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Abstract. Using new results on sharply transitive subsets, we deter-
mine the groups of projectivities of finite affine planes, apart from (un-
known) planes of order 23 or 24.

The group of all projectivities of a geometry G is a measure for the complexity of
G: this group tends to be rather large if G is far from being a classical geometry.
See [29] for more information on the role of projectivities in geometry.

In Section 1 we consider almost simple finite permutation groups which contain
a sharply 2-transitive subset. The results of this section yield Theorem 2.3 on
affine projectivities of finite affine planes that are not translation planes.

1. Sharply transitive subsets

Let Ω be a set. A set S of permutations of Ω is said to be sharply transitive if for
all α, β ∈ Ω there is exactly one s ∈ S with αs = β. If t is any permutation of Ω,
then S is sharply transitive if and only if this holds for tS. Thus, if we study the
(non-)existence of sharply transitive sets S of permutations, we may assume that
1 ∈ S. Then all elements in S \ {1} are fixed-point-free.

Let Ω(2) be the set of pairs of distinct elements from Ω. Then S is said to be
sharply 2-transitive on Ω if S is sharply transitive on Ω(2).
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If this holds, then each stabilizer Sω = { s ∈ S | ωs = ω } is sharply transitive
on Ω \ {ω}. Some 2-transitive groups G do not contain any sharply 2-transitive
subset for the simple reason that a point-stabilizer Gω does not contain a subset
which is sharply transitive on Ω\{ω}. Examples for this are the symplectic groups
appearing in Theorem 1.5, the Conway group G = Co3 (see 1.7), the Higman-Sims
group G = HS and the Mathieu group G = M11 of degree 11 (see 1.9, cases (5)
and (7) of the proof) and the groups in 1.10.

The Bruck-Ryser theorem says that the symmetric group Sn contains no
sharply 2-transitive subset provided that n ≡ 1, 2 (mod 4) and n is not a sum of
two squares; see [8] 3.2.13 and 3.2.6.

In order to obtain further non-existence results for sharply 2-transitive subsets,
we first extend Lemma 1 of [27] to arbitrary characteristic.

Proposition 1.1. Let G be a permutation group on the finite set Ω, let F [Ω] be
the permutation module for the group algebra F [G] over a field F , and let L be the
one-dimensional submodule spanned by

∑
ω∈Ω ω. Suppose that S ⊆ G is sharply

transitive on Ω. Then σ :=
∑

s∈S s ∈ F [G] acts as zero on each composition factor
of F [Ω]/L.

Proof. Let α ∈ Ω. By sharp transitivity of S we obtain ασ =
∑

s∈S α
s =∑

ω∈Ω ω ∈ L, so σ is zero on F [Ω]/L. Then σ is zero on each composition factor
of F [Ω]/L.

Applying the trace map we obtain the following result.

Corollary 1.2. Assume in addition that 1 ∈ S. Let C1, C2, . . . , Ch be the conju-
gacy classes of fixed-point-free elements of G. Set ai = |Ci ∩ S|, and let χ(Cj) be
the trace of g ∈ Cj in its action on a fixed composition factor of F [Ω]/L. Then

h∑
j=1

ajχ(Cj) = −χ(1).

In contrast to the situation in characteristic 0, the principal module (i.e. the trivial
one-dimensional module) may occur more than once as a composition factor in the
permutation module of a transitive permutation group in positive characteristic.
In fact, the following result allows to prove the non-existence of sharply transitive
subsets in many cases.

Proposition 1.3. Let G be a permutation group on the finite set Ω, let S ⊆ G be
sharply transitive on Ω, and assume that the characteristic of the field F does not
divide |Ω|. Then the principal module appears at most once among the composition
factors of the F [G]-module F [Ω].

Proof. With notation as above, we have a1 + a2 + · · · + ah = |S| − 1 = |Ω| − 1.
Suppose that the principal module appears twice in F [Ω]. Then it appears at
least once in F [Ω]/L, and Corollary 1.2 yields a1 + a2 + · · ·+ ah = −1. Thus |Ω|
is zero in F , contrary to our assumption on F .
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Our first application uses Corollary 1.2 in characteristic 0.

Theorem 1.4. The symplectic group G = Sp(6, 2), in its doubly transitive action
of degree 28 or 36, does not contain a sharply 2-transitive subset S.

Proof. We may assume that 1 ∈ S. First we consider the action of G of degree 28,
say on Ω. Note that each element from S \{1} has at most one fixed point. There
are 14 conjugacy classes of such elements in G. If π = 1 + χ is the permutation
character of G on Ω, then π(π− 1) = χ2 +χ is the permutation character of G on
Ω(2). In order check whether an irreducible character ψ of G appears in χ2 + χ,
one has to compute the scalar product (χ2 + χ, ψ); this can be done using the
character table of G (see [7]). We find that three irreducible characters of degrees
27, 120 and 210 appear in χ2 + χ.

Then Corollary 1.2 yields the following system of linear equations: 0 −1 0 0 0 −1 −1 −1 0 −1
−6 0 −2 −2 −2 1 0 1 0 0
3 −2 −1 2 2 0 0 −1 1 0

 · a =

 −27
−120
−210

 ,

where a is the transpose of the row vector (a1, a3, a4, a5, a6, a8, a9, a12, a13, a14); we
have omitted those ai where ψ(Ci) = 0 for all three irreducible characters ψ used
here. Left multiplication with (−2 −1 1 ) gives

9a1 + a4 + 4a5 + 4a6 + a8 + 2a9 + a13 + 2a14 = −36,

which is a contradiction since the ai are non-negative integers.
Analogously, the action of G of degree 36 yields(

−1 −1 −1 −1 0 −1 −1 −1 −1
3 −2 −1 −1 2 0 0 −1 1

)
· a =

(
−35
−210

)
,

where a is the transpose of the row vector (a1, a2, a4, a5, a6, a9, a10, a12, a13). Left
multiplication with (−2 1 ) gives

5a1 + a4 + a5 + 2a6 + 2a9 + 2a10 + a12 + 3a13 = −140,

which is again a contradiction.

Theorem 1.5. Let G = Sp(2d, 2), d ≥ 4, be the symplectic group in one of its
two doubly transitive actions on sets Ω± with degrees |Ω±| = 22d−1 ± 2d−1. Then
the stabilizer Gω of ω ∈ Ω± has no subset which is sharply transitive on Ω± \{ω}.
Therefore, G has no sharply 2-transitive subset.

Proof. Suppose that Gω contains a sharply transitive subset. Since |Ω±| − 1 =
22d−1± 2d−1− 1 is odd, the permutation module F2[Ω± \{ω}] for the action of Gω

on Ω± \ {ω} contains the principal module at most once as a composition factor;
see Proposition 1.3. Therefore, the permutation module F2[Ω±] for the action of
G on Ω± contains the principal module at most twice, contrary to the following
lemma.
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Lemma 1.6. Let G = Sp(2d, 2), d ≥ 4, be the symplectic group in one of its two
doubly transitive actions on sets Ω± with degrees |Ω±| = 22d−1 ± 2d−1. Then the
principal module appears at least three times in the permutation module F2[Ω±].

Proof. The multisets of the composition factors of F2[Ω+] and F2[Ω−] differ only
by an irreducible module of dimension 2d; this is one of the main results in [30].
Therefore it suffices to show that the principal module appears at least six times
in F2[Ω+ ∪ Ω−].

Let φ be a non-degenerate symplectic form on the vector space V = F2d
2 .

Let Ω be the set of quadratic forms θ : V → F2 which polarize to φ, that is
φ(u, v) = θ(u+ v) + θ(u) + θ(v) for all u, v ∈ V . Clearly G = Sp(2d, 2) acts on Ω
via θg(v) = θ(vg−1

). This action has two orbits, which can be identified with Ω+

and Ω− from above, see e.g. [26], [30], or [9] Chapter 7.7. Fix any θ0 ∈ Ω. Then
Ω consists of the elements θa, a ∈ V , where θa(v) = θ0(v) + φ(v, a). (For if θ ∈ Ω,
then θ − θ0 is a linear form on V , so (θ − θ0)(v) = φ(v, a) for some a ∈ V .)

Let f(g) be the number of fixed points of g ∈ G on Ω+ ∪ Ω−. From θg
a(v) =

θa(v
g−1

) = θ0(v
g−1

) + φ(vg−1
, a) = θ0(v

g−1
) + φ(v, ag) we get that θa is fixed under

g if and only if θ0(v
g−1

) − θ0(v) = φ(v, a − ag) for all v ∈ V . Choose b with
θ0(v

g−1
) = θg

0(v) = θ0(v) + φ(v, b), so θg
a = θa if and only if φ(v, b − a − ag) = 0

for all v, which is equivalent to b = a− ag. Thus either f(g) = 0, or f(g) = |{v ∈
V |vg = v}|. We obtain f(g) ≤ f̄(g), where f̄(g) is the number of fixed points of
g on V . On the other hand, G is transitive on V \ {0} (e.g. by Witt’s Lemma),
so

∑
g∈G f(g) = 2|G| =

∑
g∈G f̄(g), hence f(g) = f̄(g) for all g ∈ G. Also, g has

as many fixed elements in V as in the dual space V ?.
Therefore F2[Ω+ ∪ Ω−] and F2[V

?] are modulo 2 reductions of integral repre-
sentations which are equivalent as complex representations. By a result of Brauer,
F2[Ω+ ∪ Ω−] and F2[V

?] have the same multisets of composition factors, see [4]
(14B).

We identify F2[V
?] with the G-module V ?F2 of maps from V ? to F2, where

g ∈ G acts on V ?F2 via f g(v) = f(vg−1
), for f ∈ V ?F2 and v ∈ V ?. Let

x1, x2, . . . , x2d be a basis of (V ?)?, and X1, X2, . . . , X2d be variables over F2. Each
element in V ?F2 is a polynomial in the xi, so we get a G-equivariant surjection
ψ : F2[X1, X2, . . . , X2d] → V ?F2 of G-modules. The kernel is generated by X2

i −Xi,
1 ≤ i ≤ 2d. Let Mi be the G-submodule of F2[X1, X2, . . . , X2d] of polynomi-
als of degree ≤ i. Thus ψ(Mi), i = 0, 1, . . . , 2d, is a filtration of V ?F2 . Set
Λ = F2[X1, X2, . . . , X2d]/(X

2
i | 1 ≤ i ≤ 2d), and let ψ′ : F2[X1, X2, . . . , X2d] → Λ

be the natural map. It is easy to see that ψ(Mi+1)/ψ(Mi) and ψ′(Mi+1)/ψ
′(Mi) are

isomorphic G-modules (see e.g. [1] Lemma 2.2). Thus F2[V
?] has the same multi-

set of composition factors as Λ. Note that Λ is the exterior algebra of (V ?)? = V .
Thus F2[Ω+ ∪ Ω−] has the same multiset of composition factors as the exterior
algebra

∧
V =

⊕2d
i=0

∧i V .

We claim that the principal module is a submodule of
∧2k V for 0 ≤ k ≤ d;

this proves the lemma for d ≥ 5.
Let b1, b2, . . . , bd, b

′
1, b

′
2, . . . , b

′
d be a symplectic basis of V ; thus φ(bi, b

′
i) =

1 = φ(b′i, bi), and φ(bi, bj) = 0 = φ(bi, b
′
j) in all other cases. For I, J ⊆ D :=

{1, 2, . . . , d} we write bI,J for the product
∏

i∈I bi
∏

j∈J b
′
j in

∧
V in the natural
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order. Actually, the order does not matter, as
∧
V is commutative in character-

istic 2. For 1 ≤ k ≤ d we set

wk =
∑

I∈(D
k)
bI,I ∈

∧2k V,

where
(

X
k

)
:= {Y | y ⊆ X, |Y | = k}. Then wk 6= 0, since the elements bI,J with

|I|+ |J | = 2k form a basis of
∧2k V . We are going to show that wk is fixed by G,

so wk spans a principal submodule of
∧2k V .

The group G is generated by the symplectic transvections t(a) with a ∈ V ,
where vt(a) = v+φ(v, a)a; see e.g. [32] Theorem 8.5. Thus it suffices to check that

w
t(a)
k = wk for all a ∈ V . Write a =

∑
i∈D(αibi + α′ib

′
i) with field elements αi, α

′
i.

For I ⊆ D we have

bI,I
t(a) =

∏
i∈I

(bi + φ(bi, a)a)
∏
i∈I

(b′i + φ(b′i, a)a) =
∏
i∈I

(bi + α′ia)
∏
i∈I

(b′i + αia)

= bI,I +
∑
i∈I

α′iabI\{i},I +
∑
i∈I

αiabI,I\{i}

= bI,I +
∑
i∈I

(αibi + α′ib
′
i)abI\{i},I\{i}

and therefore

w
t(a)
k − wk =

∑
I∈(D

k)

∑
i∈I

(αibi + α′ib
′
i)abI\{i},I\{i}

=
∑
i∈D

(αibi + α′ib
′
i)a

∑
J∈(D\{i}

k−1 )

bJ,J .

In the last sum, we may as well admit all J ∈
(

D
k−1

)
, since for i ∈ J ⊆ D we have

bibJ,J = 0 = b′ibJ,J . Thus

w
t(a)
k − wk =

∑
i∈D

(αibi + α′ib
′
i)a

∑
J∈( D

k−1)

bJ,J = aa
∑

J∈( D
k−1)

bJ,J = 0.

This proves the lemma for d ≥ 5. For d = 4, the lemma follows from the above con-
siderations and the fact that the principal module appears twice as a composition
factor of

∧2 V . This can be seen as follows: Let W be the subspace of codimension
1 of

∧2 V consisting of the elements
∑

|I|+|J |=2 αI,JbI,J with
∑

|I|+|J |=2 αI,J = 0.

An easy calculation shows that W is invariant under all t(a) and therefore also
under G. Now w1 ∈ W , so (

∧2 V )/W is another principal composition factor.

We also need the following application of Proposition 1.3.

Theorem 1.7. Let G be the Conway group Co3 in its doubly transitive action of
degree 276. Then the stabilizer Gω of degree 275 has no sharply transitive subset.
Therefore, Co3 has no sharply 2-transitive subset.
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Proof. The stabilizer Gω contains the McLaughlin group McL as a subgroup of
index 2; see [7]. Let Ω′ be the set of size 275 on which Gω = McL .2 acts, and
assume that Gω has a sharply transitive subset. Then by Proposition 1.3, the
principal module appears at most once among the composition factors of the
permutation module F3[Ω

′] for the action of Gω on Ω′.
In the following we use the atlas [7], together with the atlas of Brauer char-

acters [18], in order to obtain information about the permutation module F3[Ω
′].

The degrees below 275 of the irreducible Brauer characters of McL .2 modulo 3
are 1, 21, 104, and 210.

Let a, b, c, and d be the numbers of composition factors of F3[Ω
′] with degree

1, 21, 104 and 210, respectively. Thus 275 = a + 21b + 104c + 210d. Note that
a ≥ 1 as L := F3

∑
ω∈Ω′ ω ⊂ F3[Ω

′]. In the following all congruences are modulo
3. We have 2 ≡ a+ 2c, hence a ≡ c+ 2.

We will work with elements in the conjugacy classes 2A, 4A, and 8C of Gω.
Let π(C) be the number of fixed points of an element in C. The atlas [7] gives
π(2A) = 35 ≡ 2, π(4A) = 7 ≡ 1, and π(8C) = 5 ≡ 2.

First suppose that d ≥ 1. Then d = 1 and c = 0, so a ≡ 2. The Brauer
character values of 2A for the Brauer characters of degrees 1, 21, and 210 are 1,
5, and 2, respectively. Thus 2 ≡ π(2A) ≡ a + 5b + 2d ≡ 2 + 2b + 2, so b ≡ 2.
Analogously, the class 4A yields 1 ≡ a+ b− 2d ≡ 2, which is a contradiction.

Thus d = 0. Again using the element 2A and a ≡ c+2 we get 2 ≡ a+2b+8c ≡
a+ 2b+ 8(a+ 2) ≡ 2 + 2b, so b ≡ 0. Using 4A we obtain 1 ≡ a+ b, hence a ≡ 1.

Degree 2A 4A 8C

1 1 1 1
1 1 1 -1

21 5 1 3
21 5 1 -3

104 8 0 0
210 2 -2 -4
210 2 -2 4

Table 1. Part of the Brauer character table of McL.2 mod 3

Recall that the principal module appears only once in F3[Ω
′]. Let α be the mul-

tiplicity of the one-dimensional non-principal module in F3[Ω
′]. Then a = 1 + α,

hence α ≡ 0. Each Brauer character of degree 21 and 104 is ≡ 0 on 8C, and
−1 on 8C for the non-principal one-dimensional character. Thus we obtain the
contradiction 2 ≡ π(8C) = 1− α ≡ 1.

Theorem 1.8. The Mathieu group G = M12 of degree 12 contains no sharply
2-transitive subset.

Proof. The sharply transitive subsets in M11 of degree 11 that contain the identity
are just the Sylow subgroups of order 11. This can be shown by an exhaustive
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computer search; M11 is small enough such that a straightforward program in
GAP or Magma quickly yields the result.

Let S ⊂M12 be sharply 2-transitive with 1 ∈ S, and let α, β ∈ Ω be distinct.
Then Sα = C and Sβ = Cg for some g ∈M12, where C is a subgroup of order 11.
However, another short program shows that CgC contains non-trivial elements
with at least two fixed points, which is a contradiction.

Theorem 1.9. If an almost simple permutation group G ≤ Sn contains a sharply
2-transitive subset, then G = An or G = Sn, or n = 23 and G = M23, or n = 24
and G = M24.

This result is essential for proving Theorem 2.3 on affine planes. It would be
desirable to exclude the two Mathieu groups in 1.9.

Proof. The doubly transitive group G is contained in the automorphism group of
some non-abelian simple group. The following list covers all possibilities for G;
see [6] 7.4 or [5] p. 8 (here we rely on the classification of finite simple groups).

(1) G = An or G = Sn.

(2) G ≤ PΓL(d, q) of degree n = (qd − 1)/(q − 1) with d ≥ 2; this includes the
case where G = A7 of degree n = 15. By O’Nan [27], such a permutation group
PΓL(d, q) contains a sharply 2-transitive subset only if d = 2 and q ≤ 4 (compare
also [22] for q ≥ 5). For q ≤ 3 the group PΓL(2, q) is solvable, and PSL(2, 4) of
degree 5 coincides with the alternating group A5.

(3) G is contained in the automorphism group of PSU(3, q), Sz(q) or 2G2(q) in
its natural action (always q > 2). By Lorimer [23], [24], [21] and [25], p. 433,
these groups do not contain any sharply 2-transitive subset; we remark that the
information from (2) makes it possible to apply Lorimer’s argument for 2G2(q) in
[21] (i.e., the consideration of the global stabilizer of a block in the Ree unital)
to the automorphism group of 2G2(q). Note that (3) includes the group G =
PΓL(2, 8) ∼= 2G2(3) of degree 28.

(4) G is contained in the symplectic group Sp(2d, 2) with degrees n = 22d−1±2d−1,
d ≥ 3; this includes the subgroup G = PΓL(2, 8) of Sp(6, 2) of degree 28 (see [7]).
This case is ruled out by Theorems 1.4 and 1.5.

(5) G is the Higman-Sims group HS in one of its two doubly transitive actions of
degree n = 176. Then the stabilizer Gα

∼= PΣU(3, 5) is the automorphism group
of the Hofmann-Singleton graph, acting on the 175 edges. It is easy to show that
Gα has no sharply transitive subset, using O’Nan’s technique [27] of contradicting
subgroups; see [14] p. 271. Alternatively, one can use 1.10 below.

(6) G is the Conway group Co3 of degree n = 276. This case is ruled out by
Theorem 1.7.

(7) G is contained in the Mathieu group M11 with degree n = 11; this includes
the group G = PSL(2, 11) of degree 11. Then the stabilizer Gα is a subgroup of
M10 = PSL(2, 9).2, which has index 2 in PΓL(2, 9). However, M10 of degree 10
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has no sharply transitive subset. This can be easily verified for instance using
GAP or Magma; the paper [10] mentions an early verification.

Alternatively, one can show directly that M11 of degree 11 has no sharply 2-
transitive subset, using the information from Corollary 1.2 for F = F3 and F = F11

together: The fixed-point-free elements from M11 have order 6 or 11. Let S ⊂M11

be sharply 2-transitive on 11 points with 1 ∈ S, and let x be the number of
elements in S of order 6. Clearly x ≤ 10. Corollary 1.2 for F = F11 yields x ≡ 0
(mod 11), together with 0 ≤ x ≤ 10 this gives x = 0. However, Corollary 1.2 for
F = F3 shows that x ≡ 1 (mod 3), a contradiction.

(8) G is contained in the Mathieu group M12 with degree n = 12; this includes
the group G = M11 of degree 12. This case is ruled out by Theorem 1.8.

(9) G contains one of the large Mathieu groups Mn with degree n = 22, 23, 24
as a normal subgroup. By the Bruck-Ryser theorem, the symmetric group S22

has no sharply 2-transitive subset; see [8] 3.2.13 and 3.2.6. Hence n 6= 22. The
groups M23 and M24 have no outer automorphisms (see [7]), thus G = Mn with
n ∈ {23, 24}.

If G is doubly transitive, then Corollary 1.2 yields no restriction at all if F has
characteristic 0. Similarly, if G is 4-transitive and the characteristic of F is 0,
then 1.2 yields only the obvious relation

∑
biai = |Ω|(|Ω|−1)/2, where bi denotes

the number of transpositions appearing in the cycle decomposition of g ∈ Ci.
Also, it is not hard to see that O’Nan’s technique [27] of contradicting subgroups
cannot work for sharply transitive sets in doubly transitive groups, and neither
for sharply 2-transitive sets in 4-transitive groups.

However, the picture changes if we consider fields F of positive characteristic.
For example, one can show that a sharply transitive subset S of the Mathieu
group M22 of degree 22 with 1 ∈ S has to contain an odd number of elements of
order 8 (by considering the 10-dimensional 2-modular representation arising from
the binary Golay code).

The non-existence of sharply 2-transitive subsets of PΓL(m, q) for m ≥ 3 and of
the Higman-Sims group HS can be obtained from the fact that these groups are
automorphism groups of symmetric block designs. Also, the 2-transitive affine
group ASp(2m, 2) does not contain a sharply 2-transitive set, because it is the au-
tomorphism group of a symmetric block design, see e.g. [20], Chapter 3.2. Indeed,
the following holds.

Theorem 1.10. Let G be an automorphism group of a symmetric block design.
Then the stabilizer in G of a point does not contain a subset which is sharply
transitive on the remaining points.

In particular, G does not contain a subset which is sharply 2-transitive on the
points of the design.

Proof. Let P be the set of points of the design, n := |P |, and let H = Gp be
the stabilizer of a point p ∈ P . Suppose that H contains a set which is sharply
transitive on P \ {p}. Then H has the orbits {p} and P \ {p} on P . Let 1 + χ be
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the permutation character of H on P , where χ is the permutation character of H
on P \ {p}. It is well known that 1 + χ is also the permutation character of the
action of H on the set of blocks; see e.g. [20], Chapter 3, Theorem 3.1 (or problem
1), or [8] 2.3.12. In particular, H has two orbits Λ1 and Λ2 on the blocks. These
orbits therefore consist of those blocks which are incident with p and those which
are not, respectively. Let m and n−m be the lengths of these orbits, and let ψi

be the permutation character for the action of H on Λi. Then 1 + χ = ψ1 + ψ2.
So each irreducible constituent of each ψi appears in χ. The stabilizer in H of
an element of Λi cannot be a contradicting subgroup in the sense of [27], so both
m and n −m divide n − 1. But m and n −m are proper divisors of n − 1, for
otherwise p were incident with only one block or with all blocks but one. Hence
n = m+ (n−m) ≤ n−1

2
+ n−1

2
= n− 1, which is a contradiction.

2. Projective and affine planes

Let P be a projective plane and let L, M be lines of P (considered as sets of
points). Any point p not on L or M gives rise to the bijection [L, p,M ] : L→M :
x 7→ (xp) ∩M . Projectivities are concatenations of bijections of this type. The
projectivities of L onto itself form a triply transitive group of permutations of L;
choosing another line in P leads to an isomorphic permutation group (compare
[8] p. 160). We denote this permutation group by Π(P) and call it the group of
projectivities of P .

Lemma 2.1. Let L be a line of a projective plane P, and let u 6= v be points with
u, v /∈ L. Then S := { [L, u,M ][M, v, L] | M is a line with u, v /∈ M } is a set of
projectivities which fix the point ∞ := L ∩ uv, and S is sharply 2-transitive on
L \ {∞}.

This well-known lemma is a direct consequence of the axioms for projective planes.
(In fact, if P is coordinatized by a ternary operation x · a ◦ b with respect to a
quadrangle o, u, v, e such that L = oe, then S consists essentially of the bijections
x 7→ x · a ◦ b with a 6= 0; see [8] p. 127, p. 140 or [13] p. 438).

If P is the desarguesian projective plane coordinatized by a skew field F , then
Π(P) = PGL(2, F ) in its natural action on the projective line F ∪ {∞}. The
problem to determine the groups of projectivities of non-desarguesian planes has
been addressed for the first time by Barlotti [2], [3]; he showed that Π(P) = S10

if P is the Hughes plane of order 9 or the nearfield plane of order 9, and that
Π(P) = A17 for the Hall plane P of order 16.

The proofs of 2.2 and 2.3 below depend on the classification of all finite almost
simple permutation groups that are triply (or doubly) transitive, hence on the
classification of all finite simple groups. This appears to be unavoidable, because
an explicit classification of all finite non-classical planes is neither available nor
expected.

Theorem 2.2. Let P be a finite non-desarguesian projective plane of order n.
Then the group Π(P) of all projectivities of P is the alternating group An+1 or
the symmetric group Sn+1 of degree n+ 1, or n = 23 and Π(P) = M24.
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This result was proved in [14]. It is also a consequence of 2.3 below, because a
finite non-desarguesian projective plane has at most one translation line, compare
[17], Theorem 6.18, p. 151 (note that M24 is maximal in A24 and has no transitive
extension).

If n = 23 and Π(P) = M24, then the Mathieu group M22 of degree 22 contains
a sharply transitive subset. By excluding this possibility, one would prove the
conjecture on the groups Π(P) in [8], p. 160.

In the situation of Theorem 2.2, one might expect that Π(P) = An+1 if n is
even, and Π(P) = Sn+1 if n is odd. This is true for André planes ([16] and [12]),
for planes over commutative semifields ([19] and[15]), and for semifield planes and
nearfield planes of odd order ([15], [12]). However, Kilmer [19] describes semifield
planes P with orders n = 16, 32 and 64 such that Π(P) = Sn+1. We do not know
if there exists a finite projective plane P of odd order n such that Π(P) = An+1.

Let A be an affine plane and let L, M be lines of A (considered as sets of points).
Any point p at infinity defines a parallel projection L → M in the direction of
p. The affine projectivities are the concatenations of bijections of this type. The
affine projectivities of L onto itself form a doubly transitive group of permutations
of L; choosing another line in A leads to an isomorphic permutation group. We
denote this permutation group by Πaff(A) and call it the group of affine projec-
tivities of A. (This is the group ΠW in [8] p. 161.)

In the projective closure P ofA, the parallel projection L→M in the direction
of p is just the projectivity [L, p,M ] considered above (if we ignore the points at
infinity of L and M). This observation implies that Πaff(A) is a subgroup of the
stabilizer Π(P)∞, where ∞ is a point at infinity.

If A is the desarguesian affine plane coordinatized by a skew field F , then
Πaff(A) = AGL(1, F ) in its natural action on F . If A is a finite translation plane
of order qd with kernel Fq, then ASL(d, q) ≤ Πaff(A) ≤ AGL(d, q) as permutation
groups; see [11] (often one has Πaff(A) = AGL(d, q), see [12], [15]).

Now we consider finite affine planes that are not translation planes.

Theorem 2.3. Let A be a finite affine plane of order n that is not a translation
plane. Then the group Πaff(A) of all affine projectivities of A is the alternating
group An or the symmetric group Sn of degree n, or n = 23 and Πaff(A) = M23,
or n = 24 and Πaff(A) = M24.

Proof. The group G := Πaff(A) ≤ Sn has no sharply transitive normal subgroup;
otherwise A would be a translation plane by Schleiermacher [31] Satz 2 (compare
also [28] Proposition 7). Hence by a result of Burnside, the doubly transitive
group G is almost simple; see [6] p. 110 or [5] 5.2. Moreover, G contains a sharply
2-transitive subset by Lemma 2.1 (just take u and v to be points at infinity).
Therefore the assertion is a consequence of Theorem 1.9.

Concerning the exceptions in Theorem 2.3, we remark that presently no non-
desarguesian plane of order 23 or 24 is known. The exception n = 23 and
Πaff(A) = M23 (and the exception in 2.2) would be ruled out by showing that
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M22 of degree 22 has no sharply transitive subset. Using algorithms of Ulrich
Dempwolff and his team, it might be feasible to prove this computationally. The
exception n = 24 and Πaff(A) = M24 would disappear if one could prove that M24

contains no sharply 2-transitive subset (here, a direct computational approach
seems to be hopeless).

Acknowledgments. We thank Peter Sin for a proof of Lemma 1.6; the proof
given above is a variation of his argument. We are grateful to Gábor Nagy for his
critical remarks.
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