To the Isotropic Generalization of Wallace Lines

Jürgen Tölke

Fachbereich Mathematik, Universität Siegen Walter-Flex-Str. 3, D-57068 Siegen, Germany

Abstract. The Wallace lines of a triangle in the affine-metric plane over \mathbb{R} were studied by O. Giering [3]. This paper deals with the isotropic or galilean case [5] – which is not included in [3]. Essential means is the δ -footpoint definition of J. Lang [1].

MSC 2000: 51N25

Keywords: isotropic plane, δ -footpoint, Wallace lines

1. Let A, B, C be an admissible triangle [4, p.22] of the isotropic plane $I_2(\mathbb{R})$. We can select affine x, y-coordinates such that

$$A = (0,0), B = (a,0), C = (\mu b, b) \text{ with } a, b, \mu \in \mathbb{R} \text{ and } ab\mu(\mu b - a) \neq 0.$$
 (1)

The absolute point is supposed to have the homogeneous coordinates 0:0:1. Then, the equation for the isotropic *circumcircle* κ of ABC is

$$\kappa(x,y) \equiv y - Rx(x-a) = 0 \quad \text{with} \quad R\mu(\mu b - a) = 1. \tag{2}$$

For any $\delta \in \mathbb{R} \setminus \{0\}$ J. Lang (see [1, p.5]) defines the isotropic δ -footpoint $F(\delta)$ of the point X on a non-isotropic straight line g of $I_2(\mathbb{R})$ as follows:

(a) for
$$X \notin g$$
: $F(\delta) \in g$ and $(X \vee F(\delta), g) = \delta$, (b) for $X \in g$: $F(\delta) = X$. (3)

Here and in the following the symbol (h, g) means the *isotropic angle* of the non-isotropic straight lines h and g (see [4, p.17]).

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

J. Lang proved that for each $\delta \in \mathbb{R} \setminus \{0\}$ the δ -footpoints of a point X on the three lines determined by the sides of ABC are collinear, if and only if X is a point of the circumcircle κ .

For $X \in \kappa$ and $\delta \in \mathbb{R} \setminus \{0\}$ we call the connection line of the δ -footpoints of X on the lines determined by the sides of ABC the isotropic Wallace line $\omega(X, \delta)$ of X with respect to the angle δ .

If $X = (\xi, \eta) \in \kappa$, we get from (1) and (3) the analytical representation of $\omega(X, \delta)$ as

$$y = R(\mu b - \xi - \delta/R)(x - \xi - \eta/\delta). \tag{4}$$

2. The equation of the parabola $\pi(X)$ inscribed in ABC with $X = (\xi, \eta) \in \kappa \setminus \{A, B, C\}$ as isotropic focal point (see [4, p.74]) is

$$[y - \eta - R(\mu b - \xi)(x - \xi)]^2 - 4R\eta(\mu b - \xi)(x - \xi) = 0.$$
 (5)

We call $\pi(X)$ the Wallace parabola of the point $X \in \kappa \setminus \{A, B, C\}$. $\pi(X)$ is at the same time the δ -envelope of the isotropic Wallace lines (cf. [1] and also [4, p.78f]).

Using (4), (5) and the axis a(X) of the Wallace parabola $\pi(X)$ we see that

$$(\omega(X,\delta),a(X))) = \delta. \tag{6}$$

So we obtain as a supplement to [1] an analogous result as in the euclidean case (cf. [2, p.158]).

Theorem 1. For an admissible triangle ABC of the isotropic plane $I_2(\mathbb{R})$ let $X \neq A, B, C$ be a point of the circumcircle κ of ABC and denote $\omega(X, \delta)$ the isotropic Wallace line to the angle $\delta \in \mathbb{R} \setminus \{0\}$. Then $\omega(X, \delta)$ is a tangent of the Wallace parabola $\pi(X)$ and intersects the axis a(X) of $\pi(X)$ with the angle δ . The point of contact of $\omega(X, \delta)$ and $\pi(X)$ is the δ -footpoint of the isotropic focal point X of $\pi(X)$ on $\omega(X, \delta)$.

The proof of the last statement is obtained by considering (5) and the representation

$$x_F = \xi + R\eta(\mu b - \xi)/\delta^2$$
, $y_F = R(\mu b - \xi - \delta/R)(x_F - \xi - \eta/\delta)$

of the δ -footpoint (x_F, y_F) of $X = (\xi, \eta) \in \kappa$ on $\omega(X, \delta)$.

3. In the euclidean situation the Wallace lines of a triangle ABC envelop a hypocycloid curve of Steiner. By a short calculation we find, that the envelope of the isotropic Wallace lines $\omega(X,\delta)$ is a rational divergent parabola of third order (see [4, p.182]) with the parametric equation

$$x(\xi) = [1 + R(\xi - a)/\delta]\xi - [1 + R(2\xi - a)/\delta][(1/\mu - \delta)/R - (\xi - a)]$$

$$y(\xi) = -R[1 + R(2\xi - a)/\delta][(1/\mu - \delta)/R - (\xi - a)]^{2}.$$
(7)

Because of

$$\frac{dx}{d\xi} = 2[3R\xi/\delta - R(\mu b + a)/\delta + 2], \quad \frac{dy}{d\xi} = R[(1/\mu - \delta)/R - (\xi - a)]\frac{dx}{d\xi}$$

Figure 1

the point S defined by

$$S = (x(\xi_0), y(\xi_0))$$
 with $3\xi_0 := 1/\mu R + 2a - 2\delta/R$ (8)

is the $singular\ point$ of the envelope (7).

A short calculation shows that (7) and (8) imply

$$y(\xi) - y(\xi_0) - R[(1/\mu - \delta)/R - (\xi_0 - a)](x(\xi) - x(\xi_0)) = -2R^2(\xi - \xi_0)^3/\delta.$$

This means that the singular point S of the envelope (7) is a cusp. One verifies that the tangent of the envelope (7) at the point S is the Wallace line $\omega(Y, \delta)$ of the point $Y := (\xi_0, \eta_0) \in \kappa$.

To determine the point Y we make use of the *centroid line* σ of ABC. This straight line was introduced in isotropic triangle geometry by K. Strubecker [6]. Using (1) and the abbreviation in (2) we find that

$$3y = (aR + 2/\mu)x - Ra^2 - a/\mu \tag{9}$$

is the equation of σ . Thus (5) leads to the angle relation

$$(\sigma, a(X)) = \frac{2}{3}\delta + R(\xi_0 - \xi), \quad X = (\xi, \eta) \in \kappa \setminus \{A, B, C\}.$$

$$(10)$$

The relation (10) and the lines determined by the sides of ABC as tangents determine the Wallace parabola $\pi(Y)$. So Y on $\pi(Y)$ is determined as the isotropic focal point and hence $\omega(Y, \delta)$ by Theorem 1.

Theorem 2. The Wallace lines $\omega(X, \delta)$ of an admissible triangle ABC of the isotropic plane $I_2(\mathbb{R})$ envelop a parabola of Neil. The angle $(\omega(Y, \delta), \sigma)$ of the cusp tangent $\omega(Y, \delta)$ with the centroid line σ of ABC is $\delta/3$.

Acknowledgements. Many thanks to my dear friend Dr. W. Schürrer for preparing the figures.

Figure 2

References

[1] Lang, J.: Zur isotropen Dreiecksgeometrie und zum Appolonischen Berührproblem in der isotropen Ebene. Ber. Math.-Stat. Sekt. Forschungszentrum Graz **20** (1983), 1–11.

Zbl 0516.51020

- [2] Loria, G.: Spezielle algebraische und transzendente Kurven. Theorie und Geschichte. Bd. I: Die algebraischen Kurven. Teubner-Verlag, Leipzig und Berlin 1910.
- [3] Giering, O.: Affine and projective generalization of Wallace lines. Journal for Geometry and Graphics 1 (1997), 119–133.

 Zbl 0898.51013
- [4] Sachs, H.: Ebene isotrope Geometrie. Vieweg-Verlag, Wiesbaden 1987.

Zbl 0625.51001

- [5] Schröder, E. M.: Vorlesungen über Geometrie. Bd. 3: Metrische Geometrie. BI-Verlag, Mannheim 1992.

 Zbl 0754.51004
- [6] Strubecker, K.: Zwei Anwendungen der isotropen Dreiecksgeometrie auf ebene Ausgleichsprobleme. Österr. Akad. Wiss. Wien 1 (1983), 497–559.

 Zbl 0552.51016

Received February 18, 2000; revised english translation: May 26, 2001