5 from being colored green. So, 5 is orange, 12 is green, and 13 is blue.
Now 1 + 2 + 4 + 6 = 13 uses at most 3 colors.
Case 4 Suppose that 1 and 10 are the same color. Without loss of generality, suppose
that 1 and 10 are red, 2 is blue, 3 is green, and 4 is orange. Then 2 + 3 + 4 + 5 = 14
implies that {5, 14} includes the color red, giving us two subcases.
Subcase 4.1 Suppose that 5 is red. Then 1 + 2 + 4 + 5 = 12, 1 + 2 + 3 + 6 = 12,
and 1 + 3 + 4 + 6 = 14 imply that 12 is green, 6 is orange, and 14 is blue. Now
1 + 2 + 5 + 6 = 14 uses at most 3 colors.
Subcase 4.2 Suppose that 14 is red. Then 1 + 3 + 4 + 6 = 14 implies that 6 is blue.
Now 1 + 2 + 5 + 6 = 14 uses at most 3 colors.
Case 5 Suppose that 2 and 3 are the same color. Without loss of generality, suppose
that 2 and 3 are red, 1 is blue, 4 is green, and 10 is orange. Then 1 + 2 + 3 + 5 = 11
implies that {5, 11} is colored green and orange. However, 2 + 3 + 4 + 5 = 14
implies that 5 is not green. Thus, 5 is orange, 11 is green, and 14 is blue. Now
1 + 2 + 3 + 8 = 14 uses at most 3 colors.
Case 6 Suppose that 2 and 4 are the same color. Without loss of generality, suppose
that 2 and 4 are red, 1 is blue, 3 is green, and 10 is orange. Then 1 + 2 + 4 + 5 = 12
implies that {5, 12} is colored green and orange. However, 2 + 3 + 4 + 5 = 14
prevents 5 from being green. Thus, 5 is orange, 12 is green, and 14 is blue. Now
1 + 2 + 4 + 7 = 14 uses at most 3 colors.
Case 7 Suppose that 2 and 10 are the same color. Without loss of generality, suppose
that 2 and 10 are red, 1 is blue, 3 is green, and 4 is orange. Then 2 + 3 + 4 + 5 = 14
implies that {5, 14} includes the color blue, giving us two subcases.
Subcase 7.1 Suppose that 5 is blue. Then 1+2+4+5 = 12 implies that 12 is green,
1 + 2 + 3 + 6 = 12 implies that 6 is orange, and 1 + 3 + 4 + 5 = 13 implies that 13
is red. Now 1 + 2 + 4 + 6 = 13 uses at most 3 colors.
Subcase 7.2 Suppose that 14 is blue. Then 1 + 3 + 4 + 6 = 14 implies that 6 is red.
Now 1 + 2 + 5 + 6 = 14 uses at most 3 colors.
Case 8 Suppose that 3 and 4 are the same color. Without loss of generality, suppose
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that 3 an 4 are red, 1 is blue, 2 is green, and 10 is orange. Then 2 + 3 + 4 + 5 = 14
implies that {5, 14} is colored blue and orange. However, 1 + 3 + 4 + 5 = 13 implies
that 5 is not blue. Thus, 5 is orange, 14 is blue, and 13 is green. Now 1+3+4+6 = 14
uses at most 3 colors.
Case 9 Suppose that 3 and 10 are the same color. Without loss of generality, suppose
that 3 and 10 are red, 1 is blue, 2 is green, and 4 is orange. Then 2 + 3 + 4 + 5 = 14
implies that {5, 14} includes the color blue, giving us two subcases.
Subcase 9.1 Suppose that 5 is blue. Then 1 + 3 + 4 + 5 = 13, 1 + 2 + 4 + 6 = 13,
and 1 + 2 + 3 + 6 = 12 imply that 13 is green, 6 is red, and 12 is orange. Then
1 + 2 + 4 + 5 = 12 uses at most 3 colors.
Subcase 9.2 Suppose that 14 is blue. Then 1+3+4+6 = 14 implies that 6 is green.
Now 1 + 2 + 5 + 6 = 14 uses at most 3 colors.
Case 10 Suppose that 4 and 10 are the same color. Without loss of generality,
suppose that 4 and 10 are red, 1 is blue, 2 is green, and 3 is orange. Then 2+3+4+5 =
14 implies that {5, 14} includes the color blue, giving us two subcases.
Subcase10.1 Suppose that 5 is blue. then 1 + 3 + 4 + 5 = 13, 1 + 2 + 4 + 6 = 13,
1 + 2 + 3 + 7 = 13, and 1 + 3 + 4 + 6 = 14 imply that 13 is green, 6 is orange, 7 is
red, and 14 is green. Now 1 + 2 + 4 + 7 = 14 uses 3 at most colors.
Subcase 10.2 Suppose that 14 is blue. Then 1 + 3 + 4 + 6 = 14 implies that 6 is
green. Now 1 + 2 + 5 + 6 = 14 uses at most 3 colors.
In all cases, we find that there exists a strict 5-Schur solution that uses at most 3
colors, implying WS5

3(4) ≤ 14, and completing the proof.

4. Conclusion

The straight-forward methods used in Section 3 to evaluate WSk+1
k−1(k) when k = 3, 4

quickly become unreasonable for larger values of k due to the number of cases and
subcases one must consider. Combining these values with the known strict Schur
number WS3

1(2) = 9, we conjecture that

WSk+1
k−1(k) =

k2 − k + 16

2
, for all k ≥ 2,

but we are unable to offer a complete proof at this time. Besides this conjecture, we
conclude by mentioning two specific variations of Schur numbers worthy of inquiry.

1. Weakened Ramsey numbers have been considered for colorings that avoid cer-
tain rainbow subgraphs (e.g., see [7] and [3]). In this sense, one could define

the weakened Gallai-Schur number GSk1,k2
` (n) to be the least natural number

N such that every n-coloring of [1, N ] that avoids rainbow k1-Schur solutions
contains a k2-Schur solution that uses at most ` colors.
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2. Consider a weakened version of the Rado numbers introduced in [6]. Specifi-
cally, instead of determining the presence of k-Schur solutions using at most `
colors, one can search for solutions to

x1 + x2 + · · ·+ xk−1 < xk, where x1 < x2 < · · · < xk,

that use at most ` colors.
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