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Abstract. Let ¢Mpg be an (S, R)-bimodule and denote 15(A) = {s € §: sA =0}
for any submodule A of Mpy. Extending the notion of an Ikeda-Nakayama ring, we
investigate the condition 1s(ANB) = lg(A)+1s(B) for any submodules A, B of Mpg.
Various characterizations and properties are derived for modules with this property.
In particular, for S = End(Mg), the m-injective modules are those modules Mg
for which S =1g(A) + 15(B) whenever AN B = 0, and our techniques also lead to
some new results on these modules.

MSC 2000: 16D50 (primary); 16L60 (secondary)

1. Annihilator conditions

Let R and S be rings and sMg be a bimodule. For any X C M and any 7' C S, denote
Is(X)={seS:sX =0} and ry(T)={meM:Tm =0}

There is a canonical ring homomorphism A : S — End(Mg) given by A(s)(z) = sz for
x € M and s € S. For any submodules A and B of Mg and any ¢ € 1l¢(A N B), define

ap: A+ B — M, a+b— ta.

Clearly, a; is a well-defined R-homomorphism.
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Lemma 1. Let sMpg be a bimodule and A, B be submodules of M. The following are equiv-

alent:
(1) Is(AN B) =15(A) +1s(B).
(2) For anyt € 1s(AN B), the diagram

0 - A+B — M

Loy
M

can be extended commutatively by A(s), for some s € S.

Proof. (1) = (2). Suppose (1) holds. For A, B,t given as in (2), write ¢ = u + v where
u € 1g(A) and v € lg(B). Then, for all a € A and b € B,

ai(a+b) =ta= (u+v)a=va=v(a+b) =Av)(a+bd).

(2) = (1). It is clear that Is(AN B) D 1g(A) + 1s(B). Let t € Is(AN B). Define o :
A+ B — M as above. By (2), there exists s € S such that A(s) extends «.

Thus, for all a € A and b € B, ta = ay(a +b) = A(s)(a + b) = s(a+b). It follows that
(t—s)a+ (—s)h=0forallae Aand b€ B. So, t —s € lg(A) and —s € lg(B), and hence
t= (t—S) — (—8) € 15(A)+15(B) O

Lemma 2. Let sMpg be a bimodule and A, B be submodules of Mg such that ANB = 0. The
following are equivalent:
(1) §=1s(4) +1s(B).
(2) The diagram
0 - A+B — M
Lo
M

can be extended commutatively by A(s), for some s € S.

Proof. (1) = (2). Apply Lemma 1 with ¢ = 1.

(2) = (1). It suffices to show that 1 € 15(A) + 1g(B). Note that oy : A+ B — M is given
by aj(a+b) =a (a € Aand b € B). By (2), there exists s € S such that A(s) extends
a; . Arguing as in the proof of ‘(2) = (1)’ of Lemma 1, we have 1 = (1 — s) — (—s) €
15(A) +15(B). O

Lemma 3. Let sMpg be a bimodule such that sM 1is faithful and A, B be complements of each
other in Mp. The following are equivalent:

(1) §=1s(4) +1s(B).
(2) S=15(A) @ 1s(B).
(3) M = A® B and, for the projection f of M onto A along B, f = X\(s) for some s € S.
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Proof. (1) = (3). By (1), we have S = lg(A) + 1g(B). Write 1g = u + v where u € 1g(A)
and v € lg(B). It follows that a = va for all a € A, b = ub for all b € B and vB = uA = 0.
Thus, B C ry(v) C ry(v?) and ry(v?) N A = 0. Since B is complement of A in Mg,
we have B = rp(v) = ry(v?). Similarly, A = ry(u) = rp(u?). Next we show that
(vuyM N (A+ B) =0. For any z € (vu)M N (A + B), write z = vux = a + b, where z € M,
a € A and b € B. Noting that vu = uv, we have that (v?u®)z = (vu)(a +b) = 0. So,
u?z € ry(v?) = ry(v), and this gives that v?vr = vu’z = 0. So, vz € rp(u?) = ry(u).
Thus, z = vur = wwz = 0. So, (vu)M N (A + B) = 0. Since A + B is essential in
Mg, (vu)M = 0, and hence vu = 0 since ¢M is faithful. So, uM C ry(v) = B and
vM Cry(u) = A, and hence M =vM +uM = A+ B =A@ B.

Let f be the projection of M onto A along B. Then f(M) = A and (1 — f)(M) = B.
Noting that gM is faithful, we have lg(A) =1s(f(M)) ={s € S: A(s)f(M) =0} ={se€ S
A(s)f =0} and 1s(B) = 1s((1 — f)(M)) = {s € S : A(s)(1 — f) = 0}. Thus, A(u)f = 0 and
A(v)(1 — f) = 0. It follows that

0=A0)A—-f) =21 -w)(1=f) =1 =-Aw)1-f)=1-F—Mu),

and thus f =1 — A(u) = A(1 —u) = A(v).
(3) = (2). By (3), M = A& B. Let f be the projection of M onto A along B. Then
f?=f € End(Mg), A= f(M) and B = (1 — f)(M). By (3), f = A(s) for some s € S. It
follows that (s* — s)M = A\(s? — s)(M) = (f? — f)(M) = 0. So, s*> = s, since gM is faithful.
And so,

15(A) = 1s(f(M)) = 1s5(sM) = 15(s) = S(1 — s),
and, similarly, 1g(B) = Ss. Thus, S = 15(A4) ® 15(B).
(2) = (1). Obvious. O
A module My, is called m-injective (or quasi-continuous) if every submodule is essential in a
direct summand (C1) and, for any two direct summands My, My with My N My = 0, My @ M,

is also a direct summand (C3) (see [8]). It is known that Mg is w-injective if and only if
M = A& B whenever A and B are complements of each other in Mg (see [8, Theorem 2.8]).

Corollary 4. Let s Mg be a bimodule such that M 1is faithful. The following are equivalent:
(1) For any submodules A and B of Mr with ANB =0, S =15(A) +1s(B).
(2) If A and B are complements of each other in Mg, then S = 1g(A) + l5(B).
(3) If A and B are complements of each other in Mg, then S =1s(A) @ ls(B).
(4) M is w-injective and, for any f? = f € End(Mg), f = \(s) for some s € S.

Proof. (1) < (2) is obvious, and (2) < (3) < (4) is by Lemma 3. O
For submodules A, B of Mg, let
7:M/(ANB) - M/A®M/B, m+ (ANB)+— (m+ A,m+ B)

be the canonical R-homomorphism. The next lemma can easily be verified.
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Lemma 5. Let Mg be an R-module with S = End(Mg) and A, B be submodules of Mg.
The following are equivalent:

(1) 1Is(ANB) =15(A) + 15(B).
(2) For any R-homomorphism f: M/(AN B) — M, the diagram

0 - M/(AnB) ©~ M/A® M/B

L f
M

can be extended commutatively by some g : M/A@® M/B — M.

2. Ikeda-Nakayama modules

A well known result of Ikeda and Nakayama [6] says that every right self-injective ring R
satisfies the so called Ikeda-Nakayama annihilator condition, i.e., 1r(AN B) = 1zr(A) +1g(B)
for all right ideals A, B of R. Rings with the Ikeda-Nakayama annihilator condition, called
right Ikeda-Nakayama rings, were studied in [2]. Extending this notion we call My an Ikeda-
Nakayama module (IN-module) if

Is(AN B) =15(A) +15(B)

for any submodules A and B of Mr where S = End(Mg). Clearly, every quasi-injective
module is an IN-module (Lemma 1) and every IN-module is 7-injective (Corollary 4).

Proposition 6. The following are equivalent for a module Mg with S = End(MRg):
(1) Mg is an IN-module.
(2) For any finite set {A; : i =1,...,n} of submodules of Mg,

IS(Al N---N An) = 15(141) + -+ ls(An)
(3) For any submodules A, B of Mg and any f € S with f(AN B) =0, the diagram
0 - A+B — M
Loy
M

can be extended commutatively by some g : M — M.

(4) For any submodules A, B of Mr and any R-homomorphism
f:M/(ANB) — M, the diagram

0 > M/(AnB) & MJ/A& M/B
Lf
M

can be extended commutatively by some g : M/A @ M/B — M.
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Proof. (1) = (2) can be easily proved by using induction on n; (2) = (1) is obvious;
(1) < (3) is by Lemma 1; and (1) < (4) is by Lemma 5. O
Remark 7. The equivalences (1) < (2) < (3) in Proposition 6 can be proved to hold for
an arbitrary bimodule ¢ Mg.

Many characterizations of m-injective modules are given in [13, 41.21 & 41.23]. In particular,
the equivalence “(1) < (2)” of the next theorem is contained in [13, 41.21].

Theorem 8. The following are equivalent for a module Mg with S = End(Mg):
(1) M is w-injective.
(2) For any submodules A and B of Mg with ANB =0, S5 =15(A) + 1s(B).
(3) For any submodules A and B of Mr with AN B =0 and any f € S, the diagram

0 - A+B —- M
Loy
M
can be extended commutatively by some g : M — M.
(4) For any submodules A, B of Mr with AN B =0, the diagram

0 - A+B — M

Lo
M

can be extended commutatively by some g : M — M.
(5) For any submodules A, B of Mg with AN B =0 and any f € S, the diagram

0 - M 5 M/A®M/B

L f
M

can be extended commutatively by some g : M/A @ M/B — M.

(6) For any submodules A and B of Mr with AN B =0, Sy = 1g,(A) + 1s,(B) where Sy is
the subring of S generated by all idempotents of S.

(7) If A and B are complements of each other in Mg, then S =1s(A) & 15(B).

In each of the conditions (2)—(6), the pair A, B of submodules with AN B = 0 can be replaced
by a pair A, B of submodules such that they are complements of each other in Mg.

Proof. (2) < (3) & (4) < (5): By Lemmas 1, 2 and 5.
(1) & (2) & (7): By Corollary 4.
(1) < (6): Apply Corollary 4 to the bimodule g, Mg. O

One condition in the equivalence list of Theorem 8 says that, if A, B are complements of each
other in Mpg, then the map oy : A® B — M given by oy(a + b) = a extends to M. This is
an improvement of a result of Smith and Tercan [11, Thm.4] where it was proved that Mg is
m-injective if and only if M satisfies (P), i.e., if A and B are complement submodules of M
with AN B = 0, then every map from A ® B to M extends to M.



116 R. Wisbauer, M. F. Yousif, Y. Zhou: Ikeda-Nakayama Modules

Remark 9. Two modules X and Y are said to be orthogonal and written X | Y if they
have no nonzero isomorphic submodules. A submodule N of the module M is called a type
submodule if, whenever N C P C M, there exists 0 # X C P such that N 1 X. Two
submodules X and Y of M are said to be type complements of each other in M if they are
complements of each other in M such that X | Y. The module M is called TS if each of
its type submodules is a direct summand of M. The module M is said to satisty (73) if,
whenever X and Y are type submodules as well as direct summands such that X &Y is
essential in M, X ®Y = M. As shown in [14], a module M satisfies both TS and (73) if and
only if, whenever A, B are type complements of each other in M, M = A ® B. The module
satisfying TS and (73) can be regarded as the ‘type’ analogue of the notion of 7m-injective
modules. Several characterizations of this ‘type’ analogue of m-injective modules have been
obtained in [14]. Some new characterizations of this notion can be obtained by restating
Theorem 8 with ‘AN B = 0’ being replaced by ‘A 1 B’, ‘A, B are complements of each other
in M’ replaced by ‘A, B are type complements of each other in M’, and “all idempotents of
S” by “all idempotents f with f(M) L Ker(f)”.

Proposition 10. Let C be the center of End(Mg). The following are equivalent:
(1) For any submodules A, B of Mg with ANB =0, C =1c(A) + 1lc(B).
(2) Mg is w-injective and every idempotent of End(Mpg) is central.
(3) Mpg is m-injective and every direct summand of Mg is fully invariant.

Proof. (1) < (2). Apply Corollary 4 to the bimodule ¢ Mg.

(2) = (3). Let X be a direct summand of Mz. Then X = f(M) for some f% = f € End(Mg).
For any g € End(Mp), since f is central by (2), g(X) = g(f(M)) = f(9(M)) C f(M) = X.
This shows that X is a fully invariant submodule of Mg.

(3) = (2). Let f,g € End(Mg) with f> = f. By (3), g(f(M)) € f(M) and g((1 —
fM)) € (1 - f)(M). It follows that fgf = gf and (1 — f)g(1 — f) = g(1 — f). Thus,
9—9f=91-f)=Q0-flgA-f)=9—9f—fg+fof =9—9f—fg+9f=g— fg. This
shows that fg =gf. O

3. Applications

In the rest of the paper, we discuss some applications of Theorem 8. Recall that a module
M is called continuous if (C1) holds and every submodule isomorphic to a direct summand
is itself a direct summand of M (C2). As a generalization of (C2)-condition, a module Mg, is
called GC2 if, for any submodule N of Mg with N = M, N is a summand of M. Note that
if R is the 2 x 2 upper triangular matrix ring over a field, then Rp satisfies both (C1) and
(GC2) but it does not satisfy (C3).

Proposition 11. Let Mg be a module with S = End(Mg). The following are equivalent:
(1) For any family {A; : 1 € I} of submodules of Mg with Nie;A; =0, S = Xierls(4;).

(2) Mg is finitely cogenerated and, for any finite family {A; : i =1,...,n} of submodules
of Mg with N?_;A; =0, the map

M 2 e M/A;, mw— (m+A,...,m+ A,),
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splits.
(3) Mg is finitely cogenerated and, for any finite family {A; i =1,...,n} of submodules
Of MR with ﬂ?zlAi = O, S = E:L:lls(Al)
If Mg satisfies both (1) and (GC2), then Mg is continuous and S is semiperfect.

Proof. 1t is straightforward to verify the equivalences (1) < (2) < (3).

Suppose that My satisfies both (1) and (GC2). By Theorem 8, My is m-injective. Thus,
by [8, Lemma 3.14], M is continuous. To show that S is semilocal, let o : M — M be
a monomorphism. Then M = (M) @& N for some N C M (by the GC2-condition). It
must be that N = 0 since M is finite dimensional (indeed, finitely cogenerated). So, o is
an isomorphism. Therefore, M satisfies the assumptions in Camps-Dicks [3, Thm.5], and
so End(M) is semilocal. But, by [8, Prop.3.5 & Lemma 3.7], idempotents of S/J(S) lift to
idempotents of S, and thus S is semiperfect. O

A ring R is called right Kasch if every simple right R-module embeds in Rp, or equivalently
if 1() # 0 for any maximal right ideal I of R.

Corollary 12. If R satisfies the condition that, for any set {A; : i € I} of right ideals such
that Nicr4; = 0, R = Yicrlr(A;) and Rp satisfies (GC2), then R is a semiperfect right
continuous ring with a finitely generated essential right socle. In particular, R is left and
right Kasch.

Proof. The first part follows from Theorem 11. The second part is by [9, Lemma 4.16]. O

A ring R is called strongly right IN if, for any set {A; : ¢ € I} of right ideals, 1g(N;erA4;) =
Yierlr(A;). The ring R is called right dual if every right ideal of R is a right annihilator. It
is well-known that every two-sided dual ring is strongly left and right IN.

Corollary 13. The following are equivalent for a ring R:
(1) R is a two-sided dual ring.
(2) R is strongly left and right IN, and left (or right) GC2.
(3) R is left and right finitely cogenerated, left and right IN, and left (or right) GC2.

Proof. (1) = (2): Obvious.

(2) = (3): It is clear by Corollary 12.

(3) = (1): Suppose N;e;A; = 0 where all A; are right ideals R. Since R is right finitely
cogenerated, N;cpA; = 0 where F is a finite subset of I. Thus, R = 1gr(NicrA;) = Zicrlr(A;)
because of the IN-condition, and hence R = ¥;¢/1g(A;). By Corollary 12, R is left and right
Kasch. Since R is left and right IN, it follows from [2, Lemma 9] that R is a two-sided dual
ring. 0

The GC2-condition in Corollary 12 and in Corollary 13(3) can not be removed. To see this, let
R be the trivial extension of Z and the Z-module Zs~. Then R has an essential minimal ideal,
so R is finitely cogenerated and, for any set {A; : i € I'} of right ideals of R, R = ¥;c/1r(A;).
Moreover, R is IN. But R contains non-zero divisors which are not invertible, so R is not
GC2. Clearly, R is not Kasch, so it is not semiperfect by Corollary 12. We do not know if
the GC2-condition can be removed in Corollary 13(2).
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Proposition 14. Suppose every finitely generated left ideal of R is a left annihilator. Then
the following are equivalent:

(1) Ewvery closed right ideal of R is a right annihilator of a finite subset of R.
(2) Rpg satisfies (C1).

(3) R is right continuous.

Proof. (3) = (2): Obvious.

(2) = (1): If Iy is closed in Rp, then I = eR for some e = e € R. Hence I =r(1 —e¢).

(1) = (2): Let Ir and Kg be complements of each other in Rg. Then, by (1), I =
rr(ai,...,a,) and K =rg(by,...,b,) where a;,b; € R. Thus,

R = 1R<IQK) :lR[rR(al,...,an)ﬂrR(bl,...,bm)]
— 1x(1) + 1a(K).

Thus, by Theorem 8, Ry is m-injective, and in particular Rp satisfies (C1).
(2) = (3): Since rg(1g(F)) = F for all finitely generated left ideals F' of R, R is right
P-injective, and hence satisfies the right C2-condition. Thus, R is right continuous. OJ

A ring R is called a right CF-ring (resp. right FGF-ring) if every cyclic (resp. finitely gen-
erated) right R-module embeds in a free module. The ring R is called right FP-injective
if every R-homomorphism from a finitely generated submodule of a free right R-module F'
into R extends to F'. Note that every right self-injective ring is right F'P-injective, but not
conversely. Also every finitely generated left ideal of a right F' P-injective ring is a left anni-
hilator (see [7]). The well known FGF problem asks whether every right FGF-ring is QF. It
is known that every right self-injective, right FGF-ring is QF. In fact, Bjork [1] and Tolskaya
[12] independently proved that every right self-injective, right CF-ring is QF. On the other
hand, Nicholson-Yousif [10, Theorem 4.3] shows that every right FP-injective ring for which
every 2-generated right module embeds in a free module is QF. Our next corollary extends
the two results.

Corollary 15. Suppose R is a right CF-ring such that every finitely generated left ideal is a
left annihilator. Then R 1s a QF-ring.

Proof. Since R is right CF, every right ideal is a right annihilator of a finite subset of R. By
Proposition 14, Rg is m-injective. Then, by [5, Corollary 2.9], R is right artinian. Clearly, R
is two-sided mininjective. So, R is QF by [9, Cor.4.8]. O

Corollary 16. Every right CF, right FP-injective ring is QF. In particular, every right FGF,
right FP-injective ring is QF.

A ring R is called right FPF-ring if every finitely generated faithful right R-module is a
generator of Mod-R, the category of all right R-modules. A ring is left (resp. right) duo if
every left (resp. right) ideal is two sided. We conclude by noticing that every right FPF-ring
which is left or right duo is m-injective. The next corollary follows from Theorem 8 and the
proof of [4, 3.1A2, p.3.2].

Corollary 17. Let R be a right FPF-ring. If R is a left or right duo ring, then Rg is
m-injective. In particular, every commutative FPF-ring is w-injective.
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