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Abstract. In [2], a {5, 5}-equivelar polyhedral map of Euler characteristic −8 was
constructed. In this article we prove that {5, 5}-equivelar polyhedral map of Euler
characteristic −8 is unique. As a consequence, we get that the minimum number
of edges in a non-orientable polyhedral map of Euler characteristic −8 is > 40. We
have also constructed {5, 5}-equivelar polyhedral map of Euler characteristic −2m
for each m ≥ 4.
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1. Introduction

A finite collection K of cycles, edges and vertices of a complete graph is called a polyhedral
complex (of dimension 2) if (i) each edge of a cycle in K is in K, (ii) each vertex of each edge
in K is in K and (iii) any two cycles have at most one common edge. The cycles, edges and
vertices in a complex are called the faces, edges and vertices in that complex respectively. If
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u and v are vertices of a face F and uv is not an edge of F then uv is called a diagonal. We
denote a face u1 · · ·umu1 by u1 · · ·um and (u1, . . . , um) also. A diagonal (or edge) uv is also
denoted by (u, v). A complex is called simplicial if each face is a 3-cycle.
For a complex K, the edge graph EG(K) of K is the graph whose vertices and edges are

the vertices and edges of K respectively. EG(K) is also called the 1-skeleton of K. See [1]
for the graph theoretic terms used in this paper. The vertex-set of K is denoted by V (K).
If K is a complex then we associate another graph Λ(K) with K as follows. The vertices

of Λ(K) are the faces in K and for faces F1, F2 ∈ K, F1F2 is an edge in Λ(K) whenever
F1 and F2 have a common edge. For a vertex u in K let Fu be the set of faces containing
u. A polyhedral complex K is called a (2-dimensional) abstract polyhedron or an abstract
polyhedral 2-manifold if (iv) for each vertex v there is a face F containing v, (v) each edge is
in exactly two faces, (vi) the induced subgraph L(u) = Λ(K)[Fu] is a cycle for each vertex u
in K and (vii) the graph Λ(K) is connected. An abstract polyhedron is called a polyhedral
map if (viii) the intersection of any two faces is empty, a vertex or an edge. So, a diagonal in
a polyhedral map is the diagonal of a unique face and is not an edge. An abstract simplicial
polyhedron is automatically a polyhedral map. EachMn (in Example 5) is a polyhedral map
whereas each Sn (in Example 6) is an abstract polyhedron but not a polyhedral map.
A polyhedral complex may be thought of as a prescription for the construction of a

topological space by pasting together objects which are homeomorphic to the plane polygonal
discs. The topological space thus obtained from a complex K is called the geometric carrier
of K and is denoted by |K|. It is easy to see that the geometric carrier of an abstract
polyhedron is a connected 2-dimensional manifold. An abstract polyhedron K is called
orientable (respectively non-orientable) if |K| is orientable (respectively non-orientable).
Two complexes K and L are called isomorphic (denoted by K ∼= L) if there exists a

bijective map ϕ:V (K)→ V (L) such that v1 · · · vk is a face in K if and only if ϕ(v1) · · ·ϕ(vk)
is a face in L. We identify two complexes if they are isomorphic. An isomorphism from a
complex X to itself is called an automorphism of X. All the automorphisms of X form a
group, which is denoted by Aut(X). Clearly, the faces of a complex determine the complex.
Because of this we identify a complex with the set of faces in it. If u is a vertex in a complex
M then the subcomplex consisting of all the faces through u is called the star of u in M and
is denoted by st(u).
If uv is an edge in a complex K then we say u and v are adjacent in K. For a vertex v in

a complex K, the number of edges through v is called the degree of v in K. If f0(K), f1(K)
and f2(K) are the number of vertices, edges and faces respectively of a complex K then the
number χ(K) := f0(K)− f1(K) + f2(K) is called the Euler characteristic of K.
Clearly, if d(K) is the number of diagonals in a polyhedral map K on n vertices then

d(K) + f1(K) ≤
(
n
2

)
. A polyhedral map is called a weakly neighbourly polyhedral map (in

short, wnp map) if any pair of vertices are in a face. So, a polyhedral map K is weakly

neighbourly if and only if d(K) + f1(K) =
(
n
2

)
.

An abstract polyhedron K is called equivelar of type {p, q} (or {p, q}-equivelar) if each
face is a p-gon (i.e., Λ(K) is a p-regular graph) and the degree of each vertex is q (see
[3, 4, 5]). We know (see [5]) that there exists a unique equivelar polyhedral map of type
{p, q} if (p, q) = (3, 3), (3, 4) or (4, 3) and there are exactly two equivelar polyhedral maps of
type {p, q} if (p, q) = (3, 5) or (5, 3). There exist infinitely many (constructed in [5]) {3, q}-
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equivelar polyhedral maps for q = 6, 7 and 8. For simplicial abstract polyhedra, weakly
neighbourly is equivalent to neighbourly. In [5], it is shown that there exist exactly two
neighbourly {3, 8}-equivelar polyhedral maps and there exist exactly 14 neighbourly {3, 9}-
equivelar polyhedral maps. If M is a neighbourly simplicial map on n vertices then n is
0 or 1 mod 3. Ringel and Jungerman ([6, 7, 8]) have shown that there exist neighbourly
non-orientable simplicial maps on n vertices if n = 0 or 1 mod 3 and n ≥ 9 and there exist
neighbourly orientable simplicial maps on n vertices if n = 0, 3, 4 or 7 mod 12 and n ≥ 7.
Let K be an abstract polyhedron with faces F1, . . . , Fm. Consider a complex K̃ with

vertex-set {w1, . . . , wm} as: wi1 · · ·wik is a face in K̃ if and only if there exists a vertex u in
K such that Fi1 . . . FikFi1 is the cycle L(u) defined above. Then, K̃ is an abstract polyhedron.

K̃ is called the dual of K. It is easy to show that the dual of K̃ is isomorphic to K and
χ(K̃) = χ(K). Observe that the graph Λ(K) is isomorphic to EG(K̃). Because of this, for
an abstract polyhedron K, Λ(K) is called the dual 1-skeleton of K. If K is a {p, q}-equivelar
polyhedral map then it is not difficult to see that K̃ is a {q, p}-equivelar polyhedral map. An
abstract polyhedron K is called self dual if K is isomorphic to K̃.
If K is a {p, q}-equivelar polyhedral map on n vertices then d(K) = nq(p − 3)/2 and

f1(K) = nq/2. So, if K is a {p, q}-equivelar wnp map then nq(p− 3)/2+ nq/2 = n(n− 1)/2
and hence q(p − 2) = n − 1. Here we are interested in the cases when p = q. (In that case
n = (p − 1)2.) Clearly, the 4-vertex 2-sphere is the unique {3, 3}-equivelar wnp map. In
[2], the first named-author proved that there exist exactly three {4, 4}-equivelar wnp maps
(the geometric carriers of two of them are the torus and of one of them is the Klein bottle).
Clearly, M4 (in Example 5) is a {5, 5}-equivelar wnp map. Here we prove:

Theorem 1. For each m ≥ 2, there exists a self dual orientable {5, 5}-equivelar polyhedral
map of Euler characteristic −4m and there exists a self dual non-orientable {5, 5}-equivelar
polyhedral map of Euler characteristic −(4m+ 2).

Theorem 2. If M is a {5, 5}-equivelar weakly neighbourly polyhedral map then M is iso-
morphic to M4 given below.

From a result (Proposition 8 below) in [2] it follows that if M is a polyhedral map of Euler
characteristic −8 then f1(M) ≥ 40. As a consequence of Theorem 2 we get:

Corollary 3. If M is a polyhedral map of Euler characteristic −8 and the number of edges
in M is 40 then M is isomorphic to M4 given below.

For even number χ ≤ 2, let E+(χ) be the smallest number E for which there exists an
orientable polyhedral map of Euler characteristic χ with E edges. Similarly, for χ ≤ 1, let
E−(χ) be the smallest number E for which there exists a non-orientable polyhedral map of
Euler characteristic χ with E edges. Here we prove:

Corollary 4. E−(−8) > E+(−8) = 40.

Remark 1. For an n-vertex {p, p}-equivelar polyhedral map K the following are equivalent.
(i) K is weakly neighbourly, (ii) n = (p− 1)2 and (iii) χ(K) = (p− 1)2(4− p)/2. So, we can
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replace the assumption ‘weakly neighbourly’ by ‘16-vertex’ or by ‘of Euler characteristic −8’
in Theorem 2.

Remark 2. We see, from Theorem 2, that there is no non-orientable {5, 5}-equivelar poly-
hedral map on 16 vertices. Whereas a non-orientable {5, 5}-equivelar abstract polyhedron
exists, namely, S16.

Remark 3. For the existence of an n-vertex {5, 5}-equivelar polyhedral map K, n must be
even and at least 16. Example 6 shows that there exists an n-vertex {5, 5}-equivelar abstract
polyhedron for each even n ≥ 6.

Remark 4. From Ringel and Jungerman’s ([6, 7, 8]) constructions we see that there exist
neighbourly orientable and non-orientable simplicial maps on 16 vertices. So, there are more
than one {3, 15}-equivelar polyhedral maps on 16 vertices. If we replace each face by a
Möbius strip, triangulated with 5 vertices and 5 triangles, then M4 leads to a non-orientable
neighbourly simplicial map on 16 vertices. In this case each diagonal of M4 is converted into
an edge. Theorem 2 implies that there is only one such 16-vertex neighbourly map which
can be partitioned into sixteen 5-vertex Möbius strips.

2. Examples

Example 5. A sequence of {5, 5}-equivelar polyhedral maps :

Mn = {(i, i+ 1, i+ 2, i+ n+ 1, i+ 2n) : 1 ≤ i ≤ 4n,

additions in the subscripts are modulo 4n}, n ≥ 4.

There are exactly 5 faces through each i, namely, (i, i+1, i+2, i+n+1, i+2n), (i+4n−1, i, i+
1, i+n, i+2n−1), (i+4n−2, i+4n−1, i, i+n−1, i+2n−2), (i+3n−1, i+3n, i+3n+1, i, i+n−1),
(i+ 2n, i+ 2n+ 1, i+ 2n+ 2, i+ 3n+ 1, i). Clearly, 5 edges and 10 diagonals through i are
distinct. This shows that Mn is a polyhedral map and hence a {5, 5}-equivelar polyhedral
map. The Euler characteristic of Mn is 4n− 10n+4n = −2n. Polyhedral map M4 is weakly
neighbourly and was first constructed in [2].
If n is odd then in the geometric realization of Mn (given below) the edge (k + n− 1, k)

appears twice at the upper row (for odd k) and both in the same direction (i.e., from left
to right). Hence |Mn| is non-orientable if n is odd. If n is even then there are three types
of edges (which have to be pasted to get |Mn|), which are of the form (m + n − 1,m),
(2k + 1, 2k + 1 + 2n) and (2k, 2k + 2n). Each of first type comes once at the upper row
and once at the lower row with the same direction. Each of second (respectively third) type
comes twice at the upper (respectively lower) row with different directions (one from left to
right and other from right to left). Hence |Mn| is orientable if n is even.

Observe that (i, i+1, i+2, i+n+1, i+2n) 7→ 4n− i defines an isomorphism between M̃n and
Mn. So,Mn is self dual. Note that Z4n acts vertex-transitively and face-transitively onMn. It
is easy to see that Aut(M4) has no element of order 3, 7, 11 or 13. If α is an element of order 5
in Aut(M4) then there exists a vertex v such that α(v) = v and the set of 5 vertices adjacent
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to v is an α-orbit. Assume, without loss, that v = 16. Then there exists i ∈ {1, 2, 3, 4}
such that αi(1) = 8 and hence αi = (1, 8, 13, 3, 15)(2, 9, 12, 6, 7)(5, 10, 11, 14, 4) 6∈ Aut(M4), a
contradiction. So, σ ∈ Aut(M4) ⇒ order of σ is 2n for some n. If order of σ is 2 then it is
easy to show that σ has no fixed point. Thus for any vertex v, Aut(M4)v (the isotopy group
of v) = {id}. As Z16 acts vertex-transitively on M4 and #(V (M4)) = 16, Aut(M4) = Z16.

Remark 5. Similar series of {p, p}-equivelar polyhedral maps exist for p ≥ 6 also. These
shall be considered in a forthcoming paper.

Example 6. A sequence of {5, 5}-equivelar abstract polyhedra :

S2n−1 = {aiai+1bi+n+1bi+nbi+n−1, aiai+1bi+1ai+n−1bi : 1 ≤ i ≤ 2n− 1,

additions in the subscripts are modulo 2n− 1},

S2n = {aiai+1bi+n+1bi+nbi+n−1, aiai+1bi+1ai+n+1bi : 1 ≤ i ≤ 2n,

additions in the subscripts are modulo 2n}, n ≥ 2.
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Since, aibi+n is an edge as well as a diagonal (for each i) in both S2n and S2n−1, Sm is not
a polyhedral map for m ≥ 3. Clearly, χ(Sm) = −m and hence each S2n−1 is non-orientable.
By similar arguments as in Example 5, one can show that each S2n is also non-orientable for
n ≥ 2. The abstract polyhedra S2n for n ≥ 2 and S3 were first constructed in [5].

3. Proofs

In this section we give proofs of our results. We first state two propositions proved by the
first-named author in [2]. We need these two propositions to prove Corollaries 3 and 4.

Proposition 7. If M is a polyhedral map then f1(M) ≤ Y (
√
2Y +2)/8, where Y = f0(M)+

f2(M). Equality holds if and only if M is a {k, k}-equivelar wnp map with f0(M) = f2(M) =
(k − 1)2 for some k.

Proposition 8. IfM is a polyhedral map with Euler characteristic χ then f1(M) ≥ G(χ)−χ,
where G(χ) := min{m ∈ N : m(

√
2m− 6) ≥ −8χ and m ≥ 8}.

Proof of Theorem 1. Follows from Example 5. 2

Proof of Theorem 2. Let M be a {5, 5}-equivelar wnp map. Then f0(M) = f2(M) = 16.
So, M̃ is a {5, 5}-equivelar polyhedral map with f2(M̃) = f0(M̃) = 16 and hence weakly
neighbourly. This implies that any two faces ofM have a common vertex.
Let the vertices of M be 1, . . . , 16. We can assume, without loss, that the faces in

st(16) are (16, 15, 1, 2, 3), (16, 3, 4, 5, 6), (16, 6, 7, 8, 9), (16, 9, 10, 11, 12) and (16, 12, 13, 14, 15).
Clearly, the remaining 11 faces have to be of the form (12, 11, A,B,C), (12, C,D,E, F ),
(13, 12, F,G,H), (13, H, I, J,K), (13, K, L,M,N), (14, 13, N,O, P ), (14, P,Q,R, S), (14, S,
T, U, V ), (15, 14, V,W,X), (15, X, Y, Z, a) and (1, 15, a, b, c), where A, . . . , Z, a, b, c ∈ {1, . . .,
11}.

Claim. (A,B,C) ∈ {(2, 6, 5), (3, 2, 8), (4, 1, 8), (4, 3, 8), (6, 2, 1), (6, 5, 2), (8, 3, 2)}.

Proof of the claim: It is clear that the vertices A, . . . , H are distinct and none of them
can be 9, 10 or 11. So, {A, . . . , H} = {1, . . . , 8}. If any three successive vertices (from
A, . . . , Z, a, b, c) are of the form i, i+ 1, i+ 2, 1 ≤ i ≤ 9, then the degree of one of them will
be less than 5. We further see that, if u and v are two vertices in a face not containing 16
then {u, v} 6= {1, 3}, {3, 5}, {3, 6}, {4, 6}, {6, 8}, {6, 9}, {7, 9} or {9, 11} (since each of these
is a diagonal).
If C = 4 then either G or H is 6 and hence one of B or D has to be 3. If D = 3, then

{E,F} = {7, 8} and A, B ∈ {1, 2, 5}. This implies that (12, 11, A,B,C)∩(16, 6, 7, 8, 9) = ∅, a
contradiction. So, B = 3. Since (12, 11, A,B,C) intersects (16, 6, 7, 8, 9), A = 7 or 8. If A = 7
then D = 8, {E,F} = {1, 2} and {G,H} = {5, 6}. Let (4, 5, a1, a2, a3) and (8, 4, a3, a4, a5)
be the last two faces in st(4), where {a1, a2, a3, a4, a5} = {9, 10, 13, 14, 15}. Since both these
faces intersect (16, 15, 1, 2, 3), a3 = 15. This shows that (13, 15) is a diagonal, a contradiction.
So, A 6= 7. Similarly, A 6= 8. Thus, C 6= 4.
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If C = 5 then, with arguments similar to those above, {G,H} = {3, 4} and hence either B
or D is 6. If D = 6 then F = 2. This implies that deg(3) < 5, a contradiction. So, B = 6
and hence A = 1 or 2. If A = 1 then {D,E, F} = {2, 7, 8}. If F = 2, then (G,H) = (3, 4),
which shows that deg(3) < 5, a contradiction. Thus, F 6= 2 and hence D = 2. Let the
remaining two faces in st(6) be (6, 7, a1, a2, a3) and (1, 6, a3, a4, a5), where a1, a2, a3, a4,
a5 ∈ {2, 10, 13, 14, 15}. If a3 is either 13 or 15, we observe that (13, 15) is either an edge or
a diagonal. Since a3 6= 2, a3 has to be 10. We observe that (2, 15) and (13, 15) cannot be
edges. Hence (2, 13) and (14, 15) have to be edges in st(6). Since (1, 6, 10, a4, a5) has to have a
vertex in common with (13, 12, F,G,H), we see that (a4, a5) = (13, 2) and {a1, a2} = {14, 15},
i.e., {K,L,M,N} = {1, 2, 6, 10} and {V,W,X} = {6, 7, 10}. If H 6= 3, one face of st(13)
will not intersect (16, 15, 1, 2, 3). Hence (G,H) = (4, 3) and K, L, M and N are 10, 6,
1 and 2 respectively. The remaining vertices in st(13) are in {5, 7, 8, 9, 11}. Since (5, 7),
(5, 8) and (5, 11) are already diagonals, (5, 9) has to be an edge. Clearly, (O,P ) = (5, 9)
and {Q,R, S, T, U} = {1, 3, 4, 8, 11}. But, S /∈ {1, 3, 4, 8, 11}. Thus A = 2 and hence
(A,B,C) = (2, 6, 5).
Now, assume C 6∈ {4, 5}. If A = 1 then B 6= 3 and C 6= 2, 3. If B = 2, then C = 6 (since

(12, 11, A,B,C) intersects both (16, 6, 7, 8, 9) and (16, 3, 4, 5, 6)). So, (A,B,C) = (1, 2, 6).
By a similar argument, we see that
(A,B,C) ∈ {(1, 2, 6), (1, 4, 7), (1, 4, 8), (1, 5, 6), (1, 5, 7), (1, 5, 8), (1, 6, 7), (1, 7, 6), (2, 1, 6),

(2, 3, 7), (2, 3, 8), (2, 4, 7), (2, 4, 8), (2, 5, 6), (2, 5, 7), (2, 5, 8), (2, 6, 7), (2, 7, 6),
(3, 2, 7), (3, 2, 8), (3, 4, 7), (3, 4, 8), (3, 7, 8), (3, 8, 7), (4, 1, 7), (4, 1, 8), (4, 2, 7),
(4, 2, 8), (4, 3, 7), (4, 3, 8), (4, 7, 1), (4, 7, 2), (4, 8, 1), (4, 8, 2), (5, 1, 7), (5, 1, 8),
(5, 2, 7), (5, 2, 8), (5, 6, 1), (5, 6, 2), (5, 7, 1), (5, 7, 2), (5, 8, 1), (5, 8, 2), (6, 1, 2),
(6, 2, 1), (6, 5, 1), (6, 5, 2), (6, 7, 1), (6, 7, 2), (7, 2, 3), (7, 3, 2), (7, 4, 1), (7, 4, 2),
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(7, 4, 3), (7, 5, 1), (7, 5, 2), (7, 6, 1), (7, 6, 2), (7, 8, 3), (8, 2, 3), (8, 3, 2), (8, 4, 1),
(8, 4, 2), (8, 4, 3), (8, 5, 1), (8, 5, 2), (8, 7, 3)}.

If (A,B,C) = (1, 2, 6) then, since (3, 6), (4, 6) and (6, 8) are diagonals, F ∈ {5, 7}. This is
impossible, since (5, 6), (6, 7) are edges and C = 6.
Arguing on similar lines, we see that (A,B,C) is not equal to (2, 1, 6), (2, 4, 7), (2, 4, 8),

(2, 5, 6),(2, 5, 7), (2, 5, 8), (2, 6, 7), (2, 7, 6), (4, 2, 7), (4, 2, 8), (4, 7, 1), (4, 7, 2), (5, 2, 7),(5, 2, 8),
(5, 7, 1), (5, 7, 2), (7, 2, 3), (7, 3, 2), (7, 4, 1), (7, 4, 2), (7, 4, 3), (7, 5, 1), (7, 5, 2), (7, 8, 3) and
(8, 7, 3).
If (A,B,C) = (1, 4, 7), then F ∈ {2, 3, 5}. If F ∈ {3, 5}, then (3, 5) will be either an edge

or a diagonal in st(12), which is impossible. So, F = 2 and hence either E = 3 or G = 3. If
G = 3, then H = 8 and hence (D,E) = (6, 5). This implies, deg(6) < 5. So, E = 3. This
implies D = 8 and {G,H} = {5, 6}. Let the remaining two faces in st(7) be (7, 4, a1, a2, a3)
and (6, 7, a3, a4, a5), where a1, . . . , a5 ∈ {5, 10, 13, 14, 15}. Since, (5, 6) is an edge, a3 6= 5. If
a3 ∈ {13, 15}, then (13, 15) is either an edge or a diagonal in st(7), which is not possible.
If a3 = 14, then {a2, a4} = {13, 15}, thereby showing that deg(14) < 5. So, a3 = 10. In
that case, one of these two faces in st(7) does not intersect (16, 15, 1, 2, 3), a contradiction.
Arguing on the same lines, we get (A,B,C) 6= (1, 4, 8).
If (A,B,C) = (1, 5, 6), then {D,E, F} ∩ {3, 4, 7, 8} = ∅. Thus D = E = F = 2, a

contradiction. By similar arguments, we see that (A,B,C) 6= (1, 7, 6), (8, 2, 3) or (8, 4, 3).
If (A,B,C) = (1, 5, 7) then, using the same arguments as those above, F = 2 and hence

none of D, E, G or H can be 6, a contradiction. Similarly, (A,B,C) 6= (5, 1, 7).
If (A,B,C) = (1, 5, 8), then F = 2 and D, E 6= 6. Therefore, G or H is 6 and hence

{G,H} ∩ {3, 4} = ∅. This implies, (D,E) = (4, 3). Then, deg(3) < 5, a contradiction.
Similarly, (A,B,C) 6= (5, 1, 8).
If (A,B,C) = (1, 6, 7), then it is easy to see that F = 2, D 6= 8 and (3, 8), (4, 5) are

edges in st(12). Then (G,H) = (3, 8). In this case, one of the remaining three faces in st(13)
will not intersect (16, 15, 1, 2, 3), a contradiction.
If (A,B,C) = (2, 3, 7), then F = 1 and D ∈ {6, 8}. If D is 6, then E 6∈ {4, 5, 8}, which

is not possible. So, D = 8. Then E = 4 and {G,H} = {5, 6}. Let the last two faces
in st(3) be (3, 4, a1, a2, a3) and (7, 3, a3, a4, a5), where {a1, a2, a3, a4, a5} = {8, 9, 10, 13, 14}.
Since both these faces intersect (13, 12, 1, G,H), a3 = 13. This shows that either a2 = 14 or
a4 = 14. But, in both these cases one of the remaining 2 faces of st(13) will not intersect
(16, 15, 1, 2, 3), a contradiction.
If (A,B,C) = (2, 3, 8), then F = 1, D 6= 6, E ∈ {4, 5}. Therefore, either G or H is 6

and hence one of D or E is 4. If D = 7, then E = 4 and {G,H} = {5, 6}. Let the last
two faces in st(8) be (8, 9, a1, a2, a3) and (3, 8, a3, a4, a5). Here, a1, . . . , a5 ∈ {5, 10, 13, 14, 15}.
By arguments similar to those above, we observe that it is not possible for a3 to be in
{5, 10, 13, 14, 15}. So, D ∈ {4, 5} and hence {G,H} = {6, 7}. Let the last two faces in st(8)
be (8, 9, c1, c2, c3) and (7, 8, c4, c5, c6). Here, {c1, c2, c5, c6} = {10, 13, 14, 15} and {c3, c4} =
{B,D}. Neither c1 nor c2 can be 10, but one of them should be 13. Thus, {c1, c2} = {13, 14}
and {c5, c6} = {10, 15}. Clearly, c4 6= 3. Thus, (c3, c4) = (3, D). Let the last two faces
in st(3) be (3, 8, b1, b2, b3) and (4, 3, b3, b4, b5). Here, b1, . . . , b5 ∈ {7, 9, 10, 13, 14}. Then, by
considering st(8), b1 = 9 and hence b3 /∈ {7, 9, 10, 13, 14}, a contradiction.



U. Brehm et al.: Edge-minimal Polyhedral Maps of Euler Characteristic −8 591

If (A,B,C) = (3, 2, 7), then F = 1 and hence, {D,E} = {4, 8} or {5, 6}. Then, by
considering st(1), {a, b} = {10, 11}. Now, c = 6. Thus, (D,E, F ) = (8, 4, 1) and (G,H) =
(6, 5). From st(15), {V,W,X, Y, Z} = {4, 5, 7, 8, 9}. Clearly, X has to be 5 and hence one of
(4, 7), (7, 8) or (7, 9) is an edge. But, none of these is possible.
If (A,B,C) = (3, 4, 7), then D ∈ {6, 8}. If D = 6, then {E,F} ∩ {5, 8} = ∅ and thus,

{E,F} = {1, 2} and {G,H} = {5, 8}. Let the last two faces in st(7) be (7, 4, a1, a2, a3)
and (8, 7, a3, a4, a5). Here, a1, . . . , a5 ∈ {5, 10, 13, 14, 15}. Since both these faces intersect
(16, 15, 1, 2, 3), a3 = 15. As (13, 15) is already a diagonal, none of the remaining vertices in
st(7) can be 13, a contradiction. So, D = 8. Now, F has to be 5 (if E = 5, then {F,G} =
{1, 2} and H = 6. This implies that {I, J,K} ∩ {1, 2, 3} = ∅ and hence (13, 6, I, J,K) ∩
(16, 15, 1, 2, 3) = ∅). Then G = 6 and {E,H} = {1, 2}. Let the last two faces in st(5)
be (5, E, c1, c2, c3) and (4, 5, c3, c4, c5). Here, c1, . . . , c5 ∈ {9, 10, 11, 14, 15}. Since both these
faces intersect (16, 6, 7, 8, 9), c3 = 9. Since (9, 11) is a diagonal, none of the remaining vertices
in st(5) can be 11, a contradiction.
If (A,B,C) = (3, 4, 8), then F 6∈ {6, 7} and G or H = 6. If F = 5 then D = 7, G = 6

and {E,H} = {1, 2}. Let the last two faces in st(5) be (5, E, a1, a2, a3) and (4, 5, a3, a4, a5).
Here, a1, . . . , a5 ∈ {9, 10, 11, 14, 15}. Since both these faces intersect (16, 6, 7, 8, 9), a3 = 9.
This is not possible, since none of the remaining vertices in st(5) can be 11. So, F 6= 5 and
hence, D = 5 (otherwise, (12, 8, D,E, F ) ∩ (16, 3, 4, 5, 6) = ∅). Then, {E,F} = {1, 2} and
{G,H} = {6, 7}. If (E,F ) = (1, 2) then let the last two faces in st(2) be (2, G, b1, b2, b3)
and (3, 2, b3, b4, b5), where {b1, b2, b3, b4, b5} = {4, 9, 10, 11, 14}. Clearly, b3 = 14. Then,
b4 and b5 cannot be 4 and hence either b1 = 4 or b2 = 4. This shows that (G,H) =
(7, 6). Since (4, 11) is already a diagonal, b5 = 11. This shows that b4 6= 9, which implies
that (3, 2, 14, a4, 11) ∩ (16, 6, 7, 8, 9) = ∅. So, (E,F ) = (2, 1). From st(1), we see that
c 6∈ {6, 7}. Hence, a, b, c ∈ {4, 9, 10, 11}. Since one of these vertices has to be 4, none
of them can be 11. Thus, {a, b, c} = {4, 9, 10}. The last face in st(1) is (1, H, c1, c2, c).
Here {c1, c2} = {11, 14}. This shows that c 6∈ {4, 9}. Hence, (a, b, c) = (4, 9, 10). Now,
{V,W,X, Y, Z} = {5, 6, 7, 8, 11}. Clearly, X = 7. But, {W,Y } = {6, 8}, thereby showing
that deg(7) < 5, a contradiction.
If (A,B,C) = (3, 7, 8), then D = 4, {E,F} = {1, 2} and {G,H} = {5, 6} (if {F,G} =

{1, 2}, then H = 6 and hence (13, 6, I, J,K) ∩ (16, 15, 1, 2, 3) = ∅). If (8, 4, a1, a2, a3)
and (9, 8, a3, a4, a5) are faces in st(8), then a1, . . . , a5 ∈ {5, 10, 13, 14, 15}. But, a3 ∈ {5, 10, 13,
14, 15} is not possible. By a similar argument, (A,B,C) 6= (3, 8, 7).
If (A,B,C) = (4, 1, 7), then by the same argument as that in the case when (A,B,C) =

(1, 4, 7), we see that (D,E, F ) = (8, 3, 2) and {G,H} = {5, 6}. Let the last two faces in
st(7) be (7, 1, a1, a2, a3) and (6, 7, a3, a4, a5), where a1, . . . , a5 ∈ {5, 10, 13, 14, 15}. It is easy
to see that a3 = 10, {a1, a2} = {5, 13} and {a4, a5} = {14, 15}. Since (13, 5) is an edge,
(G,H) = (6, 5) and thus, from st(7) and st(13), K ∈ {1, 10}. If K = 1, we see that L,
M , N 6= 3. This shows that (13, 1, L,M,N) ∩ (16, 15, 1, 2, 3) = ∅. So, K = 10 and hence
(I, J) = (1, 7), N = 3 and {M,O} = {4, 8}. This implies that deg(3) < 5, a contradiction.
If (A,B,C) = (4, 3, 7), then D ∈ {6, 8}. If D = 6, then {E,F} = {1, 2} and {G,H} =

{5, 8}. Let the last two faces in st(7) be (7, 8, a1, a2, a3) and (3, 7, a3, a4, a5), where a1, . . . , a5
∈ {5, 10, 13, 14, 15}. It is easy to see that a3 = 10 and {a4, a5} ∩ {5, 15} = ∅. Therefore,
(a1, a2) = (5, 15) and {a4, a5} = {13, 14}. Let the last two faces in st(6) be (6, E, b1, b2, b3) and
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(5, 6, b3, b4, b5), where b1, . . . , b5 ∈ {10, 11, 13, 14, 15}. Comparing st(6) and st(7), we see that
b5 = 15, (b3, b4) = (11, 14), (b1, b2) = (13, 10) and (a4, a5) = (13, 14). The remaining vertices
in st(14) are 1, 2, 4, 7 and 9. This implies, Q, R, S ∈ {2, 7} or {2, 9}, a contradiction. So, D =
8. This implies, {E,F} = {5, 1} or {5, 2}. Let the last two faces in st(7) be (7, 3, c1, c2, c3)
and (6, 7, c3, c4, c5), where c1, . . . , c5 ∈ {1, 2, 10, 13, 14, 15}. Clearly, {c1, c2, c3}∩{1, 2, 15} = ∅.
Hence, (c4, c5) = (15, 1), {E,F} = {2, 5} and {G,H} = {1, 6}. These imply, c3 = 10 and
{c1, c2} = {13, 14}. From st(1) and st(2), F 6= 2 and hence F = 5. This implies, E = 2 and
(G,H) = (6, 1). Then deg(6) < 5, a contradiction.
If (A,B,C) = (4, 8, 1), then F = 7 and hence either G = 3 or H = 3. Then {G,H} =

{2, 3} and hence (D,E) = (5, 6). This implies that deg(6) < 5, a contradiction. Similarly,
(A,B,C) 6= (8, 4, 1).
If (A,B,C) = (4, 8, 2), then D ∈ {1, 3} and F = 7. If D = 1, then G = 3 or H = 3 and

hence {G,H} = {3, 5} or {3, 6}. This is not possible, since (3, 5) and (3, 6) are diagonals.
So, D = 3 and hence E ∈ {1, 5, 6}. Again, this is impossible. Similarly, (A,B,C) 6= (8, 4, 2).
If (A,B,C) = (5, 6, 1), then the last two faces in st(6) are (6, 7, a1, a2, a3) and (1, 6, a3, a4,

a5), where a1, . . . , a5 ∈ {2, 10, 13, 14, 15}. It is easy to see that a3 = 10. Since, both (2, 15)
and (13, 15) cannot be edges, (2, 13) and (14, 15) have to be edges in st(6). Clearly, {a4, a5}∩
{14, 15} = ∅. Therefore, (a4, a5) = (2, 13). These imply, H = 2, G = 3 and I = 1, thereby
showing that deg(2) < 5. Similarly, (A,B,C) 6= (6, 5, 1).
If (A,B,C) = (5, 6, 2), then D ∈ {1, 3}. If D = 1, then {E,F} = {4, 7} or {4, 8}.

Let the last two faces in st(2) be (2, 3, a1, a2, a3) and (6, 2, a3, a4, a5), where a1, . . . , a5 ∈
{7, 8, 9, 10, 13, 14}. Clearly, {a3, a4, a5} ∩ {7, 8, 9} = ∅ and either a1 or a2 is 9. Hence,
{a1, a2} = {8, 9}. We see, from st(13), that a3 6= 13 and (3, 8) is an edge. Clearly, a3 6= 10.
Thus (a1, a2) = (8, 9), (a3, a4, a5) = (14, 13, 10). The remaining vertices in st(14) are 1, 4, 5,
7 and 11. Clearly, {T, U, V } ∩ {7, 11} = ∅. Considering st(12), we see that (E,F ) = (4, 7),
(G,H) = (8, 3), (T, U, V ) = (1, 4, 5) and (W,X) = (11, 7). These imply that deg(5) < 5. So,
D = 3 and hence {E,F} = {7, 8}, {G,H} = {3, 4}. By a similar argument as in the case
D = 1, we see that D = 3 is also not possible.
If (A,B,C) = (5, 8, 1), then F = 7. It is clear that either G or H = 3 and therefore,

(D,E) = (2, 6) and {G,H} = {3, 4}. Let the last two faces in st(6) be (6, 5, a1, a2, a3)
and (2, 6, a3, a4, a5), where a1, . . . , a5 ∈ {10, 11, 13, 14, 15}. Since both these faces intersect
(13, 12, 7, G,H), a3 = 13. This implies that none of a1, a2, a4 or a5 can be 15, a contradiction.
Similarly, (A,B,C) 6= (5, 8, 2).
If (A,B,C) = (6, 1, 2), then F ∈ {7, 8}, G or H is 3 and hence one of D or E is 5. Now,

either {E,F} or {F,G} is {7, 8}. In the first case, D = 5 and {G,H} = {3, 4}. Let the last
two faces in st(2) be (2, 3, a1, a2, a3) and (5, 2, a3, a4, a5), where a1, . . . , a5 ∈ {4, 9, 10, 13, 14}.
Clearly, a5 = 4 and a3 = 9. Either a1 or a4 has to be 13. If a1 = 13, we see that a2 = 10,
a4 = 14, (G,H) = (4, 3) and J = 2, thereby showing that deg(3) < 5. If a4 = 13, we see
that a2 = 10, a1 = 14 and (G,H) = (3, 4), thereby showing that deg(4) < 5. In the second
case, {D,E} = {4, 5} and H = 3. We see that I, J , K ∈ {2, 4, 9, 10, 11}. One of these three
vertices has to be 9. Hence neither of the remaining two vertices can be 11 and hence, I = 2
and {J,K} = {9, 10}. Now, N has to be 1. This shows that none of L, M , O or P can be
11, a contradiction.
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If (A,B,C) = (6, 7, 1), then let the last two faces in st(6) be (6, 5, a1, a2, a3) and (11, 6, a3,
a4, a5), where {a1, a2, a3, a4, a5} = {2, 10, 13, 14, 15}. But, a3 ∈ {2, 10, 13, 14, 15} is not pos-
sible. Similarly, (A,B,C) 6= (6, 7, 2).
If (A,B,C) = (7, 6, 1), then repeating earlier arguments, we see that (D,E, F ) = (2, 5, 8)

and {G,H} = {3, 4}. Let the last two faces in st(6) be (6, 1, b1, b2, b3) and (5, 6, b3, b4, b5),
where b1, . . . , b5 ∈ {2, 10, 13, 14, 15}. Clearly, b3 6= 13 and hence, one of these two faces will
not intersect (13, 12, 8, G,H), a contradiction. Similarly, we see that (A,B,C) 6= (7, 6, 2).
If (A,B,C) = (8, 5, 1), then by arguments similar to those above, we see that (D,E, F ) =

(2, 6, 7) and {G,H} = {3, 4}. Let the last two faces in st(6) be (6, 5, a1, a2, a3) and (2, 6, a3, a4,
a5), where a1, . . . , a5 ∈ {10, 11, 13, 14, 15}. Clearly, a3 6= 13 and hence one of these two
faces does not intersect (13, 12, 7, G,H), a contradiction. Similarly, we see that (A,B,C) 6=
(8, 5, 2). This completes the proof of the claim.

We now show that for each triple (A,B,C), in the claim,M is isomorphic to M4.

Case 1: (A,B,C) = (2, 6, 5). In this case, {D,E, F} ∩ {3, 4} = ∅, and hence D = 1,
{E,F} = {7, 8} and {G,H} = {3, 4}. Let the last two faces in st(5) be (5, 1, a1, a2, a3) and
(4, 5, a3, a4, a5), where {a1, a2, a3, a4, a5} = {9, 10, 13, 14, 15}. Since both these faces intersect
(16, 6, 7, 8, 9), a3 = 9. Further, it is clear that either a4 or a5 is 15. Let the last two faces in
st(6) be (6, 2, b1, b2, b3) and (7, 6, b3, b4, b5), where {b1, b2, b3, b4, b5} = {1, 10, 13, 14, 15}. It is
clear that b3 is 10 and b4 or b5 is 15 (since (2, 15) is a diagonal). Since (7, 6, 10, b4, b5) must
intersect (13, 12, F,G,H), F = 7. Since (1, 7) is a diagonal, (b1, b2) = (1, 13). Comparing
st(6) and st(5), we see that (a1, a2) = (13, 14), (a4, a5) = (10, 15) and (b4, b5) = (15, 14).
Thus, from st(13), K = 10, (L,M,N) = (6, 2, 1) and (G,H) = (4, 3) (since every face
in st(13) must intersect (16, 15, 1, 2, 3)). Now, {I, J, O, P} = {5, 8, 9, 11}. Using the same
arguments as those used earlier, (I, J) = (8, 11) and (O,P ) = (5, 9). From st(6) and st(5),
we see that (V,W,X) = (7, 6, 10) and (Y, Z, a) = (9, 5, 4). Now, it is easy to see that
(b, c) = (11, 8), (Q,R, S) = (8, 3, 2) and (T, U) = (11, 4). Here, M is isomorphic, via the
map (1, 14, 16, 4, 9, 3, 12, 7, 8, 11, 10, 2, 13, 15)(5, 6), to M4.

Case 2: (A,B,C) = (3, 2, 8). Clearly, F = 1. We see from st(1) that a, b ∈ {9, 10, 11}.
Since, (1, 15, a, b, c) intersects (12, 11, 3, 2, 8), one of a, b or c has to be 11. Hence a, b,
c 6= 9 and thus {a, b} = {10, 11}. This implies c = 6 and hence G = 6. Then, from
st(15), {V,W,X, Y, Z} = {4, 5, 7, 8, 9}. Clearly, X ∈ {4, 5}, thereby showing that (4, 5)
is an edge in st(15). Thus (D,E) = (7, 4) and (G,H) = (6, 5). Since (4, 8) is already
a diagonal, X = 5. As (7, 8) and (7, 9) cannot be edges in st(15), (4, 7) and (8, 9) have
to be edges in st(15). Now, (Y, Z) = (4, 7) and (a, b) = (11, 10). Comparing st(5) and
st(13), (I, J,K) = (8, 2, 10), (V,W ) = (9, 8) and N = 3. Here, {M,O} = {4, 11}. Clearly,
(L,M) = (9, 4) and (O,P ) = (11, 7). Finally, we see that Q, R, S, T and U are 6, 10, 2, 1
and 4 respectively. Now,M is isomorphic, via the map (1, 14, 7, 10, 5, 12)(2, 6, 13, 4, 11)(8, 9),
to M4.

Case 3: (A,B,C) = (4, 1, 8). It is easy to see that F = 2 and either G or H is 6. Hence,
E = 3. Then, (D,E, F ) = (7, 3, 2) and {G,H} = {5, 6}. Let the last two faces in st(8) be
(8, 9, a1, a2, a3) and (1, 8, a3, a4, a5). Here, a1, . . . , a5 ∈ {5, 10, 13, 14, 15}. Clearly, a3 = 5 and
either a1 or a2 is 15. Since (5, 13) is already a diagonal, (G,H) = (6, 5). As any two faces
intersect, (a4, a5) = (13, 10) and {a1, a2} = {14, 15}. Since the last two faces in st(5) intersect
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(16, 15, 1, 2, 3), a2 = 15 and hence a1 = 14. Thus (4, 5, 15, 7, 11) is a face. From st(15), we see
that (b, c) is (6, 10). Then, {L,M,N,O, P} = {3, 4, 7, 9, 11}. We see that N = 3 and M 6= 7
(since (7, 10) is already a diagonal). Therefore M = 4, O = 7, L = 9 and P = 11. Finally,
we see that Q, R, S, T , U ∈ {1, 2, 4, 6, 10}. Hence, Q = 10, R = 6, S = 2, T = 1 and U = 4.
In this case,M is isomorphic, via the map (1, 10, 13, 16, 4, 11, 14, 15, 7, 6, 5, 8, 9, 12), to M4.

Case 4: (A,B,C) = (4, 3, 8). Here D ∈ {1, 2, 5, 7} and E, F ∈ {1, 2, 5}. If D ∈ {1, 2} then,
it is easy to see that, E ∈ {1, 2}. In this case, (F,G,H) = (5, 6, 7), thereby showing that
deg(6) < 5. Thus, D ∈ {5, 7}. If D = 7 then, since (12, 8, 7, E, F ) intersects (16, 3, 4, 5, 6),
F = 5. Now, G = 6 (if E = 6, then deg(6) < 5). Let the remaining faces in st(5) be
(5, E, a1, a2, a3) and (4, 5, a3, a4, a5). Here, a1, . . . , a5 ∈ {9, 10, 11, 14, 15}. Since both these
faces intersect (16, 6, 7, 8, 9), a3 = 9. This shows that none of a1, a2, a4 or a5 is 11, which is
not possible. So, D = 5. In this case, {E,F} = {1, 2} and {G,H} = {6, 7}.
The remaining two faces containing 8 are of the form (7, 8, d1, c1, c2) and (8, 9, c3, c4, d2),

where {c1, c2, c3, c4} = {10, 13, 14, 15} and {d1, d2} = {3, 5}. If (d1, d2) = (3, 5) then, by using
arguments similar to those above, {c1, c2} = {10, 13} and {c3, c4} = {14, 15}. These imply,
(I, J,K) = (8, 10, 1) and {V,W,X} = {5, 8, 9}. Then (8, 9, a3, a4, 5) ∩ (13, 12, F,G,H) = ∅.
So, (d1, d2) = (5, 3). In this case, {c1, c2} = {10, 15} and {c3, c4} = {13, 14}. These imply,
N is either 3 or 9. If N = 3, then {I, J} ∩ ({1, 2} \ {F}) 6= ∅. These imply, K, L,
M ∈ {10, 11}, which is not possible. So, N = 9 and hence (O,P ) = (8, 3). These imply,
Q = 2 and {R,S} = {7, 10}. Thus, (7, 10) is an edge, thereby showing that (c1, c2) =
(15, 10). Since (1, 5) is either an edge or a diagonal in st(12), a 6= 5. Therefore, a is 10
and (X, Y, Z) = (5, 8, 7). Then {b, c, V,W} = {4, 6, 9, 11}. This implies, {b, c} = {4, 9} or
{6, 11}. Since (15, 1, c, b, a) intersects (14, 13, 9, 8, 3), we see that (b, c) = (9, 4). Further,
(V,W ) = (11, 6), (Q,R, S) = (2, 10, 7) and (T, U) = (1, 4). These imply, (E,F ) = (2, 1),
(G,H) = (7, 6), (I, J,K) = (11, 10, 2) and (L,M) = (5, 4). Here, M is isomorphic, via the
map (1, 8, 13)(2, 9, 14, 4, 11, 3, 12, 16, 15, 7, 5, 10, 6), to M4.

Case 5: (A,B,C) = (6, 2, 1). It is clear that F ∈ {7, 8}, G or H is 3 and hence D or E
is 5. Further, either, {E,F} or {F,G} is {7, 8}. If {F,G} = {7, 8}, then {D,E} = {4, 5}
and H = 3. It is clear that {J,K} = {9, 10} and I is either 4 or 2. But, this shows that
(13, 3, I, J,K) will not intersect either (12, 11, 6, 2, 1) or (12, 1, D,E, F ). Thus, {E,F} =
{7, 8}. These imply, D = 5 and {G,H} = {3, 4}. Since both the remaining faces in st(1)
intersect (16, 6, 7, 8, 9), (a, b, c) = (4, 10, 9). From st(15), we see that {V,W,X, Y, Z} =
{5, 6, 7, 8, 11}. Clearly, X = 11 and W = 6. These imply, (Y, Z) = (8, 5), (V,W ) = (7, 6)
and hence (E,F ) = (8, 7). If G = 3 then, by considering st(7), deg(3) < 5. So, G = 4 and
hence, H = 3. From st(7), we see that (S, T, U) = (2, 10, 4). Comparing st(13) and st(14),
we see that R = 3 and {P,Q} = {8, 9}. Clearly, (I, J,K) = (8, 11, 10) and (P,Q) = (9, 8).
These imply, (L,M) = (2, 6) and (N,O) = (5, 1). In this case,M is isomorphic, via the map
(1, 2, 5, 10, 6, 13, 7, 12, 15)(3, 8, 11, 14, 4, 9), to M4.

Case 6: (A,B,C) = (6, 5, 2). Let the last two faces in st(6) be (6, 7, a1, a2, a3) and
(11, 6, a3, a4, a5), where a1, . . . , a5 ∈ {1, 10, 13, 14, 15}. Clearly, a3 = 1. Since (1, 6, 7, a1, a2)∩
(12, 16, 9, 10, 11) 6= ∅, a1 = 10 or a2 = 10. Therefore, {a4, a5} = {13, 14} or {14, 15}. From
st(15), we see that {a4, a5} 6= {14, 15}. Thus, {a4, a5} = {13, 14} and (a1, a2) = (10, 15).
These imply, (a, b, c) = (10, 7, 6) and {N,O, P} = {1, 6, 11}. From st(13), we see that N = 1
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or P = 1. Hence F , G or H cannot be 1. Thus, D = 1 and E,F 6∈ {3, 7}. Hence,
{E,F} = {4, 8} and {G,H} = {3, 7}. Let the remaining two faces in st(2) be (2, 3, b1, b2, b3)
and (5, 2, b3, b4, b5), where b1, . . . , b5 ∈ {7, 9, 10, 13, 14}. Clearly, b3 = 10. Since (3, 7) and
(10, 7) are edges, b1, b2 6= 7 and hence b2 = 9, b4 = 7 and {b1, b5} = {13, 14}. Now, either
(13, 5, 2, 10, 7) or (13, 9, 10, 2, 3) is a face. In both the cases, (14, 13, 1, 6, 11) has to be a face.
This implies, (N,O, P ) = (1, 6, 11) and (a4, a5) = (13, 14).
If (b1, b5) = (13, 14) then (G,H) = (7, 3), (E,F ) = (4, 8), (I, J,K) = (2, 10, 9) and

(L,M) = (5, 4). From st(7), we see that (7, 3, 4, 11, 14) is a face, i.e., (Q,R, S) = (4, 3, 7). To
complete st(14), (W,X) = (9, 8) and (Y, Z) = (4, 11). In this case,M is isomorphic via the
map (1, 12, 16)(2, 13, 15, 4, 11, 8, 3, 14, 7, 6, 9)(5, 10), to M4.
If (b1, b5) = (14, 13) then (G,H) = (3, 7), (E,F ) = (8, 4), (I, J,K) = (10, 2, 5) and

(L,M) = (9, 8). Then, considering st(14), we get S = 3, T = 2, U = 10 and V = 9. Now,
it is clear that (W,X) = (5, 4), (Q,R) = (8, 7) and (Y, Z) = (8, 11). In this case, M is
isomorphic via the map (1, 8, 11, 12, 4, 3, 2, 5, 6, 9, 14, 15, 16)(7, 10, 13), to M4.

Case 7: (A,B,C) = (8, 3, 2), then it is clear that F has to be 7 and either G or H has to
be 1. So, D, E ∈ {4, 5, 6}. If E = 6, then D = 5, thereby showing that deg(6) < 5. So,
E ∈ {4, 5} and hence {D,E} = {4, 5} and (G,H) = (6, 1). Let the last two faces in st(3)
be (3, 4, a1, a2, a3) and (8, 3, a3, a4, a5), where {a1, a2, a3, a4, a5} = {7, 9, 10, 13, 14}. Since
(8, 3, a3, a4, a5) has to intersect (2, D,E, 7, 12), a5 = 7. Thus, a3, a4 /∈ {9, 13}. These imply,
{a1, a2} = {9, 13} and {a3, a4} = {10, 14}. Let the last two faces in st(2) be (2, D, b1, b2, b3)
and (1, 2, b3, b4, b5), where b1, . . . , b5 ∈ {6, 9, 10, 13, 14}. Clearly, b1, b2 and b3 cannot be 6.
Hence, b5 = 6, {b1, b2} = {9, 13} and {b3, b4} = {10, 14}. Then, a3 is either 10 or 14.
If a3 = 10, then (a1, a2) = (13, 9), a4 = 14, (b3, b4) = (14, 10) and (b1, b2) = (9, 13). Since

(13, 4) is already an edge, (D,E) = (5, 4). Then, by considering st(14), (W,X) = (4, 11).
Now, it is clear that (I, J) = (8, 11), (a, b, c) = (5, 9, 8) and (Y, Z) = (10, 6). In this case,M
is isomorphic, via the map (1, 3, 10, 9, 8, 11, 12, 15, 4, 13, 16, 7, 14), to M4.
If a3 = 14, then (a1, a2) = (9, 13), a4 = 10, (b3, b4) = (10, 14) and (b1, b2) = (13, 9).

Clearly (D,E) = (5, 4). Then, from st(14), we get W = 5 and X = 11. Now, it is clear that
(I, J) = (8, 11), (a, b, c) = (4, 9, 8) and (Y, Z) = (10, 7). Here,M is isomorphic, via the map
(1, 3, 14)(2, 6)(4, 13)(7, 10, 9, 12)(8, 11)(15, 16), to M4. This completes the proof. 2

Proof of Corollary 3. Let M be a polyhedral map with χ(M) = −8 and f1(M) = 40. Then
f0(M) + f2(M) = 40 − 8 = 32. Hence, by Proposition 7, M is a {k, k}-equivelar wnp map
with f0(M) = f2(M) = (k − 1)2 for some k. Then (k − 1)2 = 16 and hence k = 5. Corollary
3 now follows from Theorem 2. 2

Proof of Corollary 4. Clearly, G(−8) = 32. So, by Proposition 8, E±(−8) ≥ 40. Since, M4 is
an orientable wnp map and f1(M4) = 40, Corollary 4 follows from Corollary 3. 2

Remark 6. After we proved Theorem 2 theoretically, Ulrich Brehm and Phillip Metzner
have got a proof of the same by using computer.
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