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Abstract. Let SMR be an (S,R)-bimodule and denote lS(A) = {s ∈ S : sA = 0}
for any submodule A of MR. Extending the notion of an Ikeda-Nakayama ring, we
investigate the condition lS(A∩B) = lS(A)+lS(B) for any submodules A,B ofMR.
Various characterizations and properties are derived for modules with this property.
In particular, for S = End(MR), the π-injective modules are those modules MR
for which S = lS(A) + lS(B) whenever A ∩B = 0, and our techniques also lead to
some new results on these modules.

MSC 2000: 16D50 (primary); 16L60 (secondary)

1. Annihilator conditions

Let R and S be rings and SMR be a bimodule. For any X ⊆M and any T ⊆ S, denote

lS(X) = {s ∈ S : sX = 0} and rM(T ) = {m ∈M : Tm = 0}.

There is a canonical ring homomorphism λ : S −→ End(MR) given by λ(s)(x) = sx for
x ∈M and s ∈ S. For any submodules A and B of MR and any t ∈ lS(A ∩B), define

αt : A+B →M, a+ b 7→ ta.

Clearly, αt is a well-defined R-homomorphism.
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Lemma 1. Let SMR be a bimodule and A,B be submodules of MR. The following are equiv-
alent:
(1) lS(A ∩B) = lS(A) + lS(B).

(2) For any t ∈ lS(A ∩B), the diagram

0 → A+B → M
↓ αt
M

can be extended commutatively by λ(s), for some s ∈ S.

Proof. (1) ⇒ (2). Suppose (1) holds. For A,B, t given as in (2), write t = u + v where
u ∈ lS(A) and v ∈ lS(B). Then, for all a ∈ A and b ∈ B,

αt(a+ b) = ta = (u+ v)a = va = v(a+ b) = λ(v)(a+ b).

(2) ⇒ (1). It is clear that lS(A ∩ B) ⊇ lS(A) + lS(B). Let t ∈ lS(A ∩ B). Define αt :
A+B −→M as above. By (2), there exists s ∈ S such that λ(s) extends αt.
Thus, for all a ∈ A and b ∈ B, ta = αt(a + b) = λ(s)(a + b) = s(a + b). It follows that

(t− s)a + (−s)b = 0 for all a ∈ A and b ∈ B. So, t− s ∈ lS(A) and −s ∈ lS(B), and hence
t = (t− s)− (−s) ∈ lS(A) + lS(B). �

Lemma 2. Let SMR be a bimodule and A,B be submodules of MR such that A∩B = 0. The
following are equivalent:

(1) S = lS(A) + lS(B).

(2) The diagram
0 → A+B → M

↓ α1
M

can be extended commutatively by λ(s), for some s ∈ S.

Proof. (1)⇒ (2). Apply Lemma 1 with t = 1.

(2)⇒ (1). It suffices to show that 1 ∈ lS(A) + lS(B). Note that α1 : A + B −→ M is given
by α1(a + b) = a (a ∈ A and b ∈ B). By (2), there exists s ∈ S such that λ(s) extends
α1 . Arguing as in the proof of ‘(2) ⇒ (1)’ of Lemma 1, we have 1 = (1 − s) − (−s) ∈
lS(A) + lS(B). �

Lemma 3. Let SMR be a bimodule such that SM is faithful and A,B be complements of each
other in MR. The following are equivalent:

(1) S = lS(A) + lS(B).

(2) S = lS(A)⊕ lS(B).

(3) M = A⊕B and, for the projection f of M onto A along B, f = λ(s) for some s ∈ S.
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Proof. (1) ⇒ (3). By (1), we have S = lS(A) + lS(B). Write 1S = u + v where u ∈ lS(A)
and v ∈ lS(B). It follows that a = va for all a ∈ A, b = ub for all b ∈ B and vB = uA = 0.
Thus, B ⊆ rM(v) ⊆ rM(v2) and rM(v2) ∩ A = 0. Since B is complement of A in MR,
we have B = rM(v) = rM(v

2). Similarly, A = rM(u) = rM(u
2). Next we show that

(vu)M ∩ (A+B) = 0. For any z ∈ (vu)M ∩ (A+B), write z = vux = a+ b, where x ∈M ,
a ∈ A and b ∈ B. Noting that vu = uv, we have that (v2u2)x = (vu)(a + b) = 0. So,
u2x ∈ rM(v2) = rM(v), and this gives that u2vx = vu2x = 0. So, vx ∈ rM(u2) = rM(u).
Thus, z = vux = uvx = 0. So, (vu)M ∩ (A + B) = 0. Since A + B is essential in
MR, (vu)M = 0, and hence vu = 0 since SM is faithful. So, uM ⊆ rM(v) = B and
vM ⊆ rM(u) = A, and hence M = vM + uM = A+B = A⊕B.
Let f be the projection of M onto A along B. Then f(M) = A and (1 − f)(M) = B.

Noting that SM is faithful, we have lS(A) = lS(f(M)) = {s ∈ S : λ(s)f(M) = 0} = {s ∈ S :
λ(s)f = 0} and lS(B) = lS((1− f)(M)) = {s ∈ S : λ(s)(1− f) = 0}. Thus, λ(u)f = 0 and
λ(v)(1− f) = 0. It follows that

0 = λ(v)(1− f) = λ(1− u)(1− f) = (1− λ(u))(1− f) = 1− f − λ(u),

and thus f = 1− λ(u) = λ(1− u) = λ(v).

(3) ⇒ (2). By (3), M = A ⊕ B. Let f be the projection of M onto A along B. Then
f 2 = f ∈ End(MR), A = f(M) and B = (1 − f)(M). By (3), f = λ(s) for some s ∈ S. It
follows that (s2 − s)M = λ(s2 − s)(M) = (f 2 − f)(M) = 0. So, s2 = s, since SM is faithful.
And so,

lS(A) = lS(f(M)) = lS(sM) = lS(s) = S(1− s),

and, similarly, lS(B) = Ss. Thus, S = lS(A)⊕ lS(B).

(2)⇒ (1). Obvious. �

A module MR is called π-injective (or quasi-continuous) if every submodule is essential in a
direct summand (C1) and, for any two direct summandsM1,M2 withM1∩M2 = 0, M1⊕M2
is also a direct summand (C3) (see [8]). It is known that MR is π-injective if and only if
M = A⊕B whenever A and B are complements of each other in MR (see [8, Theorem 2.8]).

Corollary 4. Let SMR be a bimodule such that SM is faithful. The following are equivalent:

(1) For any submodules A and B of MR with A ∩B = 0, S = lS(A) + lS(B).

(2) If A and B are complements of each other in MR, then S = lS(A) + lS(B).

(3) If A and B are complements of each other in MR, then S = lS(A)⊕ lS(B).

(4) M is π-injective and, for any f 2 = f ∈ End(MR), f = λ(s) for some s ∈ S.

Proof. (1)⇔ (2) is obvious, and (2)⇔ (3)⇔ (4) is by Lemma 3. �

For submodules A,B of MR, let

π :M/(A ∩B)→M/A⊕M/B, m+ (A ∩B) 7→ (m+ A,m+B)

be the canonical R-homomorphism. The next lemma can easily be verified.
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Lemma 5. Let MR be an R-module with S = End(MR) and A,B be submodules of MR.
The following are equivalent:

(1) lS(A ∩B) = lS(A) + lS(B).

(2) For any R-homomorphism f :M/(A ∩B) −→M , the diagram

0 → M/(A ∩B)
π
→ M/A⊕M/B

↓ f
M

can be extended commutatively by some g :M/A⊕M/B −→M .

2. Ikeda-Nakayama modules

A well known result of Ikeda and Nakayama [6] says that every right self-injective ring R
satisfies the so called Ikeda-Nakayama annihilator condition, i.e., lR(A∩B) = lR(A) + lR(B)
for all right ideals A,B of R. Rings with the Ikeda-Nakayama annihilator condition, called
right Ikeda-Nakayama rings, were studied in [2]. Extending this notion we call MR an Ikeda-
Nakayama module (IN-module) if

lS(A ∩B) = lS(A) + lS(B)

for any submodules A and B of MR where S = End(MR). Clearly, every quasi-injective
module is an IN-module (Lemma 1) and every IN-module is π-injective (Corollary 4).

Proposition 6. The following are equivalent for a module MR with S = End(MR):

(1) MR is an IN-module.

(2) For any finite set {Ai : i = 1, . . . , n} of submodules of MR,

lS(A1 ∩ · · · ∩ An) = lS(A1) + · · ·+ lS(An).

(3) For any submodules A,B of MR and any f ∈ S with f(A ∩B) = 0, the diagram

0 → A+B → M
↓ αf
M

can be extended commutatively by some g :M −→M .

(4) For any submodules A,B of MR and any R-homomorphism
f :M/(A ∩B) −→M , the diagram

0 → M/(A ∩B)
π
→ M/A⊕M/B

↓ f
M

can be extended commutatively by some g :M/A⊕M/B −→M .
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Proof. (1) ⇒ (2) can be easily proved by using induction on n; (2) ⇒ (1) is obvious;
(1)⇔ (3) is by Lemma 1; and (1)⇔ (4) is by Lemma 5. �

Remark 7. The equivalences (1) ⇔ (2) ⇔ (3) in Proposition 6 can be proved to hold for
an arbitrary bimodule SMR.

Many characterizations of π-injective modules are given in [13, 41.21 & 41.23]. In particular,
the equivalence “(1)⇔ (2)” of the next theorem is contained in [13, 41.21].

Theorem 8. The following are equivalent for a module MR with S = End(MR):

(1) M is π-injective.

(2) For any submodules A and B of MR with A ∩B = 0 , S = lS(A) + lS(B).

(3) For any submodules A and B of MR with A ∩B = 0 and any f ∈ S, the diagram

0 → A+B → M
↓ αf
M

can be extended commutatively by some g :M −→M .

(4) For any submodules A,B of MR with A ∩B = 0, the diagram

0 → A+B → M
↓ α1
M

can be extended commutatively by some g :M −→M .

(5) For any submodules A,B of MR with A ∩B = 0 and any f ∈ S, the diagram

0 → M
π
→ M/A⊕M/B

↓ f
M

can be extended commutatively by some g :M/A⊕M/B −→M .

(6) For any submodules A and B of MR with A∩B = 0, S0 = lS0(A) + lS0(B) where S0 is
the subring of S generated by all idempotents of S.

(7) If A and B are complements of each other in MR, then S = lS(A)⊕ lS(B).

In each of the conditions (2)–(6), the pair A,B of submodules with A∩B = 0 can be replaced
by a pair A,B of submodules such that they are complements of each other in MR.

Proof. (2)⇔ (3)⇔ (4)⇔ (5): By Lemmas 1, 2 and 5.
(1)⇔ (2)⇔ (7): By Corollary 4.
(1)⇔ (6): Apply Corollary 4 to the bimodule S0MR. �

One condition in the equivalence list of Theorem 8 says that, if A,B are complements of each
other in MR, then the map α1 : A⊕B −→M given by α1(a+ b) = a extends to M . This is
an improvement of a result of Smith and Tercan [11, Thm.4] where it was proved that MR is
π-injective if and only if M satisfies (P2), i.e., if A and B are complement submodules of M
with A ∩B = 0, then every map from A⊕B to M extends to M .
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Remark 9. Two modules X and Y are said to be orthogonal and written X ⊥ Y if they
have no nonzero isomorphic submodules. A submodule N of the module M is called a type
submodule if, whenever N ⊂ P ⊆ M , there exists 0 6= X ⊆ P such that N ⊥ X. Two
submodules X and Y of M are said to be type complements of each other in M if they are
complements of each other in M such that X ⊥ Y . The module M is called TS if each of
its type submodules is a direct summand of M . The module M is said to satisfy (T3) if,
whenever X and Y are type submodules as well as direct summands such that X ⊕ Y is
essential in M , X ⊕Y =M . As shown in [14], a module M satisfies both TS and (T3) if and
only if, whenever A,B are type complements of each other in M , M = A⊕ B. The module
satisfying TS and (T3) can be regarded as the ‘type’ analogue of the notion of π-injective
modules. Several characterizations of this ‘type’ analogue of π-injective modules have been
obtained in [14]. Some new characterizations of this notion can be obtained by restating
Theorem 8 with ‘A∩B = 0’ being replaced by ‘A ⊥ B’, ‘A,B are complements of each other
in M ’ replaced by ‘A,B are type complements of each other in M ’, and “all idempotents of
S” by “all idempotents f with f(M) ⊥ Ker(f)”.

Proposition 10. Let C be the center of End(MR). The following are equivalent:

(1) For any submodules A,B of MR with A ∩B = 0, C = lC(A) + lC(B).

(2) MR is π-injective and every idempotent of End(MR) is central.

(3) MR is π-injective and every direct summand of MR is fully invariant.

Proof. (1)⇔ (2). Apply Corollary 4 to the bimodule CMR.

(2)⇒ (3). LetX be a direct summand ofMR. ThenX = f(M) for some f 2 = f ∈ End(MR).
For any g ∈ End(MR), since f is central by (2), g(X) = g(f(M)) = f(g(M)) ⊆ f(M) = X.
This shows that X is a fully invariant submodule of MR.

(3) ⇒ (2). Let f, g ∈ End(MR) with f 2 = f . By (3), g(f(M)) ⊆ f(M) and g((1 −
f)(M)) ⊆ (1 − f)(M). It follows that fgf = gf and (1 − f)g(1 − f) = g(1 − f). Thus,
g− gf = g(1− f) = (1− f)g(1− f) = g− gf − fg+ fgf = g− gf − fg+ gf = g− fg. This
shows that fg = gf . �

3. Applications

In the rest of the paper, we discuss some applications of Theorem 8. Recall that a module
M is called continuous if (C1) holds and every submodule isomorphic to a direct summand
is itself a direct summand of M (C2). As a generalization of (C2)-condition, a module MR is
called GC2 if, for any submodule N of MR with N ∼= M , N is a summand of M . Note that
if R is the 2 × 2 upper triangular matrix ring over a field, then RR satisfies both (C1) and
(GC2) but it does not satisfy (C3).

Proposition 11. Let MR be a module with S = End(MR). The following are equivalent:

(1) For any family {Ai : i ∈ I} of submodules of MR with ∩i∈IAi = 0, S = Σi∈IlS(Ai).

(2) MR is finitely cogenerated and, for any finite family {Ai : i = 1, . . . , n} of submodules
of MR with ∩ni=1Ai = 0, the map

M
h
→ ⊕ni=1M/Ai, m 7→ (m+ A1, . . . ,m+ An),
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splits.

(3) MR is finitely cogenerated and, for any finite family {Ai : i = 1, . . . , n} of submodules
of MR with ∩ni=1Ai = 0, S = Σ

n
i=1lS(Ai).

If MR satisfies both (1) and (GC2), then MR is continuous and S is semiperfect.

Proof. It is straightforward to verify the equivalences (1)⇔ (2)⇔ (3).
Suppose that MR satisfies both (1) and (GC2). By Theorem 8, MR is π-injective. Thus,

by [8, Lemma 3.14], M is continuous. To show that S is semilocal, let σ : M −→ M be
a monomorphism. Then M = σ(M) ⊕ N for some N ⊆ M (by the GC2-condition). It
must be that N = 0 since M is finite dimensional (indeed, finitely cogenerated). So, σ is
an isomorphism. Therefore, M satisfies the assumptions in Camps-Dicks [3, Thm.5], and
so End(M) is semilocal. But, by [8, Prop.3.5 & Lemma 3.7], idempotents of S/J(S) lift to
idempotents of S, and thus S is semiperfect. �

A ring R is called right Kasch if every simple right R-module embeds in RR, or equivalently
if l(I) 6= 0 for any maximal right ideal I of R.

Corollary 12. If R satisfies the condition that, for any set {Ai : i ∈ I} of right ideals such
that ∩i∈IAi = 0, R = Σi∈IlR(Ai) and RR satisfies (GC2), then R is a semiperfect right
continuous ring with a finitely generated essential right socle. In particular, R is left and
right Kasch.

Proof. The first part follows from Theorem 11. The second part is by [9, Lemma 4.16]. �

A ring R is called strongly right IN if, for any set {Ai : i ∈ I} of right ideals, lR(∩i∈IAi) =
Σi∈IlR(Ai). The ring R is called right dual if every right ideal of R is a right annihilator. It
is well-known that every two-sided dual ring is strongly left and right IN.

Corollary 13. The following are equivalent for a ring R:

(1) R is a two-sided dual ring.

(2) R is strongly left and right IN, and left (or right) GC2.

(3) R is left and right finitely cogenerated, left and right IN, and left (or right) GC2.

Proof. (1)⇒ (2): Obvious.
(2)⇒ (3): It is clear by Corollary 12.
(3) ⇒ (1): Suppose ∩i∈IAi = 0 where all Ai are right ideals R. Since R is right finitely
cogenerated, ∩i∈FAi = 0 where F is a finite subset of I. Thus, R = lR(∩i∈FAi) = Σi∈F lR(Ai)
because of the IN-condition, and hence R = Σi∈IlR(Ai). By Corollary 12, R is left and right
Kasch. Since R is left and right IN, it follows from [2, Lemma 9] that R is a two-sided dual
ring. �

The GC2-condition in Corollary 12 and in Corollary 13(3) can not be removed. To see this, let
R be the trivial extension of Z and the Z-module Z2∞ . Then R has an essential minimal ideal,
so R is finitely cogenerated and, for any set {Ai : i ∈ I} of right ideals of R, R = Σi∈IlR(Ai).
Moreover, R is IN. But R contains non-zero divisors which are not invertible, so R is not
GC2. Clearly, R is not Kasch, so it is not semiperfect by Corollary 12. We do not know if
the GC2-condition can be removed in Corollary 13(2).
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Proposition 14. Suppose every finitely generated left ideal of R is a left annihilator. Then
the following are equivalent:

(1) Every closed right ideal of R is a right annihilator of a finite subset of R.

(2) RR satisfies (C1).

(3) R is right continuous.

Proof. (3)⇒ (2): Obvious.
(2)⇒ (1): If IR is closed in RR, then I = eR for some e2 = e ∈ R. Hence I = r(1− e).
(1) ⇒ (2): Let IR and KR be complements of each other in RR. Then, by (1), I =
rR(a1, . . . , an) and K = rR(b1, . . . , bm) where ai, bj ∈ R. Thus,

R = lR(I ∩K) = lR[rR(a1, . . . , an) ∩ rR(b1, . . . , bm)]
= lR(rR(Σ

n
i=1Rai + Σ

m
j=1Rbj)) = Σ

n
i=1Rai + Σ

m
j=1Rbj

= lR(I) + lR(K).

Thus, by Theorem 8, RR is π-injective, and in particular RR satisfies (C1).
(2) ⇒ (3): Since rR(lR(F )) = F for all finitely generated left ideals F of R, R is right
P-injective, and hence satisfies the right C2-condition. Thus, R is right continuous. �

A ring R is called a right CF-ring (resp. right FGF-ring) if every cyclic (resp. finitely gen-
erated) right R-module embeds in a free module. The ring R is called right FP-injective
if every R-homomorphism from a finitely generated submodule of a free right R-module F
into R extends to F . Note that every right self-injective ring is right FP -injective, but not
conversely. Also every finitely generated left ideal of a right FP -injective ring is a left anni-
hilator (see [7]). The well known FGF problem asks whether every right FGF-ring is QF. It
is known that every right self-injective, right FGF-ring is QF. In fact, Björk [1] and Tolskaya
[12] independently proved that every right self-injective, right CF-ring is QF. On the other
hand, Nicholson-Yousif [10, Theorem 4.3] shows that every right FP-injective ring for which
every 2-generated right module embeds in a free module is QF. Our next corollary extends
the two results.

Corollary 15. Suppose R is a right CF-ring such that every finitely generated left ideal is a
left annihilator. Then R is a QF-ring.

Proof. Since R is right CF, every right ideal is a right annihilator of a finite subset of R. By
Proposition 14, RR is π-injective. Then, by [5, Corollary 2.9], R is right artinian. Clearly, R
is two-sided mininjective. So, R is QF by [9, Cor.4.8]. �

Corollary 16. Every right CF, right FP-injective ring is QF. In particular, every right FGF,
right FP-injective ring is QF.

A ring R is called right FPF-ring if every finitely generated faithful right R-module is a
generator of Mod-R, the category of all right R-modules. A ring is left (resp. right) duo if
every left (resp. right) ideal is two sided. We conclude by noticing that every right FPF-ring
which is left or right duo is π-injective. The next corollary follows from Theorem 8 and the
proof of [4, 3.1A2, p.3.2].

Corollary 17. Let R be a right FPF-ring. If R is a left or right duo ring, then RR is
π-injective. In particular, every commutative FPF-ring is π-injective.



R. Wisbauer, M. F. Yousif, Y. Zhou: Ikeda-Nakayama Modules 119

References

[1] Björk, J. E.: Radical properties of perfect modules. J. Reine Angew. Math.253 (1972),
78–86. Zbl 0228.16011−−−−−−−−−−−−

[2] Camillo, V.; Nicholson, W. K.; Yousif, M. F.: Ikeda-Nakayama rings. J. Algebra 226
(2000), 1001–1010. Zbl 0958.16002−−−−−−−−−−−−

[3] Camps, R.; Dicks, W.: On semi-local rings. Israel J. Math. 81 (1993), 203–211.
Zbl 0802.16010−−−−−−−−−−−−

[4] Faith, C.; Page, S. S.: FPF Ring Theory: Faithful Modules and Generators of Mod-R.
London Math. Soc. Lecture Note Series 88, Cambridge Univ. Press, 1984.

Zbl 0554.16007−−−−−−−−−−−−
[5] Gomez Pardo, J. L.; Guil Asensio, P. A.: Rings with finite essential socle. Proc. Amer.
Math. Soc. 125(4) (1997), 971–977. Zbl 0871.16012−−−−−−−−−−−−

[6] Ikeda, M.; Nakayama, T.: On some characteristic properties of quasi-Frobenius and
regular rings. Proc. Amer. Math. Soc. 5 (1954), 15–19. Zbl 0055.02602−−−−−−−−−−−−

[7] Jain, S.: Flat and FP-injectivity. Proc. Amer. Math. Soc. 41 (1973), 437–442.
Zbl 0268.16019−−−−−−−−−−−−

[8] Mohamed, S. H.; Müller, B. J.: Continuous and Discrete Modules. Cambridge University
Press, Cambridge 1990. Zbl 0701.16001−−−−−−−−−−−−

[9] Nicholson, W. K.; Yousif, M. F.: Mininjective rings. J. Algebra 187 (1997), 548–578.
Zbl 0879.16002−−−−−−−−−−−−

[10] Nicholson, W. K.; Yousif, M. F.: Weakly continuous and C2-rings. Comm. Alg., to
appear.

[11] Smith, P. F.; Tercan, A.: Continuous and quasi-continuous modules. Houston J. Math.
18(3) (1992), 339–348. Zbl 0762.16004−−−−−−−−−−−−

[12] Tolskaya, T. S.: When are all cyclic modules essentially embedded in free modules. Mat.
Issled. 5 (1970), 187–192.

[13] Wisbauer, R.: Foundations of Module and Ring Theory. Gordon and Breach, 1991.
Zbl 0746.16001−−−−−−−−−−−−

[14] Zhou, Y.: Decomposing modules into direct sums of submodules with types. J. Pure Appl.
Algebra 138(1) (1999), 83–97. Zbl 0955.16007−−−−−−−−−−−−

Received November 12, 2000

http://www.emis.de/MATH-item?0228.16011
http://www.emis.de/MATH-item?0958.16002
http://www.emis.de/MATH-item?0802.16010
http://www.emis.de/MATH-item?0554.16007
http://www.emis.de/MATH-item?0871.16012
http://www.emis.de/MATH-item?0055.02602
http://www.emis.de/MATH-item?0268.16019
http://www.emis.de/MATH-item?0701.16001
http://www.emis.de/MATH-item?0879.16002
http://www.emis.de/MATH-item?0762.16004
http://www.emis.de/MATH-item?0746.16001
http://www.emis.de/MATH-item?0955.16007

