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Abstract. This article can be considered as an appendix to the article
[3]. Here we mainly deal with k-outscribed polygons, where we use the
definition of such polygons as it is given in [3]. The aim and purpose of
the article is to find and investigate certain equalities and inequalities
concerning k-outscribed polygons.
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1. Introduction

The definition of the determinant of a rectangular matrix has been introduced
in the article [1]. The determinant of an m x n matrix A,m < n, with columns
Ay, ..., A, is the sum

Z (_1)T+S|AJ17"'7Ajm|v

1<j1<ga < <jm<n

where r=14+---4+m, s=Jj1 4+ + Jm.

It is clear that every real m x n matrix A = [Ay, ..., A,] determines a polygon
in R™(the columns of the matrix correspond to the vertices of the polygons) and
vice versa. The polygon which corresponds to the given matrix [Aq, ..., A,] will
be denoted by A; ... A,.
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Here, and in what follows, a special case of the above definition will be used
when m = 2, that is,

al a2 .o .. an

by by --- b,

a; Gj

b b

J

— Z (_1)1+2+(i+j)

1<i<j<n

(1.1)

Also, we will make use of some results given in [2] and [3]. First, we list those
given in [2], keeping back the same numeration of cited results as there.

Theorem 3. Let A, ... A, be a polygon in R%. Then
2 area of Ay... Ay, =|A1+ Ay, As+ As, ... A1+ A A+ A (1.2)
Corollary 6.1. Ifn is odd, then for every point X in R?, we have
A1+ X, ... A, + X | = |Ay,..., Al (1.3)

Theorem 7. Let A, ... A, be a polygon in R? and let n be an even integer. Then,
for every point X in R2, it follows that

A+ X, .. A+ X = A, A (1.4)
when > (—1)'A; = 0.
Theorem 8. Let Ay ... A, be a polygon in R?* and let Y (—1)"A; = 0. Then
Ay, Al = AL A (1.5)

Corollary 10.1. Forn odd, for eachi € {1,...,n} we have the cyclic permuta-
tion property
|Ai,...,An,A1,...7Ai,1|:|A1,...,An‘. (16)

Moreover, for n even and i (—1)'A; = 0, (1.6) remains valid.
We will apply the following results from [3], keeping back the original numeration.

Theorem 1. Let A, ... A, be a given polygon in R? and let k be a positive integer
such that k < n and GCD(k,n) = 1. Then, there exists a unique k-outscribed
polygon P; ... P, to the polygon Ay ... A, such that

2 area of Py--- P, = k?|B1 + By, By + Bs, ..., By + B, (L.7)

where

and xy, 1s the least positive integer x satisfying
kx =1 (mod n). (1.9)

Theorem 4. Let A,...A, be a polygon in R? and let k be an integer such
that 1 < k < n and GCD(k,n) = d > 1. Then, only one of the following two
assertions s true:



M. Radié: Certain Equalities and Inequalities concerning polygons in R? 237

(i) There is no k-outscribed polygon to the polygon A; ... A,.
(ii) There are infinitely many k-outscribed polygons to the polygon A ... A,.

The second statement (ii) appears only if for each ¢ = 1,...,d there holds (Fj)
(existence for k-outscribed)

Ar+ A+ o+ Ao = A+ A + -+ Ak -k (Ek)
where Z is the least positive integer solution of the equation
kx =0 (mod n). (1.10)
Theorem 10. Let [ Ay, A, } be any given real 2 X n matriz. Then

|Ay, ..o Anl = Ay, Ao, Ag| + | AL — Ao + Az, Ay, As|+

Ay — Ag + Ay — Ay + A5, Ag, Ar| + - + L, (1.11)
where -
Do (=D)AL A, Ay n odd
. i=1
2(—1)”11‘1“1471 n even .

2. Certain equalities and inequalities concerning some polygons in R?

Theorem 1. Let A, ... A, be a polygon i3n R? and let k be an integer 1 < k < n.
Let GCD(k,n) =d > 1 and let (Ex) be fulfilled, that is

S

A+ Aipr + Aigor + - + Aipg—1)p = 7 (i=1,....d) (Ex)

where .
.n
b= S:;Ai. (2.1)
Then for arbitrary points P, ..., Pyi_1 from R? there exists k-outscribed polygon
Py ... P, to the polygon A; ... A, such that
n n d
—Pi=8— (Pt +Pay) - ;[SM o Sivonk), (2.2)
Piyit = P+ Siyjk, (z’zl,...,id) and (j=1,...,2—1) (2.3)

where Sitjk, 1 =1,....,d and j = 1,...,2 — 1 are the sums of certain vertices
A, AL



238 M. Radié: Certain Equalities and Inequalities concerning polygons in R?

Proof. The system
Po+Py+-+Pya=k4  (i=1,....n) (2.4)

can be rewritten as
P, — P =k(A; — Aiyy) (i=1,....,n). (2.5)

It is easy to see that

Py = P — k(Ai — Ainr), (2.6)
Pi+2k = Pz‘+k - /{:(Alqu - Ai+1+k)7 (2-7)
Pira-1k = Pipa—2pk — F(Aig -2k — Aiv14@-2)k), (2.8)

for all i = 1,...,d. The relations (2.3) can be obtained from (2.6)-(2.8). So, by
(2.6) we see that
Pivr = P+ Sizw,

where S;yr = —k(A; — A;11). Then, by (2.6) and (2.7) we deduce
Piyop = P — k(A — Ai1) — k(Aipr — Aivatr),
such that can be written as
Piyor = Pi+ Siyar,

where

Sivor = —k(A;j — Aiy1) — k(Air — Aivr4n)-
In the same way it can be seen that
Piyar = P+ Siyak,
where
Sivar = —k(A; — Aipr) — B(Aipr — Aivin) — B(Aigor — Aipryon)-

Finally, we get
P -1k = P + Sit(a—1)ks

where

Si+(i:—1)k = _k(Ai - Ai+1> - k(Ai+k - Ai+1+k) - k(Ai+(:E—2)k - Ai+1+(;i—2)k:>~

Now from (2.4) it is easy to see that

znjg- =3, (2.9)
=1
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where S is given by (2.1). Thus,
[Pr+ P+ -+ Pipgk + -+ [Pa+ Py + -+ Papa-ne = S
or
Pit+o o+ Pyt [Pryg + o+ Prpor] + -+ [Pare + -+ Para-r] = 5,
such that is equivalent to (2.2). This proves Theorem 1. d

The following result is proved in [3, Theorem 4] in another way using vector spaces
techniques.

Corollary 1.1. Denote M the matriz of the system (2.4). Then
rank of M =n —d+ 1.
Corollary 1.2. Let GCD(k,n) = 2. The area of Py ... P, has the form
2 area of Py... P, =|S3,53 + S4,S4+ S5, ..., 91+ S, Sul- (2.10)
Proof. Since
Poiy1 = Pr+ Soiq1,

Poiro = Py + Sy, (i:1;-~- ——1)

n/2—1
P=—-P + % [S — Z (Soiy1 + S2i+2)}7

i=1
we can write

2areaofP1...Pn:|P1+P2,P2+P3,...,Pn—|—P1|
:|T7T+S37T+S3+S47"'7T+STL—1+Sn7T+S'rL|7

where
9 n/2—1

T = o [5 — Zl (S2it1 + S2it2) |-
The last display can be rewritten into the one like (2.10), having in mind (1.4). O

Using [3, Theorem 10] (see introduction) the area of P; ... P, can also be expressed
like

area Ofpl...PnZ |33753+S4,S4+S5|+ |S5,S5+S6,56+S7| + -+
‘Snfi}; Sn73 + Sn72> Sn72 + Snfly + ’Snflv Sn‘
Let us remark that

Sg — (S3+ S4) + (S4 + 55) = S5
83 - (S3 + 54) + (54 + 85) - <S5 + 56) + (Sﬁ + 57) = 87 and so on.
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Corollary 1.3. Let GCD(k,n) = 1. Then there are Sa,...,S, so that
Pii= P + Sy (i=1,....,n—1)) (2.11)

Proof. Since P ... P, is unique by [3, Theorem 1] (consult introduction), there
are Ss,...,S5, so that

Po=P+S5y....,P, =P +5,.

Thus, when d = 1, there is only one P; such that (2.11) is valid. O

Corollary 1.4. Let GCD(k,n) = d > 2. For the sake of simplicity take d = 3.
Then

2CL’I’e(lOfpl...Pn:|P1+P2,P2+P3,P3+P47...,Pn+P1|7 (212)

where Py = Pi+Sy, Ps = P,+ S5, Ps = Ps+Ss, Pr = Py +S7 etc. Thus, the area of
Py ... P, is 4-parametric, since Pi(aq, 1) and Py(aw, B2) can be taken arbitrarily
in R? and they cannot be eliminated from (2.12). Therefore, k-outscribed polygons
to the polygon A; ... A, have different areas when GCD(k,n) > 2 (cf. [2, Theorem
11)).

Corollary 1.5. Let GCD(k,n) = d = 3, where n is odd. Then

|P1+P2+P3,P2+P3+P4,...,Pn+P1+P2|:COnStCLTLt, (213)

whereP4:P1+S4, P5:P2+S5, P6:P3+Sﬁ, P7:P1+S7 etc.

Proof. By (1.3) the determinant on the left-hand side of (2.13) can be expressed
in the form

|0, Sq, 84+ 55,54+ S5+ S6, ..., Sn—2 + Sn1 + Sny Sne1 + S, Sl
or

’547S4+S57"'7Sn—1+STL7Sn|- g

Corollary 1.6. Let Ay ... A, be a polygon in R?, k € N such that GCD(k,n) = 2
and >0 (=1)'A; = 0, which can be written as S = 2 Z?ﬁ_l Ay =
2 Zfﬁfl Agira. Then the polygon Q1 ...(Q, given by

an 25—2(53+S5+"-+Sn_1), (214)

nQQZS—2<S4+Sﬁ+"'+Sn), (215)

nQ2i+1 = Q1 + Szit1, (2.16)
, n

nQaiss = Qo+ Saias (=15 —1) (2.17)

is the only one k-outscribed to the polygon A ... A, and in the same time it can
be k-outscribed.
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Proof. The condition (Ey) if fulfilled, that is, S = 23727 Qg;_y = 232727 Qu,
if )1 and ()5 are chosen so, that

S
5:Q1+<Q1+S3)+"'+(Ql+Sn—1)7
S
5:Q2+<Q2+S4)+'”+(Q2+Sn)-
Namely, in that case (2.14) and (2.15) are fulfilled. O

Corollary 1.7. Let A, ... A, be any given polygon in R?, k € R?, such that
GCD(n,k) =d > 2 and let (Ey) be fulfilled. Then the polygon Q1 ...Q, given by

nQ; = S — d(Sivk + Siyor + - + Siya-1)k); (i=1,....d) (2.18)
and by

Qi = Q1 + Sitik,
Qaotir = Q2 + Sotik,
: (2.19)
Qayik = Qa+ Sayax,  (1=1,...,2-1)

is the only one k-outscribed to the polygon A ... A, and has the property that it
can be k-outscribed.

Proof. Analogously to the case when d = 2, we choose )1, ..., Q4 so that

g :Qi+(Qi+5i+k)+"'+(Qi—|—5i+(;g,1)k), (i: 1,...,d). (Ek)

i

The following theorems refer to an inequality concerning k-outscribed polygons.
Let us introduce the notation which will be used in the sequel.
Let P;(ps, ¢;) and Piy1(pit1, gi+1) be points in R*. Then

P, — P> = (i — pi1)” + (@ — qi1)%,

d d
d_p'|Pi - Pi+1’2 = 2(1%’ - PHI); @’PZ - Pz‘+1’2 = 2(% - Qz‘+1)-

Remark 1. For sake of simplicity we write d%i\Pi — P,,1)?, whose meaning is

am | P = Peal? = 2(pi — pin1), 2(¢0 — @) or g5 |Pi = P[P = 2(P = Piy).

Of course, %HJR — PP =—-2(P,— Piyy).
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Theorem 2. Let A, ... A, be any given polygon in R? such that n is even, d =
2 and Y7 [(=1)'A; = 0. Then for every 2-outscribed polygon Pi...P, to the
polygon Ay ... A, we have

n n
Z |P; — P> > Z Qi — Qital?,
i1 i—1

where Q1 ...Q, is 2-outscribed to Ay ... A, and it can be 2-outscribed.

Proof. First, let us remark that from

Z(—l)’Qi =0 and Q; + Qi1 = 24;, (i=1,...,n) (2.20)
=1
one gets

ng:(”_1)A1—(n—Q)A2+(n—3)A3—--.+An_1,

(2.21)
an:(n_1)An_(n_2)A1+(n—3)A2—--«—|—An72_
Since by P; + Piy1 = 2A;, 1 =1,...,n, it follows
P2 - 2A1 — Pl,
P3:2A2—2A1+P1,
(2.22)

Py =2A,_1—-2A, 5 +24, 53— ---+2A, — P,

it is clear that the sum Y @', |P — P,1|* depends only on Pp; the equation
5" [P — Py [* = 0 can be written as

so, that we conclude

gPl:(n—1)A1—(n—2)A2+(n—3)A3—--~+An_1.

Now, from (2.22) it follows

gPQZ(n—l)Ag—(n—2)A3+(n—3)A4—---+An,

Pn:(n—l)An—(n—2)A1+(n—3)A2—---—I—An_g.

|3
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Thus, P, = Q;, i =1,...,n, where Q); are given by (2.21). Indeed, it is not difficult

to see that % St P = Piy1]® = 2n > 0. Consequently, > 7" | | P — P11 |* takes

its minimal value for P, = Q;, 1 =1,...,n. O

Although this theorem is a corollary of the following one, its proof is interesting
in itself. The following theorem concerns Corollary 1.6.

Theorem 3. Let Ay... A, and Q...Q, be as in Corollary 1.6. Then for any
k-outscribed polygon P; ... P, to the polygon A; ... A, we have

n

D IP =Pyl =) Qi — Qin
=1

i=1
that is, P, = Qi, i = 1,...,n minimizes > ;| |Pi — P |*.
Proof. Since d = 2, one rewrites Y . | P, = S into
Pr+Py+ (P4 S3) + (Pa+Sa) + -+ (P + Spo1) + (Pa+ S,) =5,

from which it follows
P2:L_P1, (223)

where
2 2
LZES—E(WrPWz), Wi=253+ S8+ 451, Wa=051+56+"+ 5.

The equation
d n
d—PIZ‘Pi—PHlF:O (2-24)
i=1

becomes

Ph—(L-P)—(L—P)— (Pi+S3)+(Pi+S3) —(L—P +8y) +- -+
(PL+Sp1)—(L—P+S,)—(L—P+S,)— P, =0,

from which it follows
anl —TLL+2W1 —2W2 :0,

and finally
nP1 =5 - 2W1

Now, by (2.23) and P3 = P, + Ss,..., P, = P, + S, we have

nPQ =5 2W2,
Poiy1 = P1+ Soiv1,  Paivo = Py + Soiya, (i=1,....,n/2-1)

(cf. Corollary 1.6). It is easy to see that the second derivative equals 2n > 0).
This proves Theorem 3. U

The following theorem concerns Corollary 1.7.
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Theorem 4. Let A, ... A, be any given k-outscribed polygon in R?, where 1 <
k <mn and GCD(k,n) =d > 2. In other words, let (Ey) be fulfilled, that is

S .
Ai + Aje + Aior + -+ Ay g—p = 7 (i=1,...,d) (2.25)
where .
on
b=, S= ;Ai. (2.26)

Then, for every k-outscribed polygon P; ... P, to the polygon A;...A, we have
that

n

YoIP =P =Y 1Qi — Qinl (2.27)
=1

i=1
where Q1 ...Q, is k-outscribed to Ay ... A, and it can be k-outscribed too.
In other words, P, = Q;, i =1,...,n minimizes y ., |P; — Pip1]*.

Proof. The following lemma will be used in the proving procedure.

Lemma 1. Foralli=1,...,d we have

{Ai, Aivi, Aivors -+ Air -1k} = {Ai Airas Aiods - - Aira-1)d )} (2.28)
calculating the indices mod n, that is,

{ii+ki+2k . i+@E—-Dk}={ii+di+2d, .. i+(&—1)d}. (2.29)

Proof of Lemma 1. Let g be the integer with k = ¢d. By (2.25) it is clear that for

each ¢t = 1,...,d there are no two integers in the sequence
i1+ qd,i+2qd,...;i+ (& —1)qd (2.30)
equal modulo n. Also, it is clear that for each i = 1,...,d, between integers
ivi+d,i+2d,...i+ (T —1)d (2.31)

we cannot find two identical ones modulo n. But, since d is a divisor of n, that is
&d = n, we conclude (2.29). This proves Lemma 1. O

Let us proceed with the proof of Theorem 4. Let P, ... P, be a k-outscribed to
Aq...A,, that is, Theorem 1 ensures the existence of points Pi,..., P;_; such
that

Piija = P+ Siyja, (i=1,...,d) and (j=1,...,2-1) (2.32)

where P, is given by

d d
Pd:ﬁs_ﬁ(wl—i_+Wd)_(P1++Pd*1)’ (233)
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and
Wi = Siya + Sizada + - + Sitz-1)d, (i=1,...,d). (2.34)

It will be shown that the equations
iim—mﬂ?:o (G=1....,d-1)
d})j o, 9 ) )
are fulfilled with Py, ..., P; given by
nP; = S — d(Siya + Sitea + - + Sitz—1)d): (i=1,...,d) (2.35)
that means, if P, = @Q;, i =1,...,n (cf. Corollary 1.7).
First, put j = 1. Then, diPl S|P — Pip1]? can be written as

APy~ Po) 40+ +0+2(Ppy — Py) — 4(Py— Proa)+
2(Piya— Pora) + 04+ +0+2(Pag—1 — Pog) — 4(Pog — Pryoa)+

2(Prya—1ya — Poyg—1ya) + 0+ +04+2(Py — P,) —4(FP, — P1) =0, (2.36)
where d — 14 (2 — 1)d=n —1, i.e. 2d=n.

Using the relations (2.35) transformed into:

S .
Pz':E—(Pi+d‘|‘]:)i+2d+"'+]:)i+(§f—l)d)a (z:l,...,d) (2.37)

it is not difficult to see that the equation (2.36) can be written as

6P — 2P, +2P; 1 — 6P+
6(Pia+ Pryog + -+ Piyg—1)d)—
2(Poya + Poyog + -+ Poyz_1ya)+
2(Py—14q + Py—1y2a + -+ + Paci4-1)a)—
6(Pira+ Piyoa + - + Parz—1ya) = 0.

Thus, the equation (2.36) is satisfied for P, ..., P; such that are given by (2.37)
when P, =Q;, i=1,...,n.

d n
Generally, setting some integer j € {2,...,d — 1}, the equation — Z |P; —
dF; 5
P;41> = 0 will take the form

—2(Pjoi = P)) +2(Pj — Pjj1) + 04+ -+ 0+ 2(Py—y — Py) = 2(Py — Piyg)—

— 2(Pj—14w — Pitw) + 2(Pjsw — Pjy14w) + 04+
---+0+2(Pd_1+w—Pf)—2(Pfsd—P1):07
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where we write w := (2 — 1)d.
Using relations (2.37), it is easy to see that the above equation can be rewritten
into
2P, — 2P, +4P; = 2Pj 11 +2P; 1 — 4P,
+2(Prya+ Pryoa+-- + P1+(@71)d)
—2(Pjm14a+ Piig2a+ -+ Pio145-1)a)
+4(Pjsa+ Pjiog+ -+ Pj+(i—1)d)
—2(Pjs14d + Pipit2a + - + Piiita—1)d)
+ 2(Pi—14a + Piciy2da + -+ Paci4(a-1)d)
— 4(Pyya+ Pajoa + -+ + Pd—i—(fc—l)d) = 0.

As it can be easily seen, all the second derivatives with respect to Py, ..., P;_; are

positive. So, by (2.36) it follows that dipl (d(;)l ; P, — -Pi+1|2> = 2d + 6d > 0,

since for example, Pi,g = P + S114, Piia= Py ?Sder and (2.33) holds.
Thus, Z |P; — Piy1]? attains its minimum when P, = Q;, i = 1,...,n. O

As a corollary of Theorems 1 and 4 we have the following result concerning a
special polygon in the set of all k-outscribed polygons to A; ... A,.

Theorem 5. Let Ay... A, be as in Theorem 4. Then, there exists only one k-
outscribed polygon to Ay ... A, and has the property that it can be k-outscribed.

Proof. 'The validity of this theorem can be easily seen by Corollary 1.7. Namely,
let Q1 ...Q, be a given k-outscribed polygon to A; ... A, and which one has the
property that it can be k-outscribed; therefore (Ej) (in Corollary 1.7) is fulfilled.
By this fact and by the relations (2.2), (2.3) it follows that (2.18), (2.19) have to
be valid. Thus, @, ...(Q, must be the same as that one in Corollary 1.7. U

Theorem 6. Let Q1 ...Q, be as in Theorem 5. Then
2 area OleQn - |Q1+Q27"'7Qn71+QH7QH+Q1|J

where

S

Qz‘:E—(Sz‘+d+si+2d+"'+Si+(f—1)d>7 (izl,...,d)

Qirja = Qi + Sitja, (i=1,....d) and (j=1,...,2-1).

The proof of Theorem 6 is analogous to the proof of Corollary 1.2.

The following question arises immediately: “What will be happen when we replace

the power 2 in Z |P; — Piy1]* with 20 € R, ?” We present an answer only in the
i=1
case of quadrilaterals, n = 4.
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Theorem 7. Let A1A>A3A4 be a 2-outscribed quadrilateral, that is A7 — Ay +
A3 — Ay = 0. Let Q10Q2Q3Q4 be a 2-outscribed quadrilateral to A1 Ay AsAy and it

can be 2-outscribed, that is

201 = 3A; — 2A5 + As,
20 = 3Ay — 2A3 + Ay,
2Q3 = 343 — 24, + Ay,
20, = 34, — 24, + Ay.

Then for every 2-outscribed Py Py P3Py to the Ay Ay AsAy and for every real number
a > 0 we have

4 4
Y oIP= Pal > ) 1@ — Qi
i=1 =1
Proof. Since P, can be arbitrary and P; + P = 2A;, i = 1,2, 3,4, we have

Py (z,y) arbitrary
P,=2A,—- P

Py =2A, —2A,+ P,

Py =2A3 —2A5 + 24, —

where A;(a;,b;), i =1,2,3,4. Thus

P, — Py = —2A; + 2P,

Py— Py = —24, +4A, — 2P

Py— Py = —2A5 +4A, — 44, + 2P,

Py — Py =2A5 — 24, + 2A; — 2P, = 2A, — 2P
4

. d o
The equation o Z |P; — Py1|* = 0 becomes

i=1

F+G+H+K=0,

where
F = 2a[(2x — 2a1)? + (2y — 2b1)*]* (22 — 2a,),
G = 2a[(—2x — 2ag + 4a;1)* + (—2y — 2by + 4b)*]* 1 (27 + 20y — 4ay),
H = 2a[(27 — 2a3 + 4ay — 4a,)?

+ 2 — 2()3 + 4b2 — 4b1)2]a_1(2$ — 2@3 + 40,2 — 4(11),

[
[
af
(
= 2a[(=2z + 2a4)* + (—2y + 2b4)2]* 1 (27 — 2ay).

It is not difficult to see that
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that means:

(2.1' — 2@1) + (21[ — 2@3 -+ 4&2 — 4@1)
(2z + 2a9 — 4ay) + (22 — 2ay)

=0 < 2z=3a1— 2as+ ag,
=0 <= 2x=3a;— 2as+ agz,
and also

(22 — 2a,)* = (20 — 2a3 + 4ay — 4a,)?,
(=22 — 2ag + 4a;)* = (=22 + 2a4)*.

d/d o
Now, we have 1 (@ Z |P; — Pi+1|2°‘) > 0 when 2z = 3a; — 2ay + as.

=1

Analogously, the same result can be proved for y in P(z,y). This finishes the
proof of Theorem 7. O
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