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Abstract. It is shown that a piecewise linear function on a convex domain in Rd
can be represented as a boolean polynomial in terms of its linear components.

1. Introduction

Let f be a piecewise linear function on R defined by

f(x) =






g1(x) = 2x+ 1, x ≤ 1,

g2(x) = 5− 2x, 1 ≤ x ≤ 2,

g3(x) = 0.5x, x ≥ 2.

The graph of this function is shown in Fig. 1.
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This function can be also represented as follows.

f(x) = [g1(x) ∧ g2(x)] ∨ [g1(x) ∧ g3(x)], ∀x ∈ R, (1)

where ∧ and ∨ stand for operations Min and Max, respectively. In other words, f is repre-
sented as Max-Min boolean polynomial in variables g1, g2, g3 and the polynomial is written
in its disjunctive normal form.
The main goal of the paper is to establish this representation for piecewise linear functions

on closed convex domains in Rd (Theorem 2.1). We also discuss the optimization problem
for this representation.

2. Representation theorem

In the paper, a closed domain in Rd is the closure of an open set in Rd and a linear function
on Rd is a function in the form

h(x) = a1x1 + a2x2 + · · ·+ adxd + b,

where x = (x1, . . . , xd). We begin with the following definition.

Definition 2.1. Let Γ be a closed convex domain in Rd. A function f : Γ → R is said to
be piecewise linear if there is a finite family Q of closed domains such that Γ = ∪Q and f
is linear on every domain in Q. A linear function g on Rd which coincides with f on some
Q ∈ Q is said to be a component of f .

Clearly, any piecewise linear function on Γ is continuous. The following theorem is the main
result of the paper.

Theorem 2.1. Let f be a piecewise linear function on Γ and {g1, . . . , gn} be the set of
its distinct components. There exists a family {Sj}j∈J of incomparable (with respect to ⊆)
subsets of {1, . . . , n} such that

f(x) =
∨

j∈J

∧

i∈Sj

gi(x), ∀x ∈ Γ. (2)

Here, ∨ and ∧ are operations of maximum and minimum, respectively. The expression on
the right side in (2) is a disjunctive normal form of a Max-Min polynomial in the variables
gi.

We begin our proof with a simple geometric observation.

Lemma 2.1. Let f be a piecewise linear function on [a, b] ⊂ R and {g1, . . . , gn} be the set
of its components. There exists k such that

gk(a) ≤ f(a) and gk(b) ≥ f(b). (3)
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Proof. Let {`1, . . . `m} be the set of closed line segments on R2 constituting the graph of f .
We assume that these line segments are enumerated in the direction from a to b. Let gn(i) be
the component defining `i, and let m be the slope of the line segment [(a, f(a)), (b, f(b))]. If
the slope of gn(1) (resp. gn(m)) is greater than or equal to m, then gn(1) (resp. gn(m)) satisfies
conditions (3). It remains to consider the case when the slopes of gn(1) and gn(m) are smaller
than m (see Fig. 2).
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Clearly, there is `p with the slope greater than m that intersects the line segment
[(a, f(a)), (b, f(b))]. Then gn(p) satisfies conditions (3).

The statement of the next lemma follows immediately from Lemma 2.1.

Lemma 2.2. Let f be a piecewise linear function on Γ and {g1, . . . , gn} be the set of its
components. For given points a, b ∈ Γ, there is k such that

gk(a) ≤ f(a) and gk(b) ≥ f(b). (4)

Proof. Consider the restriction of f to [a, b] and apply Lemma 2.1.

Now we proceed with the proof of Theorem 2.1.

Proof. For a given a ∈ Γ, let us define

Sa = {i ∈ {1, . . . , n} : gi(a) ≥ f(a)} (5)
and

Fa(x) =
∧

i∈Sa

gi(x).

Clearly, Fa(a) = f(a). By Lemma 2.2, for any b ∈ Γ,

Fb(a) =
∧

i∈Sb

gi(a) ≤ f(a).

Hence,

f(x) =
∨

a∈Γ

∧

i∈Sa

gi(x), ∀x ∈ Γ. (6)

Let {Sj}j∈J be the family of distinct minimal elements (with respect to ⊆) in the family
{Sa}a∈Γ. Clearly, (6) implies (2).
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Corollary 2.1. Let Γ be a star-shape domain in Rd such that its boundary ∂Γ is a polyhedral
complex. Let f be a function on ∂Γ such that its restriction to each (d − 1)-dimensional
polyhedron in ∂Γ is a linear function on it. Then f admits representation (2).

Proof. Let a be a central point in Γ. For x ∈ Rd, x 6= a, let x̃ be the unique intersection
point of the ray from a through x with ∂Γ. We define

f̃(x) =

{
‖x−a‖
‖x̃−a‖f(x̃) for x 6= a,

0 for x = a.

Clearly, f̃ is a piecewise linear function on Rd and f̃ |∂Γ = f . Thus f admits representa-
tion (2).

Formula (2) is not very effective in the sense that the same component can appear in different
‘monomials’ in (2). For instance, g2 appears twice in (1). On the other hand, (1) can be
written in the form

f(x) = g1(x) ∧ [g2(x) ∨ g3(x)], ∀x ∈ R,

where each component appears only once. Note that this representation is not in the dis-
junctive normal form. By modifying the technique presented in [2], one can show that in
one-dimensional case any piecewise linear function admits a boolean representation in which
each component appears in the formula exactly once. An example in [2] shows that it is not
true in higher dimensions.
The reviewer of the paper suggested a more effective boolean representation in the dis-

junctive normal form than that given by (2). In what follows, we describe this construction.
The proof uses only a minor modification of the techniques used in the proof of Theorem 2.1
and is omitted.
Let H be the set of all hyperplanes that are nonempty solution sets of the equations in

the form gi(x) = gj(x) for i < j and have nonempty intersections with the interior int(Γ)
of Γ. We consider H as a hyperplane arrangement [1] and denote T the family of nonempty
intersections of the regions of H with int(Γ). We use the same name ‘region’ for elements of
T . It is easy to see that the components gi are linearly ordered over any region in T and
that for any P ∈ T , a, b ∈ P implies Sa = Sb (see (5)).
Consider now the pairs (gi, gj) for i < j that satisfy the following conditions:

(i) There are adjacent regions P,Q ∈ T such that gi(x) = f(x) on P and gj(x) = f(x)
on Q.

(ii) f(x) = gi(x) ∨ gj(x) on P ∪Q.

Let H′ be the hyperplane arrangement defined by these pairs. We may assume that H′ is
nonempty. (Otherwise, f is a concave function and we have a trivial representation.) We
denote T ′ the set of regions in Γ defined by H′ and define SP = {i ∈ {1, . . . , n} : gi(x) ≥
f(x), x ∈ P, P ∈ T ′}. The sets SP are incomparable and define the following representation

f(x) =
∨

P∈T ′

∧

i∈SP

gi(x), ∀x ∈ Γ.

Since SP ⊆ Sa for a ∈ P , the above formula, in general, is more effective than (2).
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3. Concluding remarks

1. The statement of Theorem 2.1 also holds for piecewise linear functions from Γ to Rm.
Namely, let f : Γ → Rm be a piecewise linear function and {g1, . . . , gn} be the set of
its distinct components. We denote

f = (f1, . . . , fm) and gk = (g
(k)
1 , . . . , g

(k)
m ), for 1 ≤ k ≤ n.

There exists a family {Skj }j∈J, 1≤k≤n of subsets of {1, . . . , n} such that

fk(x) =
∨

j∈J

∧

i∈Skj

g
(k)
i (x), ∀x ∈ Γ, 1 ≤ k ≤ m.

The converse is also true.

2. The convexity of Γ is an essential assumption. Consider, for instance, the domain
Γ = {(x1, x2) ∈ R2 : x2 ≤ |x1| } and define

f(x) =

{
x2 for min{x1, x2} ≥ 0,

0 otherwise,

where x = (x1, x2). This piecewise linear function has two components, g1(x) = x2 and
g2(x) = 0, but is not representable in the form (2).

3. Likewise, (2) is not true for piecewise polynomial functions as the following example
(due to B. Sturmfels) illustrates. Let Γ = R1. We define

f(x) =

{
0 for x ≤ 0,

x2 for x > 0.

4. It follows from Theorem 2.1 that any piecewise linear function on a closed convex
domain in Rd can be extended to a piecewise linear function on the entire space Rd.

5. By using the techniques presented in the paper, a representation theorem can be es-
tablished for smooth functions on closed domains in Rd [3]. In this case, the role of
components is played by tangent hyperplanes.
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