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Abstract. The aim of this paper is to introduce a method of invariant decompo-
sitions of the tensor space T rsR

n = Rn ⊗Rn ⊗ · · · ⊗Rn ⊗Rn∗ ⊗Rn∗ ⊗ · · · ⊗Rn∗

(r factors Rn, s factors the dual vector space Rn∗), endowed with the tensor rep-
resentation of the general linear group GLn(R). The method is elementary, and is
based on the concept of a natural (GLn(R)-equivariant) projector in T

r
sR

n. The
case r = 0 corresponds with the Young-Kronecker decompositions of T 0sR

n into its
primitive components. If r, s 6= 0, a new, unified invariant decomposition theory is
obtained, including as a special case the decomposition theory of tensor spaces by
the trace operation.
As an example we find the complete list of natural projectors in T 12R

n. We show
that there exist families of natural projectors, depending on real parameters, defin-
ing new representations of the group GLn(R) in certain vector subspaces of T

1
2R

n.
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1. Introduction

In this paper we give basic definitions and prove basic results of natural projector theory
in tensor spaces over the field or real numbers R. The tensor space of type (r, s) over the
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vector space Rn = R ×R × · · · ×R (n factors R) is denoted by T rsR
n = Rn ⊗Rn ⊗ · · · ⊗

Rn ⊗Rn∗ ⊗Rn∗ ⊗ · · · ⊗Rn∗ (r factors Rn, s factors the dual vector space Rn∗). We always
suppose n ≥ 2. Rn is considered with the canonical left action of the general linear group
GLn(R), and the tensor space T

r
sR

n is endowed with the induced (tensor) action. Since
our discussions are GLn(R)-invariant, the results apply in the well-known sense to any real,
n-dimensional vector space E, and to the tensor space T rsE of type (r, s) over E.
We wish to describe a method allowing us to find allGLn(R)-invariant vector subspaces of

the vector space T rsR
n; indeed, this is equivalent to finding all GLn(R)-equivariant projectors

P : T rsR
n → T rsR

n. In accordance with the terminology of the differential invariant theory,
GLn(R)-equivariant projectors are also called natural.
This method complements our previous results on decompositions of tensor spaces, which

are not based on the group representation theory (see [4, 5]). It can be applied effectively for
any concrete r and s. However, a general formula for the decomposition has not been found.
It seems that the idea to apply the theory of projectors to the problem of decompos-

ing a tensor space of type (r, 0), or (0, s) into its primitive components belongs to H. Weyl
[7]. However, this idea has never been developed to a complete theory, or used to an anal-
ysis of concrete cases. Later, the same author gives preference of the group representation
theory over the ideas of the pure projector theory [6]; a standard restrictive assumption in
this approach is usually applied from the very beginning, namely the assumption that the
representation space is a vector space over an algebraically closed field.
For basic ideas and generalities on natural projectors in tensor spaces we refer to Krupka

(see [3], Sections 4.4 and 7.3).
Let us now recall briefly main concepts. A tensor t ∈ T rsR

n is said to be invariant, if
g ·t = t for all g ∈ GLn(R). A theorem of Gurevich says that an invariant tensor of type (r, s),
where r 6= s, is always the zero tensor, and, if r = s, an invariant tensor is always a linear
combination

∑
cσδ

j1
iσ(1)
δj2iσ(2) · · · δ

jN
iσ(N)

of products of r factors of the Kronecker δ-tensor, where

cσ ∈ R, and σ runs through all permutations of the set {1, 2, . . . , r} (see [1]). Consider a
real, N -dimensional vector space E endowed with a left action of GLn(R). A linear mapping
F : E → E is called GLn(R)-equivariant, or natural, if F (g · x) = g · F (x) for all x ∈ E and
all g ∈ GLn(R). It is a simple observation that F is natural if and only if its components
form an invariant tensor [3]. A natural linear mapping P : E → E which is a projector, i.e.,
satisfies the projector equation P 2 = P , is called a natural projector.
In Section 2 we collect standard definitions and facts of the theory of projectors in a vector

space (see e.g. [2]). Section 3 is devoted to natural linear operators in a vector space endowed
with a left action of GLn(R). In Section 4 we introduce natural projectors in tensor spaces
and related concepts such as natural projector equations, decomposability, reducibility, and
primitivity. Section 5 is concerned with the trace decomposition theory; it is shown that
the trace decomposition of a tensor is related to a natural projector determined uniquely by
certain conditions. Finally, in Section 6 we describe all natural projectors in the tensor space
T 12R

n.
It should be pointed out that the method of natural projectors allows us to treat in a

unique way the case of tensors of type (r, s), where not necessarily r=0, or s=0. In this sense
the natural projector theory represents a generalization of the classical Young–Kronecker
decomposition theory (see e.g. [6]), as well as of the trace decomposition theory [4, 5].
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2. Projectors

This introductory section contains a brief formulation of standard results of the projector
theory in a finite-dimensional, real vector space E (see e.g. [2]).
Let E∗ be the dual of E, and let E × E∗ 3 (x, y) → y(x) = 〈x, y〉 ∈ R be the natural

pairing. The dual A∗ : E∗ → E∗ of a linear mapping A : E → E is defined by the condition
〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ E, y ∈ E∗. If A,B : E → E are two linear mappings, then
(AB)∗ = B∗A∗,
A linear operator P : E → E is said to be a projector, if P 2 = P . Clearly, the zero

mapping 0, and the identity mapping idE, are projectors.

Lemma 1. Let E be a finite-dimensional, real vector space.

(a) A projector P : E → E defines the direct sum decomposition E = kerP ⊕ imP .

(b) A linear mapping P : E → E is a projector if and only if idE − P is a projector.

(c) If P : E → E is a projector, then Q = αP , where α ∈ R, is a projector if and only if
α = 0, 1.

(d) Let P,Q : E → E be two projectors such that imP = imQ = F . Then there exists a
unique linear isomorphism U : F → F such that P = U ◦Q.

Let u∗ : E∗ → E∗ denote the dual of a linear mapping u : E → E. We say that two projectors
P,Q : E → E are orthogonal, if 〈Px,Q∗y〉 = 0 and 〈Qx, P ∗y〉 = 0 for all x ∈ E, y ∈ E∗.
Obviously, P and Q are orthogonal if and only if QP = 0 and PQ = 0. For every projector
P , the projectors P and idE − P are orthogonal.

Lemma 2. Let P,Q : E → E be projectors.

(a) P +Q is a projector if and only if P and Q are orthogonal.

(b) P −Q is a projector if and only if PQ = QP = Q.

(c) If P and Q commute, PQ−QP = 0, then R = PQ = QP is a projector, and imR =
imP ∩ imQ.

(d) kerP = im (id− P ).

Remark 1. If P +Q is a projector, then condition (a) implies PQ = QP = 0 hence by (c),
imP ∩ imQ = {0}. Thus im (P +Q) = imP + imQ is the direct sum of its subspaces imP
and imQ.

Remark 2. If P −Q is a projector, condition (b) together with (c) imply that imQ ⊂ imP .

3. Natural linear operators in tensor spaces

Let E be a finite-dimensional, real vector space, endowed with a left action of the general
linear group GLn(R), denoted multiplicatively. A linear operator F : E → E is said to be
GLn(R)-equivariant, or natural, if F (A·x) = A·F (x) for every x ∈ E and every A ∈ GLn(R).
The vector space of natural linear operators on E is denoted NE.
The kernel and the image of a natural linear operator F : E → E are GLn(R)-invariant

vector subspaces of E.
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Our aim in this section is to study natural linear operators in the tensor space T rsR
n. If

the canonical basis of Rn is denoted by ei, and e
i is the dual basis of Rn∗, then any tensor

t ∈ T rsR
n is uniquely expressible in the form

t = ti1i2···irj1j2···jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e
j1 ⊗ ej2 ⊗ · · · ⊗ ejs , (3.1)

where the real numbers t = ti1i2···irj1j2···js are the components of t. We usually write t = t
i1i2···ir
j1j2···js .

Let (A, x) → x̄ = A · x be the canonical left action of GLn(R) on Rn; in the canonical
basis of Rn, x̄i = Aijx

j, where A = Aij. If B = A
−1, B = Bij, the tensor action of GLn(R) on

T rsR
n is given by

t̄ = A · t = t̄ i1i2···irj1j2···jsei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e
j1 ⊗ ej2 ⊗ · · · ⊗ ejs , (3.2)

where
t̄i1i2···irj1j2···js = A

i1
k1
Ai2k2 · · ·A

ir
kr
Bl1j1B

l2
j2 · · ·B

ls
js
tk1k2···krl1l2···ls . (3.3)

A tensor t ∈ T rsR
n is said to be invariant, if A · t = t for all A ∈ GLn(R). The following

theorem describes all invariant tensors (see [1], and [3]).
Let Sr denote the group of permutations σ of the set {1, 2, . . . , r}.

Lemma 3. Let t ∈ T rsR
n.

(a) Assume that r 6= s. Then t is invariant if and only if t = 0.

(b) Assume that r = s. Then t is invariant if and only if

ti1i2···irj1j2···jr =
∑

σ∈Sr

aσδi1jσ(1)δ
i2
jσ(2)
· · · δirjσ(r) (3.4)

for some aσ ∈ R.

Invariant tensors in T rrR
n form a real vector space. This vector space is spanned by the

invariant tensors

Eσ = δ
i1
jσ(1)
δi2jσ(2) · · · δ

ir
jσ(r)
ei1 ⊗ ei2 ⊗ · · · ⊗ eir ⊗ e

j1 ⊗ ej2 ⊗ · · · ⊗ ejr

= ejσ(1) ⊗ ejσ(2) ⊗ · · · ⊗ ejσ(r) ⊗ e
j1 ⊗ ej2 ⊗ · · · ⊗ ejr .

(3.5)

Note that any invariant tensor can be expressed, instead of (3.4), by

t =
∑

σ∈Sr

aσEσ. (3.6)

Now we apply Lemma 3 to natural linear mappings F : T rsR
n → T pqR

n. We have the
following simple observation ([3], Section 4.4).

Lemma 4. Let F : T rsR
n → T pqR

n be a linear mapping,

t̄ i1i2···irj1j2···js = F
i1i2···ir k1k2···kq
j1j2···js l1l2···lp t

l1l2···lp
k1k2···kq (3.7)

its expression relative to the canonical basis of Rn. F is natural if and only if its components
F
i1i2···ir k1k2···kq
j1j2···js l1l2···lp are components of an invariant tensor.
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If F is identified with a tensor, F becomes an element of the tensor space T r+qs+pR
n. Thus

by Lemma 3, a nontrivial natural linear mapping F : T rsR
n → T pqR

n exists if and only if
r + q = s+ p.
Let us discuss the case p = r, q = s. Then by Lemma 3 (b), F has an expression

F
i1i2···ir ir+1ir+2···ir+s
j1j2···js js+1js+2···js+r =

∑

σ∈Sr+s

aσδ
i1
jσ(1)
δi2jσ(2) · · · δ

ir
jσ(r)
δ
ir+1
jσ(r+1)

δ
ir+2
jσ(r+2)

· · · δir+sjσ(r+s)
, (3.8)

where aσ ∈ R. Clearly, the same is expressed by the equation

t̄ i1i2···irj1j2···js =
∑

µ∈Sr, ν∈Ss

aσt
lµ(1)lµ(2)···lµ(r)
kν(1)kν(2)···kν(s)

+ τ i1i2···irj1j2···js , (3.9)

where the summation takes place through σ ∈ Sr+s of the form of the product of two
permutations σ = µν, ν ∈ Sr, µ ∈ Ss and τ

i1i2···ir
j1j2···js contains all the remaining terms. Note that

each term in τ i1i2···irj1j2···js contains at least as one factor the Kronecker δ-tensor multiplied by an

expression obtained from ti1i2···irj1j2···js by the trace operation in one superscript and one subscript.

Since F
i1i2···ir k1k2···kq
j1j2···js l1l2···lp are components of an invariant tensor, F can also be expressed by

means of (3.6) as
F =

∑

σ∈Sr+s

aσEσ. (3.10)

If F,G : T rsR
n → T rsR

n are two natural linear operators, given in components by

t̄ i1i2···irj1j2···js = F
i1i2···ir k1k2···ks
j1j2···js l1l2···lr t

l1l2···lr
k1k2···ks , t̄

i1i2···ir
j1j2···js = G

i1i2···ir k1k2···ks
j1j2···js l1l2···lr t

l1l2···lr
k1k2···ks (3.11)

then the composed natural linear operator is given by

=
t
i1i2···ir
j1j2···js = G

i1i2···ir k1k2···ks
j1j2···js l1l2···lr F

l1l2···lr p1p2···ps
k1k2···ks q1q2···qrt

q1q2···qr
p1p2···ps . (3.12)

To obtain an explicit formula, one should substitute from (3.8) into (3.12); indeed, this cannot
be done effectively in general, but in every concrete case.

4. Natural projectors in tensor spaces

Let E be a finite-dimensional, real vector space, endowed with a left action of the general
linear group GLn(R). By a natural projector on E we mean a natural linear operator F :
E → E which is a projector. A natural linear operator F is a natural projector if and only
if it satisfies the projector equation F 2 = F . The projector equation represents a system of
quadratic equations for the components of F .
If P : E → E is a natural projector, then both vector subspaces imP, kerP of E are

GLn(R)-invariant ([2], § 43).
A natural projector P : E → E is said to be decomposable, if there exist a natural

projector Q 6= 0, P and a natural projector R, such that P = Q + R. In this case Q and
R are orthogonal (Lemma 2 (a)). A natural projector which is not decomposable is called
indecomposable.
P is said to be reducible, if there exists a natural projector Q 6= 0 such that imQ ⊂ imP

and imQ 6= imP . If P is not reducible, it is called irreducible, or primitive.
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Remark 3. Examples show that there exist reducible natural projectors which are not
decomposable. Consider the family Pλ of natural linear operators in T

1
2R

n defined by the
equations

t̄ijk = δ
i
kt
p
pj + λδ

i
k(−nt

p
pj + t

p
jp). (4.1)

One can easily verify that (4.1) consists of natural projectors. Indeed, contracting (4.1) we
obtain t̄ ppj = t

p
pj + λ(−nt

p
pj + t

p
jp), t̄

p
jp = nt

p
pj + λn(−nt

p
pj + t

p
jp), and then

=
t ijk = δ

i
k t̄
p
pj + λδ

i
k(−nt̄

p
pj + t̄

p
jp)

= δik(t
p
pj + λ(−nt

p
pj + t

p
jp))− λnδ

i
k(t
p
pj + λ(−nt

p
pj + t

p
jp))

+λδik(nt
p
pj + λn(−nt

p
pj + t

p
jp))

= δikt
p
pj − δ

i
kλnt

p
pj + δ

i
kλt

p
jp = δ

i
kt
p
pj + λδ

i
k(−nt

p
pj + t

p
jp) = t̄

i
jk

verifying the projector equations P 2λ = Pλ. Note that the family (4.1) includes the natural
projector t̄ijk = δ

i
kt
p
pj, and the natural projector t̄

i
jk = (1/n)δ

i
kt
p
jp defined by taking λ = 1/n.

The family λδik(−nt
p
pj + t

p
jp in (4.1) does not consist of projectors, because λ serves as a

multiplicative parameter, and two non-zero projectors cannot differ by a factor different from
1. Indeed, writing t̄ pqr = λδ

p
r (−nt

s
sq + t

s
qs), we get t̄

p
pj = λ(−nt

s
sj + t

s
js), t̄

p
jp = λn(−nt

s
sj + t

s
js)

hence
=
t ijk = λδ

i
k(−nt̄

p
pj+ t̄

p
jp) = −lnδ

i
k t̄
p
jp+λδ

i
k t̄
p
jp = −λ

2nδik(−nt
s
sj+t

s
js)+λ

2nδik(−nt
s
sj+t

s
js) =

0 6= t̄ijk.

From now on we consider natural projectors on a tensor space T rsR
n.

Theorem 1. Let P : T rsR
n → T rsR

n be a natural projector.

(a) P is decomposable if and only if there exists a natural projector Q 6= 0, P such that

PQ = Q, QP = Q. (4.2)

(b) P is reducible if and only if there exists a natural projector Q 6= 0, P such that

PQ = Q, imQ 6= imP. (4.3)

Proof. (a) If P is decomposable, we have two natural projectors Q and R such that R = P−Q
and QR = 0, RQ = 0 (Lemma 2 (a)). Thus, Q(P −Q) = (P −Q)Q = 0, i.e., QP = PQ = Q.
Conversely, assume that we have a natural projector Q satisfying (4.2). Define R = P −Q;
R is a natural linear operator (Lemma 3, Lemma 4), and R2 = P − PQ − QP + Q =
P −Q−Q+Q = P −Q = R as required.

(b) Let P be reducible. Then there exists a natural projector Q 6= 0 such that imQ ⊂ imP
and imQ 6= imP . Thus, to any t ∈ T rsR

n there exists t′ ∈ T rsR
n such that Qt = Pt′ =

P (Pt′) = PQt hence PQ = Q. Conversely, assume that we have a natural projector Q 6= 0
satisfying (4.3). Then imQ = Q(T rsR

n) = P (Q(T rsR
n)) ⊂ P (T rsR

n) = imP as required.

Equations from Theorem 1 (a) for a projector Q

PQ = Q, QP = Q, Q2 = Q (4.4)

are equivalent with the equations

PQP = Q, Q2 = Q. (4.5)
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Indeed, (4.4) implies (4.5), and vice versa: QP = PQPP = PQP = Q, PQ = PPQP =
PQP = Q. Each of the systems (4.4) and (4.5) is called the decomposability equation of P .
Equation PQ = Q from Theorem 1 (b) is called the reducibility equation.

Now we study indecomposability, and primitivity.

Theorem 2. Let P : T rsR
n → T rsR

n be a natural projector.

(a) P is indecomposable if and only if the decomposability equation of P has exactly one
nontrivial solution, Q = P .

(b) P is primitive if and only if the reducibility equation of P has no nontrivial solution.

Proof. Both assertions are immediate consequences of Theorem 1.

(a) If P is indecomposable, there is no Q 6= 0, P such that PQ = Q, QP = Q, which means
that the decomposability equations have only one nontrivial solution, Q = P . The converse
is obvious.

(b) If P is primitive, then by definition, (4.3) has only the trivial solution, and vice versa.

Now we consider properties of primitive natural projectors.

Theorem 3.
(a) Any two different primitive natural projectors in T rsR

n are orthogonal.

(b) The number of different nontrivial natural projectors in T rsR
n is finite.

(c) The sum of any two primitive natural projectors is a natural projector.

(d) Let M be the number of different nontrivial primitive natural projectors in T rsR
n. If

a natural projector in T rsR
n admits a decomposition P = p1 + p2 + · · · + pK, where

p1, p2,. . . , pK are primitive natural projectors, then K ≤ M , the primitive natural
projectors p1, p2,. . . , pK are mutually different, and this decomposition is unique.

(e) The identity natural projector id : T rsR
n → T rsR

n admits the decomposition

id = p1 + p2 + · · ·+ pM (4.6)

where {p1, p2, . . . , pM} is the set of nonzero primitive natural projectors.

Proof. (a) If P1, P2 are two different primitive natural projectors, then imP1P2 = imP2P1 = 0
hence P1P2 = P2P1 = 0.

(b) Since dimT rsR
n is finite, this assertion follows from (a).

(c) By (a), any two different primitive natural projectors p1, p2 are orthogonal. Thus, by
Lemma 2 (a), p1+p2 is always a projector; p1+p2 is obviously a natural projector (Lemma 4).

(d) Assume that P = p1 + p2 + · · · + pK = q1 + q2 + · · · + qL. Then by orthogonality,
p2l = pl = pl(q1 + q2 + · · · + qL), where at most one term on the right is nonzero. But
pl 6= 0 hence exactly one term on the right, say plqk, is nonzero, and is equal to pl, i.e.,
pl = plqk = qkpl. Since different primitive projectors are orthogonal (see (a)), we have
qk = pl. In particular, the two sums p1 + p2 + · · ·+ pK , q1 + q2 + · · ·+ qL may differ only by
the order of the summation.

(e) If P = p1 + p2 + · · · + pM 6= id, we have a nonzero natural projector Q = id− P , which
is a contradiction with maximality of the set {p1, p2, . . . , pM}.
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5. The trace decomposition

For basic notions of the trace decomposition theory as used in this section, we refer to [4],
[5]. The following assertion can be used when calculating the trace decomposition of concrete
tensor spaces.

Theorem 4. Let r, s ≥ 1. There exists a unique natural linear operator Q : T rsR
n → T rsR

n

satisfying the following two conditions:

1. Qt is traceless for every t ∈ T rsR
n.

2. (id−Q)t = t−Qt is δ-generated for every t ∈ T rsR
n.

Q is a natural projector.

Proof. Existence and uniqueness of Q follows from the decomposition t = Qt + (id − Q)t,
and from the trace decomposition theorem. We prove that Q is a projector. By hypothesis,
Qt is traceless for every t ∈ T rsR

n, hence Q2t = Q(Qt) is also traceless for every t. Similarly,
since t−Qt is δ-generated for every t ∈ T rsR

n, the formula

(id−Q2)t = (id−Q+Q−Q2)t = (id−Q)t+ (id−Q)Qt (5.1)

shows that (id−Q2)tmust also be δ-generated. Since t = Q2t+(id−Q2)t, then by uniqueness,
Q2 = Q.
In a concrete case, the natural projector Q can be determined from the conditions (1)

and (2) of Theorem 4. Clearly, given Q, the trace decomposition of a tensor t ∈ T rsR
n is

obtained by the formula
t = Qt+ (id−Q)t. (5.2)

6. Natural projectors in Rn ⊗ Rn∗ ⊗ Rn∗

As an application of the natural projector theory, we find the complete list of natural projec-
tors in the space of tensors of type (1,2) T 12R

n. Since our discussions are GLn(R)-invariant,
the results apply in the well-known sense to any real, finite-dimensional vector space E, and
to the tensor space of type (1,2) over E.
First let us describe natural linear operators in T 12R

n. Using the canonical basis ei of R
n

and the dual basis ej of Rn∗, we usually express a tensor t ∈ T 12R
n in terms of its components

as t = tijkei⊗e
j⊗ek, and we write t = tijk. If P : T

1
2R

n → T 12R
n is a linear operator, we write

P = P i qrjk p , where P
i qr
jk p are the components of P , and the indices i, j, k, p, q, r run through

the set {1, 2, . . . , n}. The equations of P are usually written in the form t̄ijk = P
i qr
jk p t

p
qr. P is

natural if and only if

P i qrjk p = aδ
i
jδ
q
kδ
r
p + bδ

i
jδ
q
pδ
r
k + cδ

i
kδ
q
pδ
r
j + dδ

i
kδ
q
j δ
r
p + eδ

i
pδ
q
j δ
r
k + fδ

i
pδ
q
kδ
r
j , (6.1)

where a, b, c, d, e, f are some real numbers. In view of (6.1), we also write

P = (a, b, c, d, e, f). (6.2)

We denote by N(T 12R
n) the real vector space of natural linear operators P : T 12R

n → T 12R
n;

by (6.1), dimN (T 12R
n) = 6.
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We find the composition law for the natural linear operators. Consider a natural linear
operator (6.1), and another natural linear operator Q = Qa qr

bc p , where

Qa qrbc p = a
′δab δ

q
cδ
r
p + b

′δab δ
q
pδ
r
c + c

′δac δ
q
pδ
r
b + d

′δac δ
q
bδ
r
p + e

′δapδ
q
bδ
r
c + f

′δapδ
q
cδ
r
b . (6.3)

Lemma 6. The composed natural linear operator R = PQ = Ri qrjk p is expressed by

Ri qrjk p = a
′′δijδ

q
kδ
r
p + b

′′δijδ
q
pδ
r
k + c

′′δikδ
q
pδ
r
j + d

′′δikδ
q
j δ
r
p + e

′′δipδ
q
j δ
r
k + f

′′δipδ
q
kδ
r
j , (6.4)

where
a′′ = a′a+ nd′a+ e′a+ na′b+ f ′b+ d′b+ a′e+ d′f,
b′′ = b′a+ nc′a+ f ′a+ nb′b+ c′b+ e′b+ b′e+ c′f,
c′′ = nb′c+ c′c+ e′c+ b′d+ nc′d+ f ′d+ c′e+ b′f,
d′′ = na′c+ d′c+ f ′c+ a′d+ nd′d+ e′d+ d′e+ a′f,
e′′ = e′e+ f ′f,
f ′′ = f ′e+ e′f.

(6.5)

Proof. Since for any t ∈ T 12R
n, t = tpqr, Rt = t̄

i

jk = P
i bc
jk a t̄

a
bc = P

i bc
jk a Q

a qr
bc p t

p
qr = R

i
jk
qr
p t
p
qr, the

coefficients Ri qrjk p are obtained from the formula

Ri qrjk p = P
i bc
jk a Q

a qr
bc p . (6.6)

Now we derive the equations for natural projectors in T 12R
n.

Lemma 7. A natural linear operator P : T 12R
n → T 12R

n expressed by (6.1), is a natural
projector if and only if

a2 + (nb+ nd+ 2e− 1) a+ bd+ (b+ d)f = 0,
nb2 + (a+ c+ 2e− 1) b+ nca+ (a+ c)f = 0,
c2 + (nb+ nd+ 2e− 1) c+ bd+ (b+ d)f = 0,
nd2 + (a+ c+ 2e− 1) d+ nac+ (a+ c)f = 0,
e = e2 + f 2,
f = 2ef.

(6.7)

Proof. The components of P satisfy the projector equation P i vwjk u P
u qr
vw p = P

i qr
jk p , which can

be obtained by substituting Q = P and R = P in (6.5).
Equations (6.7) are referred to as the natural projector equations. These equations rep-

resent a system of six quadratic equations for six unknowns (a, b, c, d, e, f).

Remark 4. If P is a natural projector, then the complementary projector id − P is also
natural. Thus, if P (6.1) satisfies (6.7), then id− P also satisfies (6.7). Indeed,

id− P = a′δijδ
q
kδ
r
p + b

′δijδ
q
pδ
r
k + c

′δikδ
q
pδ
r
j + d

′δikδ
q
j δ
r
p + e

′δipδ
q
j δ
r
k + f

′δipδ
q
kδ
r
j , (6.8)

where
a′ = −a, b′ = −b, c′ = −c, d′ = −d, e′ = 1− e, f ′ = −f. (6.9)

The transformation (6.9) leaves invariant the system (6.7).
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It is easily seen that the formulas

a′ = c, b′ = b, c′ = a, d′ = d, e′ = e, f ′ = f,
a′ = a, b′ = d, c′ = c, d′ = b, e′ = e, f ′ = f

(6.10)

also define invariant transformations of (6.7). Consequently, if (a, b, c, d, e, f) is a natural
projector, then also (−a,−b,−c,−d, 1 − e,−f), (c, b, a, d, e, f), (a, d, c, b, e, f), are natural
projectors.
We are now in a position to find all solutions of the natural projector equations (6.7).

We write these solutions in the form of their equations t̄ijk = P
i qr
jk p t

p
qr, i.e., as

t̄ ijk = aδ
i
jt
s
ks + bδ

i
jt
s
sk + cδ

i
kt
s
sj + dδ

i
kt
s
js + et

i
jk + ft

i
kj. (6.11)

Here (a, b, c, d, e, f) are the components (6.2) of a natural projector, expressed by (6.1). Note
that the list (A1), (A2), . . ., (D4) below includes one-, and two-parameter families of natural
projectors.
We define

A1 = nd+ d
2 − n2d2, A2 = −nd+ d2 − n2d2,

A3 = n
2d2 − d2 − d, A4 = n

2d2 − d2 + d,
B1 = n

2c2 − c2 + c, B2 = n
2c2 − c2 − c,

C1 = 4d+ 4d
2 − 4n2d2 + 1, C2 = −4d+ 4d2 − 4n2d2 + 1.

(6.12)

Theorem 5. The following list contains all natural projectors P : T 12R
n → T 12R

n:

t̄ijk = 0,

t̄ijk =
1

2(n−1)(−δ
i
jt
s
ks + δ

i
jt
s
sk − δ

i
kt
s
sj + δ

i
kt
s
js),

t̄ijk =
1

2(n−1)(δ
i
jt
s
ks + δ

i
jt
s
sk + δ

i
kt
s
sj + δ

i
kt
s
js),

t̄ijk = −
1
n2−1δ

i
jt
s
ks +

n
n2−1δ

i
jt
s
sk −

1
n2−1δ

i
kt
s
sj +

n
n2−1δ

i
kt
s
js,

(A1)

t̄ijk =
−d+

√
A1

n
δijt
s
ks +

n+2d−n2d−2
√
A1

n2
δijt
s
sk +

−d+
√
A1

n
δikt
s
sj + dδ

i
kt
s
js,

t̄ijk = −
d+
√
A1
n
δijt
s
ks +

n+2d−n2d+2
√
A1

n2
δijt
s
sk −

d+
√
A1
n
δikt
s
sj + dδ

i
kt
s
js,

d ∈ [0, n/(n2 − 1)],

(A2)

t̄ijk =
(
1− c− 2n

(
−nc+

√
B1
))
δijt
s
ks +

(
−nc+

√
B1
)
δijt
s
sk + cδ

i
kt
s
sj

+
(
−nc+

√
B1
)
δikt
s
js,

t̄ijk =
(
1− c+ 2n

(
nc+

√
B1
))
δijt
s
ks −

(
nc+

√
B1
)
δijt
s
sk + cδ

i
kt
s
sj

−
(
nc+

√
B1
)
δikt
s
js,

c ∈ (−∞,−1/(n2 − 1)] ∪ [0,∞),

(A3)

t̄ijk = (1− nb)δ
i
jt
s
ks + bδ

i
jt
s
sk,

t̄ijk =
d−nd2−cd
d+nc

δijt
s
ks +

c−c2−ncd
d+nc

δijt
s
sk + cδ

i
kt
s
sj + dδ

i
kt
s
js, d+ nc 6= 0,

t̄ijk = −nbδ
i
jt
s
ks + bδ

i
jt
s
sk −

1
n2−1δ

i
kt
s
sj +

n
n2−1δ

i
kt
s
js,

(A4)
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t̄ijk = t
i
jk,

t̄ijk =
1

2(n−1)(δ
i
jt
s
ks − δ

i
jt
s
sk + δ

i
kt
s
sj − δ

i
kt
s
js) + t

i
jk,

t̄ijk = −
1

2(n−1)(δ
i
jt
s
ks + δ

i
jt
s
sk + δ

i
kt
s
sj + δ

i
kt
s
js) + t

i
jk,

t̄ijk =
1
n2−1(δ

i
jt
s
ks − nδ

i
jt
s
sk + δ

i
kt
s
sj − nδ

i
kt
s
js) + t

i
jk,

(B1)

t̄ijk =
−d+

√
A2

n
δijt
s
ks +

−n+2d−n2d−2
√
A2

n2
δijt
s
sk +

−d+
√
A2

n
δikt
s
sj + dδ

i
kt
s
js + t

i
jk,

t̄ijk = −
d+
√
A2
n
δijt
s
ks +

−n+2d−n2d+2
√
A2

n2
δijt
s
sk −

d+
√
A2
n
δikt
s
sj + dδ

i
kt
s
js + t

i
jk,

d ∈ [−n/(n2 − 1), 0],

(B2)

t̄ijk =
(
1− c− 2n

(
−nc+

√
B2
))
δijt
s
ks +

(
−nc+

√
B2
)
δijt
s
sk + cδ

i
kt
s
sj

+
(
−nc+

√
B2
)
δikt
s
js + t

i
jk,

t̄ijk =
(
1− c− 2n

(
−nc−

√
B2
))
δijt
s
ks −

(
nc+

√
B2
)
δijt
s
sk + cδ

i
kt
s
sj

−
(
nc+

√
B2
)
δikt
s
js + t

i
jk,

c ∈ (−∞, 0] ∪ [1/(n2 − 1),∞),

(B3)

t̄ijk = (1− nb)δ
i
jt
s
ks + bδ

i
jt
s
sk + t

i
jk,

t̄ijk = −
d+nd2+cd
d+nc

δijt
s
ks −

c+c2+ncd
d+nc

δijt
s
sk + cδ

i
kt
s
sj + dδ

i
kt
s
js + t

i
jk, d+ nc 6= 0,

t̄ijk = −nbδ
i
jt
s
ks + bδ

i
jt
s
sk +

1
n2−1δ

i
kt
s
sj −

n
n2−1δ

i
kt
s
js + t

i
jk,

(B4)

t̄ijk =
1
2
tijk +

1
2
tikj,

t̄ijk =
1

2(n−1)(−δ
i
jt
s
ks + δ

i
jt
s
sk − δ

i
kt
s
sj + δ

i
kt
s
js) +

1
2
tijk +

1
2
tikj,

t̄ijk = −
1

2(n−1)(δ
i
jt
s
ks + δ

i
jt
s
sk + δ

i
kt
s
sj + δ

i
kt
s
js) +

1
2
tijk +

1
2
tikj,

t̄ijk = −
n
n2−1δ

i
jt
s
ks +

1
n2−1δ

i
jt
s
sk −

n
n2−1δ

i
kt
s
sj +

1
n2−1δ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

(C1)

t̄ijk = −
1+2d+

√
C1

2n
δijt
s
ks +

2d−n2d+1+
√
C1

n2
δijt
s
sk −

1+2d+
√
C1

2n
δikt
s
sj + dδ

i
kt
s
js + et

i
jk + ft

i
kj,

t̄ijk =
−1−2d+

√
C1

2n
δijt
s
ks +

2d−n2d+1−
√
C1

n2
δijt
s
sk +

−1−2d+
√
C1

2n
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

d ∈ [−1
2
(n+ 1), 1

2
(n+ 1)],

(C2)

t̄ijk = −
(
nd+

√
A3
)
δijt
s
ks + dδ

i
jt
s
sk + (−nd+

√
A3)δ

i
kt
s
sj + dδ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

t̄ijk = (−nd+
√
A3)δ

i
jt
s
ks + dδ

i
jt
s
sk −

(
nd+

√
A3
)
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

d ∈ (−∞, 0] ∪ [1/(n2 − 1),∞),

(C3)

t̄ijk = −
(
1
2
+ nb

)
δijt
s
ks + bδ

i
jt
s
sk −

1
2(n−1)δ

i
kt
s
sj +

1
2(n−1)δ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

t̄ijk = −
c+2nd2+2cd
2d+2nc+1

δijt
s
ks −

d+2ncd+2c2

2d+2nc+1
δijt
s
sk + cδ

i
kt
s
sj + dδ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

2d+ 2nc+ 1 6= 0,

t̄ijk =
(
1
2
− nb

)
δijt
s
ks + bδ

i
jt
s
sk −

1
2(n−1)δ

i
kt
s
sj −

1
2(n−1)δ

i
kt
s
js +

1
2
tijk +

1
2
tikj,

(C4)
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t̄ijk =
1
2
tijk −

1
2
tikj,

t̄ijk =
1

2(n−1)(δ
i
jt
s
ks − δ

i
jt
s
sk + δ

i
kt
s
sj − δ

i
kt
s
js) +

1
2
tijk −

1
2
tikj,

t̄ijk =
1

2(n−1)(δ
i
jt
s
ks + δ

i
jt
s
sk + δ

i
kt
s
sj + δ

i
kt
s
js) +

1
2
tijk −

1
2
tikj,

t̄ijk =
n
n2−1δ

i
jt
s
ks −

1
n2−1δ

i
jt
s
sk +

n
n2−1δ

i
kt
s
sj −

1
n2−1δ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

(D1)

t̄ijk =
1−2d−

√
C2

2n
δijt
s
ks +

2d−n2d−1+
√
C2

n2
δijt
s
sk +

1−2d−
√
C2

2n
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

t̄ijk =
1−2d+

√
C2

2n
δijt
s
ks +

2d−n2d−1−
√
C2

n2
δijt
s
sk +

1−2d+
√
C2

2n
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

d ∈ [−1/(n2 − 1), 1/(n2 − 1)],

(D2)

t̄ijk = −
(
nd+

√
A4
)
δijt
s
ks + dδ

i
jt
s
sk +

(
−nd+

√
A4
)
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

t̄ijk =
(
−nd+

√
A4
)
δijt
s
ks + dδ

i
jt
s
sk −

(
nd+

√
A4
)
δikt
s
sj + dδ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

d ∈ (−∞,−1/(n2 − 1)] ∪ [0,∞),

(D3)

t̄ijk = −
(
1
2
+ nb

)
δijt
s
ks + bδ

i
jt
s
sk +

1
2(n−1)δ

i
kt
s
sj +

1
2(n−1)δ

i
kt
s
js +

1
2
tijk −

1
2
tikj,

t̄ijk =
c−2nd2−2cd
2d+2nc−1 δ

i
jt
s
ks +

d−2ncd−2c2

2d+2nc−1 δ
i
jt
s
sk + cδ

i
kt
s
sj + dδ

i
kt
s
js +

1
2
tijk −

1
2
ftikj,

2d+ 2nc− 1 6= 0,

t̄ijk =
(
1
2
− nb

)
δijt
s
ks + bδ

i
jt
s
sk +

1
2(n−1)δ

i
kt
s
sj −

1
2(n−1)δ

i
kt
s
js +

1
2
tijk −

1
2
ftikj.

(D4)

Proof. (6.7) splits into the following 16 cases to be considered separately:

(e, f) = (0, 0), a = c, b = d, (A1)

(e, f) = (0, 0), a = c, b = −d−
1

n
(a+ c+ 2e− 1), (A2)

(e, f) = (0, 0), a = −c− nb− nd− 2e+ 1, b = d, (A3)

(e, f) = (0, 0), a = −c− nb− nd− 2e+ 1, b = −d−
1

n
(a+ c+ 2e− 1), (A4)

(e, f) = (1, 0), a = c, b = d, (B1)

(e, f) = (1, 0), a = c, b = −d−
1

n
(a+ c+ 2e− 1), (B2)

(e, f) = (1, 0), a = −c− nb− nd− 2e+ 1, b = d, (B3)

(e, f) = (1, 0), a = −c− nb− nd− 2e+ 1, b = −d−
1

n
(a+ c+ 2e− 1), (B4)

(e, f) =
(
1

2
,
1

2

)
, a = c, b = d, (C1)

(e, f) =
(
1

2
,
1

2

)
, a = c, b = −d−

1

n
(a+ c+ 2e− 1), (C2)

(e, f) =
(
1

2
,
1

2

)
, a = −c− nb− nd− 2e+ 1, b = d, (C3)
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(e, f) =
(
1

2
,
1

2

)
, a = −c− nb− nd− 2e+ 1, b = −d−

1

n
(a+ c+ 2e− 1) (C4)

(e, f) =
(
1

2
,−
1

2

)
, a = c, b = d, (D1)

(e, f) =
(
1

2
,−
1

2

)
, a = c, b = −d−

1

n
(a+ c+ 2e− 1), (D2)

(e, f) =
(
1

2
,−
1

2

)
, a = −c− nb− nd− 2e+ 1, b = d, (D3)

(e, f) =
(
1

2
,−
1

2

)
, a = −c− nb− nd− 2e+ 1, b = −d−

1

n
(a+ c+ 2e− 1). (D4)

Each of these cases is subject to the conditions

a2 + c2 + (nb+ nd+ 2e− 1)(a+ c) + 2bd+ 2(b+ d)f = 0,
nb2 + nd2 + (a+ c+ 2e− 1)(b+ d) + 2nac+ 2(a+ c)f = 0.

(6.13)

To complete the proof, we solve the system (6.13) of two quadratic equations for every of the
possibilities (A1), (A2), . . ., (D4). We get, using MAPLE,

(0, 0, 0, 0, 0, 0),
(
− 1
2(n−1) ,

1
2(n−1) ,−

1
2(n−1) ,

1
2(n−1) , 0, 0

)
,

(
1

2(n−1) ,
1

2(n−1) ,
1

2(n−1) ,
1

2(n−1) , 0, 0
)
,

(
− 1
n2−1 ,

n
n2−1 ,−

1
n2−1 ,

n
n2−1 , 0, 0

)
,

(A1)

(
−d+

√
A1

n
, n+2d−n

2d−2
√
A1

n2
, −d+

√
A1

n
, d, 0, 0

)
,

(
−d+

√
A1
n
, n+2d−n

2d+2
√
A1

n2
,−d+

√
A1
n
, d, 0, 0

)
,

d ∈ [0, n/(n2 − 1)],

(A2)

(
1− c− 2n

(
−nc+

√
B1
)
,−nc+

√
B1, c,−nc+

√
B1, 0, 0

)
,

(
1− c+ 2n

(
nc+

√
B1
)
,−
(
nc+

√
B1
)
, c,−

(
nc+

√
B1
)
, 0, 0

)
,

c ∈ (−∞,−1/(n2 − 1)] ∪ [0,∞),

(A3)

(1− nb, b, 0, 0, 0, 0),
(
d−nd2−cd
d+nc

, c−c
2−ncd
d+nc

, c, d, 0, 0
)
, d+ nc 6= 0,

(
−nb, b,− 1

n2−1 ,
n
n2−1 , 0, 0

)
,

(A4)

(0, 0, 0, 0, 1, 0),
(

1
2(n−1) ,−

1
2(n−1) ,

1
2(n−1) ,−

1
2(n−1) , 1, 0

)
,

(
− 1
2(n−1) ,−

1
2(n−1) ,−

1
2(n−1) ,−

1
2(n−1) , 1, 0

)
,

(
1
n2−1 ,−

n
n2−1 ,

1
n2−1 ,−

n
n2−1 , 1, 0

)
,

(B1)
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(
−d+

√
A2

n
, −n+2d−n

2d−2
√
A2

n2
, −d+

√
A2

n
, d, 0, 0

)
,

(
−d+

√
A2
n
, −n+2d−n

2d+2
√
A2

n2
,−d+

√
A2
n
, d, 0, 0

)
,

d ∈ [−n/(n2 − 1), 0],

(B2)

(
1− c− 2n

(
−nc+

√
B2
)
,−nc+

√
B2, c,−nc+

√
B2, 1, 0

)
,

(
1− c− 2n

(
−nc−

√
B2
)
,−nc−

√
B2, c,−nc−

√
B2, 1, 0

)
,

c ∈ (−∞, 0] ∪ [1/(n2 − 1),∞),

(B3)

(1− nb, b, 0, 0, 1, 0),
(
−d+nd

2+cd
d+nc

,− c+c
2+ncd
d+nc

, c, d, 1, 0
)
, d+ nc 6= 0,

(
−nb, b, 1

n2−1 ,−
n
n2−1 , 1, 0

)
,

(B4)

(
0, 0, 0, 0, 1

2
, 1
2

)
,

(
− 1
2(n−1) ,

1
2(n−1) ,−

1
2(n−1) ,

1
2(n−1) ,

1
2
, 1
2

)
,

(
− 1
2(n−1) ,−

1
2(n−1) ,−

1
2(n−1) ,−

1
2(n−1) ,

1
2
, 1
2

)
,

(
− n
n2−1 ,

1
n2−1 ,−

n
n2−1 ,

1
n2−1 ,

1
2
, 1
2

)
,

(C1)

(
−1+2d+

√
C1

2n
, 2d−n

2d+1+
√
C1

n2
,−1+2d+

√
C1

2n
, d, 1

2
, 1
2

)
,

(
−1−2d+

√
C1

2n
, 2d−n

2d+1−
√
C1

n2
, −1−2d+

√
C1

2n
, d, 1

2
, 1
2

)
,

d ∈ [−1
2
(n+ 1), 1

2
(n+ 1)],

(C2)

(
−nd−

√
A3, d,−nd+

√
A3, d,

1
2
, 1
2

)
,

(
−nd+

√
A3, d,−nd−

√
A3, d,

1
2
, 1
2

)
,

d ∈ (−∞, 0] ∪ [1/(n2 − 1),∞),

(C3)

(
−1
2
− nb, b,− 1

2(n−1) ,
1

2(n−1) ,
1
2
, 1
2

)
,

(
− c+2nd

2+2cd
2d+2nc+1

,−d+2ncd+2c
2

2d+2nc+1
, c, d, 1

2
, 1
2

)
, 2d+ 2nc+ 1 6= 0,

(
1
2
− nb, b,− 1

2(n−1) ,−
1

2(n−1) ,
1
2
, 1
2

)
,

(C4)

(
0, 0, 0, 0, 1

2
,−1
2

)
,

(
1

2(n−1) ,−
1

2(n−1) ,
1

2(n−1) ,−
1

2(n−1) ,
1
2
,−1
2

)
,

(
1

2(n−1) ,
1

2(n−1) ,
1

2(n−1) ,
1

2(n−1) ,
1
2
,−1
2

)
,

(
n
n2−1 ,−

1
n2−1 ,

n
n2−1 ,−

1
n2−1 ,

1
2
,−1
2

)
,

(D1)

(
1−2d−

√
C2

2n
, 2d−n

2d−1+
√
C2

n2
, 1−2d−

√
C2

2n
, d, 1

2
,−1
2

)
,

(
1−2d+

√
C2

2n
, 2d−n

2d−1−
√
C2

n2
, 1−2d+

√
C2

2n
, d, 1

2
,−1
2

)
,

d ∈ [−1/(n2 − 1), 1/(n2 − 1)],

(D2)
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(
−nd−

√
A4, d,−nd+

√
A4, d,

1
2
,−1
2

)
,

(
−nd+

√
A4, d,−nd−

√
A4, d,

1
2
,−1
2

)
,

d ∈ (−∞,−1/(n2 − 1)] ∪ [0,∞),

(D3)

(
−1
2
− nb, b, 1

2(n−1) ,
1

2(n−1) ,
1
2
,−1
2

)
,

(
c−2nd2−2cd
2d+2nc−1 ,

d−2ncd−2c2

2d+2nc−1 , c, d,
1
2
,−1
2

)
, 2d+ 2nc− 1 6= 0,

(
1
2
− nb, b, 1

2(n−1) ,−
1

2(n−1) ,
1
2
,−1
2

)
.

(D4)

Now our assertion follows from (6.11).

Remark 5. Note that Theorem 5 gives us a complete answer to the problem of finding all
natural projectors in T 12R

n. Properties of these natural projectors can be obtained from this
list (A1), (A2), . . . , (D4) by a direct analysis.
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