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Abstract. It was conjectured that the smallest minimal point sets of PG(2s, q), q
a square, that meet every s-subspace and that generate the whole space are Baer
subgeometries PG(2s,

√
q). This was shown in 1971 by Bruen for s = 1, and by

Metsch and Storme [5] for s = 2. Our main interest in this paper is to prepare
a possible proof of this conjecture by proving a strong theorem on line-blocking
sets in projective spaces (see Theorem 1.1). We apply this theorem to prove the
conjecture in the case s = 3. The general case will be handled in a forthcoming
paper by the first author.

1. Introduction

Let PG(n, q) be the projective space of dimension n over the finite field GF(q).
A t-blocking set B in PG(n, q), with n ≥ t+1, is a set B of points such that any (n− t)-

dimensional subspace intersects B. A 1-blocking set in PG(2, q) is simply called a blocking
set. A t-blocking set is called minimal, if none of its proper subsets is also a t-blocking set.
The smallest t-blocking sets have been characterized by Bose and Burton [1]. They proved

that the smallest t-blocking sets in PG(n, q) are subspaces of dimension t. An old result of
Bruen [2] states that the second smallest minimal blocking set in the plane PG(2,

√
q), q a

square, is (the point set of) a Baer subplane PG(2,
√
q). For further results we need the

notion of a cone.
Let V and U be skew subspaces of a projective space, and let S be a non-empty subset

of U . The cone with vertex V and base S is the point-set that is the union of the subspaces
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〈V, P 〉 with points P ∈ S. In this paper S will typically be a Baer subspace PG(s,
√
q), and

then we speak of a cone with vertex V over a Baer subspace PG(s,
√
q). If V is a point (or

line), we speak of a point-cone (or a line-cone). We allow the degenerate situation, when V
is empty; then the cone with vertex V and base S is simply the set S. When S consists of a
single point, then the cone is a subspace of dimension dim(V ) + 1.
Heim [4] proved that the second smallest minimal t-blocking sets in PG(n, q) are cones

with a (t − 2)-dimensional vertex and with base a second smallest minimal 1-blocking set
in a plane. For q square, this is, by the above mentioned result of Bruen [2], a cone with
(t − 2)-dimensional vertex and with base a Baer subplane PG(2,

√
q) in a plane. For t = 1

and q a square, this was proved earlier by Bruen [3].
A property of a t-blocking set in a projective space PG(n, q) is that it is also a t-blocking

set in all projective spaces PG(n′, q) of higher dimension n′ > n. Therefore it is quite natural
to look for t-blocking sets that generate a space, because all others are t-blocking sets in
projective spaces of smaller dimension.
Examples for minimal blocking sets in PG(n, q), q a square, are easy to find. For each

integer i with 0 ≤ i ≤ min{t, n− t}, the cone with a (t−1− i)-dimensional vertex and a base
a Baer subspace PG(2i,

√
q) is an example for a minimal t-blocking set of PG(n, q). (For

i = 0, this is a subspace of dimension t.) While i is growing the cardinality of the example
gets larger. If n > 2t, none of these examples generates the space. If n ≤ 2t, then only the
example with i = n− t generates the space.
In particular when n = 2t, then PG(2t,

√
q) is a minimal t-blocking set of PG(n, q) that

generates the space. For n ≥ 2t, we conjecture that the above examples are the first t + 1
smallest minimal t-blocking sets. This conjecture is known to be true in the cases t = 1 [3]
and t = 2 [5]. The following first result of this paper makes it likely that the conjecture can
be proved in general (for q 6= 4, 9).

Theorem 1.1. Consider the projective space PG(n, q), n ≥ 2, q ≥ 16 a square. Suppose
that B is a set of at most

qn − 1

q − 1
+
√
q
qn−1 − 1

q − 1

points that meets every line. Then B contains either a hyperplane, or a cone over a PG(2,
√
q)

with a vertex of dimension n− 3.

The strategy to use this result for proving the conjecture is as follows. First notice that
each of the t+1 examples B for a t-blocking sets in PG(n, q), n ≥ 2t, satisfies |B| ≤ qt+1−1

q−1 +
√
q q
t−1
q−1 . On the other hand, suppose that B is a blocking set of PG(2n, q) satisfying this

inequality. Then a counting argument shows that B misses many subspaces R of dimension
n− t− 2. In the quotient geometry PG(n, q)/R = PG(t+1, q), the set B becomes a set that
meets all lines. Then Theorem 1.1 gives structural information on B. This information, for
various subspaces R, seems to be sufficient to prove the conjecture. We demonstrate this in
the case t = 3 by proving the following theorem. The general case is more complicated and
will be handled in a forthcoming paper by the first author.

Theorem 1.2. The four smallest minimal point-sets of PG(6, q), q a square, q ≥ 16, that
meet every plane are a subspace of dimension three, a cone with a line-vertex over a PG(2,

√
q),

a cone with a point-vertex over a PG(4,
√
q), and a PG(6,

√
q).
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The starting point of the present configurations was the conjecture that PG(2t,
√
q) is the

smallest t-blocking set of PG(2t, q) that is generating PG(2t, q). This conjecture is weaker
than the above one. Theorem 1.2 clearly proves it for t = 3.

Corollary 1.3. The smallest minimal point-set of PG(6, q), q a square, q ≥ 16, that gener-
ates the space and that meet every plane is a PG(6,

√
q).

2. An improved bound on line blocking sets of projective spaces

Throughout this paper, q will denote a prime power that is a square. For i ≥ −1, we put

Θi :=
qi+1 − 1

q − 1
.

Then Θi is the number of points in a projective space of order q and dimension i.
This section is devoted to the proof of Theorem 1.1. Throughout this section, B denotes

a point set of PG(n, q) meeting every line of PG(n, q) and satisfying

|B| ≤ Θn−1 +
√
qΘn−2. (1)

A line that meets B in a unique point is called a tangent of B. In order to prove the theorem,
we may assume that B is minimal, that is, every point of B lies on a tangent of B. The
proof is by induction on n. The case n = 2 of the theorem is well-known; it is due to Bruen
[2]. The case n = 3 has been handled in [5] (also only for q ≥ 16). We assume from now on
that n ≥ 4 and that the theorem is true for all smaller values of n. We also assume that B
contains no hyperplane and show that B contains a cone as described in the theorem.
A subspace of codimension two is called a coline, a subspace of codimension three a

coplane. A subspace is called a B-space, if it is contained in B; we also speak of B-lines,
B-planes and so on.
Since we quite often find cones over a Baer subplane with a vertex of dimension n − 4,

we shall simply call these cones in this section and emphasis this by using italic style: cone.

Lemma 2.1. Let H be a hyperplane.
(a) |H ∩B| ≤ Θn−2(

√
q + 1).

(b) If |H ∩B| ≤ Θn−2 +Θn−3
√
q, then H ∩B contains a cone or coline.

(c) H ∩B contains at most
√
q + 2 colines.

Proof. Part (b) is the induction hypothesis. Part (a) can be seen as follows. If H is a
hyperplane, then H is not completely contained in B. If P is a point of H that is not in B,
then each of the qn−1 lines l with l ∩H = P meets B in a point outside of B. Hence at most
|B| − qn−1 points of B lie in H.
In order to prove (c) first notice that the union of c + 1 colines that are contained in a

hyperplane cover at least

Θn−2 + cq
n−2 −

(
c

2

)

qn−3

points. For c =
√
q + 2, this number is larger than the one in (a). 2
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Lemma 2.2. A B-coline meets at most q + 2
√
q − 1 other B-colines in a coplane.

Proof. Suppose that U is a B-coline. Let Hi, i = 0, . . . , q, be the hyperplanes on U and
suppose that Hi contains ci colines different from U that are contained in B. As in the proof
of the preceding lemma, we see that Hi \U meets B in at least ciqn−2−

(
ci
2

)
qn−3 points. Thus

Θn−2 +
q∑

i=0

(

ciq
n−2 −

(
ci

2

)

qn−3
)

≤ |B|.

Put c =
∑
ci. As ci ≤

√
q + 1 for all i (Lemma 2.1 (c)), we have

∑(
ci
2

)
≤ c
√
q/2. Thus

cqn−3(q −
√
q/2) ≤ |B| −Θn−2. Using (1) it follows that c < q + 2

√
q. 2

Lemma 2.3. Suppose P is a point of B. Then there exist a coline S and a hyperplane H
such that |H ∩B| ≤ Θn−2+

√
qΘn−3 and such that one of the following two statements holds.

(a) P ∈ S and S ⊆ H ∩B.
(b) |S ∩B| ≤ Θn−3 +

√
qΘn−4 and there exists a B-coplane E with P ∈ E ⊆ S ⊆ H.

Proof. Consider a tangent t on P . We count incident pairs (X,H) of pointsX and hyperplanes
H satisfying P 6= X ∈ H and t ⊆ H. Every point X of B \ {P} lies in Θn−3 such pairs.
Thus (|B| − 1)Θn−3 =

∑
(|H ∩ B| − 1) were the sum runs over the Θn−2 hyperplanes H

containing t. Using (1), it follows that there exists a hyperplane H on t satisfying |H ∩B| <
Θn−2 +

√
qΘn−3 + 1.

By Lemma 2.1 the set H ∩ B contains either a coline C or a cone C. In both cases C
meets every line of H. As t is a tangent of B, it follows that P ∈ C. If C is a coline we
are done. Suppose therefore that C is a cone, which has a (n− 4)-subspace as a vertex and
a PG(2,

√
q) as a base. The cone has Θn−2 +

√
qqn−3 points, so apart from the points of C

there are at most
√
qΘn−4 further points in H ∩B.

The largest subspaces contained in the cone have dimension n − 3 and cover the cone.
Let E be a coplane containing P and contained in C. Then H has q −

√
q colines S that

meet C in E. Any of these will meet B in at most Θn−3 +
√
qΘn−4 points. 2

Lemma 2.4. There exists a hyperplane H such that |H ∩ B| ≤ Θn−2 +
√
qΘn−3 and such

that H ∩B contains a cone.

Proof. Assume that this is not true. Then Lemma 2.1 shows that every hyperplane H
satisfying |H ∩B| ≤ Θn−2 +

√
qΘn−3 contains a B-coline.

Lemma 2.3 shows that there exists a hyperplane H with at most Θn−2 +
√
qΘn−3 points

in B. Then H contains a B-coline T . Put |H ∩ B| = Θn−2 + c. Then 0 ≤ c ≤
√
qΘn−3.

Consider a coplane S of T . Counting |H ∩ B| using the colines of H on S, we see that S
lies in a coline T ′ of H with T ′ 6= T and |T ′ ∩ B| ≤ Θn−3 + c/q. Counting |B| using the
hyperplanes on T ′ we see that T ′ lies in a hyperplane H ′ 6= H satisfying

|H ′ ∩B| ≤ |T ′ ∩B|+
|B| − |H ∩B|

q
≤ Θn−3 +

c

q
+
1

q
(qn−1 +

√
qΘn−2 − c).

Then |H ′∩B| ≤ Θn−2+
√
qΘn−3, so H

′∩B contains a B-coline TS. As |T ′∩B| ≤ Θn−3+ c/q
and c ≤

√
qΘn−3, then S is the only coplane of T

′ contained in B. Thus TS ∩ T ′ = S. As
TS ∩ T ⊆ H ′ ∩H = T ′, we obtain TS ∩ T = S.
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Thus, every coplane S of T gives rise to a B-coline TS satisfying TS ∩ T = S. As T
has Θn−2 coplanes, it follows that T meets at least that many B-colines in a coplane. This
contradicts Lemma 2.2. 2

Lemma 2.5. Every point of B lies on a B-coline.

Proof. Assume the point P of B does not lie on a B-coline. Then Lemma 2.3 shows that
there exists a coplane E and a coline S with P ∈ E ⊆ S ∩B and |S ∩B| ≤ Θn−3+

√
qΘn−4.

Now we shall derive a contradiction in several steps.

(a) Suppose H is a hyperplane on S satisfying |H ∩ B| ≤ Θn−2 +
√
qΘn−3. Then H ∩ B

contains a cone C satisfying C ∩ S = E.

Lemma 2.1 shows that H ∩ B contains a coline or a cone. Assume that H ∩ B contains
a coline T . The assumption in the beginning of the proof implies that E is not contained
in T . Thus T ∩ S and E are different coplanes of S. Therefore |S ∩ B| ≥ qn−3 + Θn−3, a
contradiction.
Hence H ∩B contains a cone C, which has a subspace V of dimension n− 4 as a vertex

and a PG(2,
√
q) has a base. We have |C| = Θn−2+

√
qqn−3. Thus, outside of C there exist at

most
√
qΘn−4 points in H ∩B, which implies that at least Θn−3−

√
qΘn−4 points of E lie in

C. This implies that E is contained in C (just check the few possibilities in which a coplane
of H can meet the cone C; the largest intersection a coplane can have with C, provided it is
not contained in C, is Θn−4 +

√
qqn−4).

As all coplanes contained in C contain the vertex of C, then V ⊆ E. A coline that
contains E and a further point of C meets C in the union of

√
q+1 coplanes on V . As S ∩B

is to small to contain that many coplanes on V , it follows that S ∩ C = E.

(b) If H is a hyperplane on S, then |(H \ S) ∩B| ≥ qn−2 +
√
qqn−3 points.

Suppose |(H \ S) ∩ B| ≤ qn−2 +
√
qqn−3. Then |H ∩ B| ≤ Θn−2 +

√
qΘn−3. Then (a)

shows that H ∩ B contains a cone C with |C ∩ S| = Θn−3. As cones have Θn−2 +
√
qqn−3

points, it follows that |(H \ S) ∩B| = qn−2 +
√
qqn−3.

(c) Every hyperplane H on S meets B in at most Θn−2 +
√
qΘn−3 points.

Apply (b) to the q hyperplanes on S different from H. This shows that H meets B in at
most |B| − q(qn−2 +

√
qqn−3) points.

(d) If U is a coline on E, then either |(U \ E) ∩ B| ≤
√
qΘn−4 (these will be called small

colines) or |(U \ E) ∩B| ≥
√
qqn−3 (these will be called big colines).

Let H be a hyperplane containing S and U . By (a) and (c), the set H ∩ B contains a
cone C with E ⊆ C. The vertex V of this cone has dimension n− 4 and is contained in E.
There are two possibilities how U and C can meet. Either U ∩C = E, or U ∩C is the union
of
√
q + 1 subspaces of dimension n− 3 (one of these is E) that mutually meet in V . In the

first case |(U \ E) ∩ C| = 0 and in the second case |(U \ E) ∩ C| =
√
qqn−3.

As C has Θn−2 +
√
qqn−3 points, then (c) shows that H contains apart from the points

in C at most
√
qΘn−4 further points in B. This proves the assertion.

(e) If H is a hyperplane on E containing a small coline, then H contains
√
q + 1 big and

q −
√
q small colines.



48 M. Bokler, K. Metsch: On the Smallest Minimal Blocking Sets in . . .

First consider the special case that H contains S. Using the notation of the proof of (d),
we see that a coline U of H on E is small if and only if U ∩C = E. As C is a cone with base
a PG(2,

√
q), we see that this happens for exactly q −

√
q choices of U .

Now consider the general case that H contains a small coline S ′ that might be distinct
from S. Since E ⊆ S ′, we can repeat the proof of (a), (b), (c), (d) with S ′ in place of S.
Then the assertion follows as in the special case.

(f) The final contradiction.

Each of the q+1 hyperplanes on S contains
√
q+1 big colines. Thus, the number of big

colines is b = (q + 1)(
√
q + 1).

Consider a big coline U . Let c be the number of hyperplanes on U that contain a small
coline and let d be the number of hyperplanes on U that contain no small coline. The c
hyperplanes of the first kind each contain exactly

√
q + 1 big colines, which are U and

√
q

others. The d hyperplanes of the second kind each contain exactly q+1 big colines. It follows
that c

√
q+ dq+1 = b. As c+ d = q+1, then (q+1− d)

√
q+ dq+1 = (q+1)(

√
q+1). This

gives (d− 1)(
√
q − 1) = 1. As q 6= 4, this is a contradiction. 2

Lemma 2.6. The set B contains a cone with a vertex of dimension n− 3 and a PG(2,
√
q)

as a base.

Proof. By Lemma 2.4, there exists a hyperplane H satisfying |H ∩B| ≤ Θn−2+
√
qΘn−3 and

such that H ∩ B contains a cone C . The vertex of C is a subspace V of dimension n − 4,
the base of the cone is a PG(2,

√
q). The maximal subspaces contained in C are called the

generators of C. There are q +
√
q + 1 generators. They have dimension n − 3 and contain

the vertex V .
As C contains Θn−2 +

√
qqn−3 of the points of H ∩ B, then there exist at most

√
qΘn−4

points of B in H \ C. This implies that every coplane that is contained in H ∩ B must be
one of the generators of C. Hence, if L is a B-coline, then L ∩H is a coplane and L ∩H is
a generator of the cone C. Therefore the vertex V of the cone is contained in all B-colines.
We shall show that there exists a subspace Z of dimension n − 3 satisfying Z ∩H = V

and such that Z lies in all B-colines. Then the B-colines mutually meet in Z. As each point
of a base of the cone C is contained in a B-coplane, it follows then that C contains a cone
with vertex Z and a PG(2,

√
q) as a base. As B is minimal, we will in fact have that B equals

this cone.
As every point of B lies on a B-coline (Lemma 2.5), and as each B-coline meets H in a

generator of C, we have H∩B = C. Consider a subspace U of dimension n−2 of H such that
V 6⊆ U . Then U ∩C is cone with a (n−5)-dimensional subspace as a vertex and a PG(2,

√
q)

as a base. We have |H ∩B| = |C| = Θn−2+
√
qqn−3 and |U ∩B| = |U ∩C| = Θn−3+

√
qqn−4.

Let H ′ be one of the q hyperplanes with H ′ ∩H = U that has the smallest possible number
of points in B. Then

|B| ≥ |H ∩B|+ q(|H ′ ∩B| − |U ∩B|).

As we know the values of |H ∩B| and |U ∩B|, we obtain |H ′∩B| < Θn−2+
√
qΘn−3+1 from

(1). As V lies in every B-coline and as H ′ does not contain V , then H ′ ∩B does not contain
a coline. Then Lemma 2.1 shows that H ′ ∩B contains a cone C ′ with a (n− 4)-dimensional
vertex V ′ and a PG(2,

√
q) as a base. As for V , we can show that every B-coline contains
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V ′. As V 6⊆ H, then V 6= V ′ and hence Z := 〈V, V ′〉 has dimension at least n − 3. Then
dim(Z) = n− 3 and the B-colines mutually meet in Z. This completes the proof. 2

3. Blocking planes by points in PG(5, q)

Before we state the main theorem of this section, we need two results. The first one is
essential for the proof obtained in this section. The second one, which we formulate as a
lemma, might be well-known, but we include a proof anyway.

Result 3.1. [5] Suppose B is a minimal set of points of PG(4, q), q a square and q ≥ 16,
that meets every plane. If |B| ≤ q2 + q

√
q + q +

√
q + 1, then either B is a plane, or the

point-cone over a PG(2,
√
q), or a PG(4,

√
q).

Lemma 3.2. Consider PG(n, q), n ≥ 2, and a point-set B of PG(n, q). Suppose PG(n, q)
induces on B the point-line structure of a projective space PG(m,

√
q) with m ≥ n (our

formulation should imply that a line of PG(n, q) induces at most one line of PG(m,
√
q), that

is a line of PG(n, q) meets B in 0, 1 or
√
q + 1 points). Then m = n and B is the point-set

of a Baer subgeometry.

Proof. First we show that n = m using induction on n. For n = 2, we just have to note that
a point of PG(m,

√
q) with m ≥ 3 lies on more than q + 1 lines. Thus, if n = 2, then m = 2.

Now suppose that n ≥ 3. By the induction hypothesis, a (n− 1)-subspace of PG(m,
√
q)

generates in PG(n, q) a subspace of dimension at least n − 1, and clearly the dimension
must be n− 1. Also, no n-subspace of PG(m,

√
q) can lie in a (n− 1)-subspace of PG(n, q).

Therefore, different (n − 1)-subspaces of PG(m,
√
q) generate in PG(n, q) different (n − 1)-

subspaces. Now just notice that for m > n, the number of (n− 1)-subspaces of PG(m, q) is
larger than the number of (n− 1)-subspaces of PG(n, q). Thus m = n.
Also B generates PG(n, q). Now it is a standard technique to see that one can choose

coordinates in such a way that B consists of the points with coordinates in the subfield F√q. 2

The aim of this section is to prove the following theorem.

Theorem 3.3. Suppose B is a set of at most Θ3 +
√
qΘ2 points of PG(5, q) and that B

meets every plane. Then either B contains a solid, or a line-cone over a PG(2,
√
q), or a

point-cone over a PG(4,
√
q).

We shall prove this in a series of lemmas. For the rest of this section, we assume that B
satisfies the hypotheses of the above theorem. In order to prove the theorem, we can assume
that B contains no solid and no line-cone over a PG(2,

√
q). We can also assume that B is

minimal, that is no proper subset of B meets every plane.

Lemma 3.4. If H is a hyperplane, then |H ∩B| ≤ (
√
q + 1)Θ2.

Proof. It is not possible that H∩B meets every line of H, since otherwise Theorem 1.1 would
imply that H ∩B contains a solid or a line-cone over a PG(2,

√
q). Let l be a line of H with

no point in B. Then l lies on q3 planes π with π ∩ H = l. As all these meet B, then B
contains at least q3 points that are not in H. Hence |H ∩B| ≤ |B| − q3 ≤ (

√
q + 1)Θ2. 2
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Lemma 3.5. Let R be a point not in B and H a hyperplane not through R. Then the point
set B(H,R) := {RP ∩H | P ∈ B} contains a line-cone over a PG(2,

√
q).

Proof. If l is a line of H, then the plane 〈P, l〉 meets B and hence l meets B(H,R). Thus
B(H,R) meets all lines of H. As |(H,R)| ≤ |B|, then Theorem 1.1 shows that B(H,R)
contains a solid or a line-cone over a PG(2,

√
q). However, the first case is not possible,

because a solid S contained in B(H,R) would give rise to the hyperplane 〈R,S〉 with at least
Θ3 points in B. This is excluded by the previous lemma. 2

Lemma 3.6. If R is a point not in B and if B′ is a subset of B, then the number of lines
on R that meet B′ is at least |B′| − q

√
q −
√
q.

Proof. It suffices to prove this for B′ = B. However, the previous lemma shows that the
number of lines of R that meets B is at least as large as the number of points in a line-cone
over a PG(2,

√
q), which is Θ3 +

√
qq2. 2

Lemma 3.7. Every point of B lies in a line contained in B.

Proof. Assume this is not true for the point P of B. As B is minimal, then P lies on a plane
π with π ∩B = P .
Consider a solid S on π. Then S ∩ B meets every plane of S. Also S cannot contain a

B-line, as a B-line of S would necessarily meet π in P . Therefore |S ∩B| ≥ q+
√
q+1 with

equality if and only if S ∩ B is a PG(2,
√
q) (Theorem 1.1). Hence S \ π contains at least

q +
√
q points of B.
As π lies in Θ2 solids, it follows that |B| = Θ3+

√
qΘ2 and that all solids on π meet B in

a PG(2
√
q). Therefore every 4-space on π meets B in (q + 1)(q +

√
q) + 1 points. Result 3.1

implies now that every 4-space on π either contains a PG(4,
√
q), or a plane, or a point-cone

over a PG(2,
√
q) as a base. In all three cases, P must lie in this substructure, as π∩B = P .

But in the last two cases, the substructure is a union of lines, and as we assume that P does
not lie on a B-line, then the first case must occur.
Hence each 4-space on π contains a PG(4,

√
q). As each line of PG(5, q) lies together

with π in some 4-space, then each line meets B in 0, 1, or
√
q+1 points. Then no point of B

lies on a B-line. We can thus repeat our argument and obtain the following: For every plane
π with |π ∩B| = 1, each solid on π meets B in a PG(2,

√
q) and each 4-space on π meets B

in a PG(4,
√
q).

As every point of B lies in a plane meeting B only in this point, then every plane occurs
in a 4-space that meets B in a PG(4,

√
q). Thus every plane meets B in a point, a Baer

subline or a Baer subplane.
This implies quite easily that the structure induced on B is a projective space of order

√
q. As |B| = Θ3 +

√
qΘ2, then this projective space has dimension six. This contradicts

Lemma 3.2. 2

The following lemma contains the central argument of the proof. Though it is completely
elementary, it is very tricky to find the correct counting argument to obtain a contradiction.
The argument was found by the first author while working on his thesis.
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Lemma 3.8. Any two B-lines meet.

Proof. Assume that g and h are disjoint lines contained in B. These two lines span a solid
S. As B is sufficiently small, we can find a line l that misses S and contains no point of B.
Let Pi, i = 0, . . . , q, be the points of l, and let Hi be a hyperplane through S not

containing Pi. We know that B(Hi, Pi) contains a line-cone Ci, which has Θ3+
√
qq2 points.

Suppose that for c of the points Pi, one of the lines g and h does not belong to the line-cone
Ci. Then this line has at most

√
q + 1 points in Ci and therefore the set B(Hi, Pi) contains

at least |Ci|+ q −
√
q points. Thus

q∑

i=0

|B(Hi, Pi)| ≥ (q + 1)(Θ3 + q
2√q) + c(q −

√
q).

Now we count this sum in a different way. For this, consider the Θ3 planes π on l. If such
a plane meets B in d points, then d ≥ 1, and these d points contribute at most dq + 1 to
the sum. Thus we obtain |B|q +Θ3 as an upper bound for the sum. Compare this with the
above lower bound, using |B| ≤ Θ3 +

√
qΘ2, to obtain

(q + 1)(Θ3 + q
2√q) + c(q −

√
q) ≤ (q + 1)Θ3 + q

√
qΘ2.

This simplifies to c(
√
q − 1) ≤ q, that is c ≤

√
q + 1.

Now consider one of the points Pi for which g and h belong to Ci. Then S is a solid that
contains two disjoint lines of the line-cone Ci. Using the structure of Ci, it follows that S
meets Ci in precisely (

√
q + 1)q2 + q + 1 points. Therefore the hyperplane 〈S, P 〉 contains at

least this many points from B. As there are q+1− c ≥ q−
√
q choices for Pi, it follows that

(q −
√
q)((
√
q + 1)q2 + q + 1)− (q − 1−

√
q)|S ∩B| ≤ |B| ≤ Θ3 +

√
qΘ2.

As B contains no solid, then some point of S is not in B. Then Lemma 3.6 implies that
|S ∩B| ≤ q2 + q + 1 +

√
qq +

√
q. Since q ≥ 9, this gives a contradiction. 2

Lemma 3.9. The set B is a cone with point vertex over a PG(4,
√
q).

Proof. As every two B-lines meet, they all pass through a common point or lie in a common
plane. As |B| > q2 + q + 1 and as every point of B lies on a B-line, the second case is not
possible. Thus all B-lines pass through a common point Q. Then the number of B-lines is
c := (|B| − 1)/q ≤ |PG(4,

√
q)|.

Consider a hyperplane H with Q /∈ H. As every point of H ∩ B lies on a B-line, then
|H∩B| ≤ c ≤ |PG(4,

√
q)|. As Q /∈ H, then H∩B contains no B-line. As H∩B meets every

plane of H, it follows now from Result 3.1 that H ∩B is a PG(4,
√
q). Then B contains the

cone with vertex Q over this PG(4,
√
q). As B is minimal, then B contains no points outside

this cone. 2

4. Blocking solids in PG(6, q)

In this section we shall prove Theorem 1.2. Throughout we assume that B is a set of at most
|PG(6,

√
q)| points in PG(6, q) that meets every solid. In order to prove the theorem we may

and shall assume that B contains no solid, no cone with line-vertex over a PG(2,
√
q), and

no cone with a point-vertex over a PG(4,
√
q). We shall show that B is a PG(6,

√
q).
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Lemma 4.1. A hyperplane meets B in at most |PG(5,
√
q)| points.

Proof. Consider a hyperplane H. It is not possible that H ∩B meets every plane of H, since
otherwise Theorem 3.3 would imply that H ∩B contains one of the structures that we have
just excluded. Then, if π is a plane of H missing B, then π lies in q3 solids that meet H in π.
Hence outsideH∩B there exist at least q3 points of B. Then |H∩B| ≤ |B|−q3 = |PG(5,

√
q)|.
2

Lemma 4.2. Consider a point P /∈ B, a hyperplane H with P /∈ B and the set B(H,P ) :=
{PR ∩ H | R ∈ B} consisting of the projection of B from P onto H. Then B(H,P ) is a
cone with a point-vertex and a PG(4,

√
q) as a base.

Proof. As B meets every solid, then the projected set B(H,P ) meets every plane of H. Also
|B(H,P )| ≤ |B| ≤ |PG(6,

√
q)|. Then Theorem 3.3 shows that B(H,P ) contains a solid, or

a cone with a line-vertex over a PG(2,
√
q), or a cone with a point-vertex over a PG(4,

√
q).

The preceding lemma implies that a 4-subspace of H contains at most |PG(5,
√
q)| points of

B(H,P ). Thus the first two cases are not possible. Hence B(H,P ) contains a cone C(H,P )
with point-vertex over a PG(4,

√
q), which has |PG(6,

√
q)| −

√
q points.

As |B(H,P )| ≤ |B| < Θ4, then some line of H misses B(H,P ). Hence, there exists a
plane π on P missing B. For each point X in π consider a hyperplane HX not through X.
Then we have ∑

X∈π

|B(HX , X)| ≥ (q
2 + q + 1)(|PG(6,

√
q)| −

√
q).

Consider the Θ3 solids S on π. If S∩B contain c points, then c ≥ 1 and the c points of S∩B
contribute at most c(q2 + q) + 1 to this sum. Thus we obtain |B|(q2 + q) + Θ3 as an upper
bound for the sum. Comparing the lower with the upper bound using |B| ≤ |PG(6,

√
q)|, we

obtain equality. Hence |B| = |PG(6,
√
q)| and B(H,P ) = C(H,P ). 2

Lemma 4.3. (a) Every line meets B in 0, 1,
√
q + 1 or q + 1 points.

(b) B contains no plane.
(c) Every plane meets B in at most q +

√
q + 1 points.

(d) B contains no line.
(e) Every plane containing three non-collinear points of B meets B in a PG(2,

√
q).

Proof. (a) If l is a line, then |B| ≤ |PG(6,
√
q)| implies that l lies in a plane π that has

no points of B outside l. Then, if P ∈ π \ l and H is a hyperplane with H ∩ π = l, then
l ∩B = l ∩B(H,P ). As we know the structure of B(H,P ), the assertion follows.

(b) If B would contain a plane, then the sets B(H,P ) described in the previous lemma would
also contain a plane. But this is not true.

(c) Consider a plane π. Then π contains a point P with P /∈ B. Let H be a hyperplane not
through P , and project B from P onto H to obtain B(H,P ). The previous lemma shows
|B(H,P )| = |PG(6,

√
q)| −

√
q ≥ |B| −

√
q. As the points of π ∩B project on at most q + 1

different points, we obtain |π ∩B| ≤ q + 1 +
√
q.

(d) Assume that B contains a line l. Let π be a plane on l that contains a further point R
of B. By (a), all lines of π on R meet B in at least

√
q + 1 points. This contradicts (c).
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(e) Suppose the plane π has three non-collinear points. We know that |π ∩B| ≤ q +
√
q + 1

and that every line that has two points in π ∩B meets π ∩B in exactly
√
q+ 1 points. This

implies that π ∩B is a PG(2,
√
q). 2

We are now ready to characterize B and thus complete the proof of Theorem 1.2. We already
know that every plane with three non-collinear points in B meets B in a PG(2,

√
q). This

implies that the incidence structure consisting of the points of B and the secants of B satisfies
the Axiom of Pasch and thus is a projective space of order

√
q. As |B| ≤ |PG(6,

√
q)| and

|B| ≥ |PG(6,
√
q)| −

√
q (this follows from Lemma 4.2), then its dimension is six. Thus B

induces a PG(6,
√
q).
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