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Abstract. This article can be considered as an appendix to the article
[3]. Here we mainly deal with k-outscribed polygons, where we use the
definition of such polygons as it is given in [3]. The aim and purpose of
the article is to find and investigate certain equalities and inequalities
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1. Introduction

The definition of the determinant of a rectangular matrix has been introduced
in the article [1]. The determinant of an m × n matrix A, m ≤ n, with columns
A1, . . . , An is the sum ∑

1≤j1<j2<···<jm≤n

(−1)r+s|Aj1 , . . . , Ajm|,

where r = 1 + · · ·+ m, s = j1 + · · ·+ jm.
It is clear that every real m×n matrix A = [A1, . . . , An] determines a polygon

in Rm(the columns of the matrix correspond to the vertices of the polygons) and
vice versa. The polygon which corresponds to the given matrix [A1, . . . , An] will
be denoted by A1 . . . An.
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Here, and in what follows, a special case of the above definition will be used
when m = 2, that is,∣∣∣∣a1 a2 · · · an

b1 b2 · · · bn

∣∣∣∣ =
∑

1≤i<j≤n

(−1)1+2+(i+j)

∣∣∣∣ai aj

bi bj

∣∣∣∣ . (1.1)

Also, we will make use of some results given in [2] and [3]. First, we list those
given in [2], keeping back the same numeration of cited results as there.

Theorem 3. Let A1 . . . An be a polygon in R2. Then

2 area of A1 . . . An = |A1 + A2, A2 + A3, . . . , An−1 + An, An + A1|. (1.2)

Corollary 6.1. If n is odd, then for every point X in R2, we have

|A1 + X, . . . , An + X| = |A1, . . . , An|. (1.3)

Theorem 7. Let A1 . . . An be a polygon in R2 and let n be an even integer. Then,
for every point X in R2, it follows that

|A1 + X, . . . , An + X| = |A1, . . . , An| (1.4)

when
∑n

i=1(−1)iAi = 0.

Theorem 8. Let A1 . . . An be a polygon in R2 and let
∑n

i=1(−1)iAi = 0. Then

|A1, . . . , An| = |A1, . . . , An−1|. (1.5)

Corollary 10.1. For n odd, for each i ∈ {1, . . . , n} we have the cyclic permuta-
tion property

|Ai, . . . , An, A1, . . . , Ai−1| = |A1, . . . , An|. (1.6)

Moreover, for n even and
∑n

i=1(−1)iAi = 0, (1.6) remains valid.

We will apply the following results from [3], keeping back the original numeration.

Theorem 1. Let A1 . . . An be a given polygon in R2 and let k be a positive integer
such that k < n and GCD(k, n) = 1. Then, there exists a unique k-outscribed
polygon P1 . . . Pn to the polygon A1 . . . An such that

2 area of P1 · · ·Pn = k2|B1 + B2, B2 + B3, . . . , Bn + B1|, (1.7)

where
Bi = Ai + Ai+k + · · ·+ Ai+(xk−1)k

(
i = 1, . . . , n

)
(1.8)

and xk is the least positive integer x satisfying

kx = 1 (mod n). (1.9)

Theorem 4. Let A1 . . . An be a polygon in R2 and let k be an integer such
that 1 < k < n and GCD(k, n) = d > 1. Then, only one of the following two
assertions is true:
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(i) There is no k-outscribed polygon to the polygon A1 . . . An.

(ii) There are infinitely many k-outscribed polygons to the polygon A1 . . . An.

The second statement (ii) appears only if for each i = 1, . . . , d there holds (Ek)
(existence for k-outscribed)

A1 + A1+k + · · ·+ A1+(x̂−1)k = Ai + Ai+k + · · ·+ Ai+(x̂−1)k (Ek)

where x̂ is the least positive integer solution of the equation

kx = 0 (mod n). (1.10)

Theorem 10. Let
[

A1, . . . , An

]
be any given real 2× n matrix. Then

|A1, . . . , An| = |A1, A2, A3|+ |A1 − A2 + A3, A4, A5|+
|A1 − A2 + A3 − A4 + A5, A6, A7|+ · · ·+ L, (1.11)

where

L =



∣∣∣ n−2∑
i=1

(−1)i+1Ai, An−1, An

∣∣∣ n odd

∣∣∣ n−1∑
i=1

(−1)i+1Ai, An

∣∣∣ n even .

2. Certain equalities and inequalities concerning some polygons in R2

Theorem 1. Let A1 . . . An be a polygon i3n R2 and let k be an integer 1 < k < n.
Let GCD(k, n) = d > 1 and let (Ek) be fulfilled, that is

Ai + Ai+k + Ai+2k + ·+ Ai+(x̂−1)k =
S

d
,

(
i = 1, . . . , d

)
(Ek)

where

x̂ =
n

d
, S =

n∑
i=1

Ai. (2.1)

Then for arbitrary points P1, . . . , Pd−1 from R2 there exists k-outscribed polygon
P1 . . . Pn to the polygon A1 . . . An such that

n

d
Pd = S − n

d
(P1 + · · ·+ Pd−1)−

d∑
i=1

[Si+k + · · ·+ Si+(x̂−1)k], (2.2)

Pi+jk = Pi + Si+jk,
(
i = 1, . . . , d

)
and

(
j = 1, . . . , x̂− 1

)
(2.3)

where Si+jk, i = 1, . . . , d and j = 1, . . . , x̂ − 1 are the sums of certain vertices
A1, . . . , An.
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Proof. The system

Pi + Pi+1 + · · ·+ Pi+k−1 = kAi

(
i = 1, . . . , n

)
(2.4)

can be rewritten as

Pi − Pi+k = k(Ai − Ai+1)
(
i = 1, . . . , n

)
. (2.5)

It is easy to see that

Pi+k = Pi − k(Ai − Ai+1), (2.6)

Pi+2k = Pi+k − k(Ai+k − Ai+1+k), (2.7)

...

Pi+(x̂−1)k = Pi+(x̂−2)k − k(Ai+(x̂−2)k − Ai+1+(x̂−2)k), (2.8)

for all i = 1, . . . , d. The relations (2.3) can be obtained from (2.6)–(2.8). So, by
(2.6) we see that

Pi+k = Pi + Si+k,

where Si+k = −k(Ai − Ai+1). Then, by (2.6) and (2.7) we deduce

Pi+2k = Pi − k(Ai − Ai+1)− k(Ai+k − Ai+1+k),

such that can be written as

Pi+2k = Pi + Si+2k,

where
Si+2k = −k(Ai − Ai+1)− k(Ai+k − Ai+1+k).

In the same way it can be seen that

Pi+3k = Pi + Si+3k,

where

Si+3k = −k(Ai − Ai+1)− k(Ai+k − Ai+1+k)− k(Ai+2k − Ai+1+2k).

Finally, we get
Pi+(x̂−1)k = Pi + Si+(x̂−1)k,

where

Si+(x̂−1)k = −k(Ai −Ai+1)− k(Ai+k −Ai+1+k)− · · · − k(Ai+(x̂−2)k −Ai+1+(x̂−2)k).

Now from (2.4) it is easy to see that

n∑
i=1

Pi = S, (2.9)
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where S is given by (2.1). Thus,

[P1 + P1+k + · · ·+ P1+(x̂−1)k] + · · ·+ [Pd + Pd+k + · · ·+ Pd+(x̂−1)k] = S

or

P1 + · · ·+ Pd + [P1+k + · · ·+ P1+(x̂−1)k] + · · ·+ [Pd+k + · · ·+ Pd+(x̂−1)k] = S,

such that is equivalent to (2.2). This proves Theorem 1. �

The following result is proved in [3, Theorem 4] in another way using vector spaces
techniques.

Corollary 1.1. Denote M the matrix of the system (2.4). Then

rank of M = n− d + 1.

Corollary 1.2. Let GCD(k, n) = 2. The area of P1 . . . Pn has the form

2 area of P1 . . . Pn = |S3, S3 + S4, S4 + S5, . . . , Sn−1 + Sn, Sn|. (2.10)

Proof. Since

P2i+1 = P1 + S2i+1,

P2i+2 = P2 + S2i+2,
(
i = 1, . . . ,

n

2
− 1

)
P2 = −P1 +

2

n

[
S −

n/2−1∑
i=1

(S2i+1 + S2i+2)
]
,

we can write

2 area of P1 . . . Pn = |P1 + P2, P2 + P3, . . . , Pn + P1|
= |T, T + S3, T + S3 + S4, . . . , T + Sn−1 + Sn, T + Sn|,

where

T =
2

n

[
S −

n/2−1∑
i=1

(S2i+1 + S2i+2)
]
.

The last display can be rewritten into the one like (2.10), having in mind (1.4). �

Using [3, Theorem 10] (see introduction) the area of P1 . . . Pn can also be expressed
like

area of P1 . . . Pn = |S3, S3 + S4, S4 + S5|+ |S5, S5 + S6, S6 + S7|+ · · ·+
|Sn−3, Sn−3 + Sn−2, Sn−2 + Sn−1|+ |Sn−1, Sn|.

Let us remark that

S3 − (S3 + S4) + (S4 + S5) = S5

S3 − (S3 + S4) + (S4 + S5)− (S5 + S6) + (S6 + S7) = S7 and so on.
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Corollary 1.3. Let GCD(k, n) = 1. Then there are S2, . . . , Sn so that

P1+i = P1 + S1+i

(
i = 1, . . . , n− 1.

)
(2.11)

Proof. Since P1 . . . Pn is unique by [3, Theorem 1] (consult introduction), there
are S2, . . . , Sn so that

P2 = P1 + S2, . . . , Pn = P1 + Sn.

Thus, when d = 1, there is only one P1 such that (2.11) is valid. �

Corollary 1.4. Let GCD(k, n) = d > 2. For the sake of simplicity take d = 3.
Then

2 area of P1 . . . Pn = |P1 + P2, P2 + P3, P3 + P4, . . . , Pn + P1|, (2.12)

where P4 = P1+S4, P5 = P2+S5, P6 = P3+S6, P7 = P1+S7 etc. Thus, the area of
P1 . . . Pn is 4-parametric, since P1(α1, β1) and P2(α2, β2) can be taken arbitrarily
in R2 and they cannot be eliminated from (2.12). Therefore, k-outscribed polygons
to the polygon A1 . . . An have different areas when GCD(k, n) > 2 (cf. [2, Theorem
11]).

Corollary 1.5. Let GCD(k, n) = d = 3, where n is odd. Then

|P1 + P2 + P3, P2 + P3 + P4, . . . , Pn + P1 + P2| = constant, (2.13)

where P4 = P1 + S4, P5 = P2 + S5, P6 = P3 + S6, P7 = P1 + S7 etc.

Proof. By (1.3) the determinant on the left-hand side of (2.13) can be expressed
in the form

|0, S4, S4 + S5, S4 + S5 + S6, . . . , Sn−2 + Sn−1 + Sn, Sn−1 + Sn, Sn|

or
|S4, S4 + S5, . . . , Sn−1 + Sn, Sn|. �

Corollary 1.6. Let A1 . . . An be a polygon in R2, k ∈ N such that GCD(k, n) = 2

and
∑n

i=1(−1)iAi = 0, which can be written as S = 2
∑n/2−1

i=1 A2i−1 =

2
∑n/2−1

i=1 A2i+2. Then the polygon Q1 . . . Qn given by

nQ1 = S − 2(S3 + S5 + · · ·+ Sn−1), (2.14)

nQ2 = S − 2(S4 + S6 + · · ·+ Sn), (2.15)

nQ2i+1 = Q1 + S2i+1, (2.16)

nQ2i+2 = Q2 + S2i+2,
(
i = 1, . . . ,

n

2
− 1

)
(2.17)

is the only one k-outscribed to the polygon A1 . . . An and in the same time it can
be k-outscribed.
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Proof. The condition (Ek) if fulfilled, that is, S = 2
∑n/2−1

i=1 Q2i−1 = 2
∑n/2−1

i=1 Q2i,
if Q1 and Q2 are chosen so, that

S

2
= Q1 + (Q1 + S3) + · · ·+ (Q1 + Sn−1),

S

2
= Q2 + (Q2 + S4) + · · ·+ (Q2 + Sn).

Namely, in that case (2.14) and (2.15) are fulfilled. �

Corollary 1.7. Let A1 . . . An be any given polygon in R2, k ∈ R2, such that
GCD(n, k) = d > 2 and let (Ek) be fulfilled. Then the polygon Q1 . . . Qn given by

nQi = S − d(Si+k + Si+2k + · · ·+ Si+(x̂−1)k),
(
i = 1, . . . , d

)
(2.18)

and by

Q1+ik = Q1 + S1+ik,

Q2+ik = Q2 + S2+ik,

... (2.19)

Qd+ik = Qd + Sd+ik,
(
i = 1, . . . , x̂− 1

)
is the only one k-outscribed to the polygon A1 . . . An and has the property that it
can be k-outscribed.

Proof. Analogously to the case when d = 2, we choose Q1, . . . , Qd so that

S

d
= Qi + (Qi + Si+k) + · · ·+ (Qi + Si+(x̂−1)k),

(
i = 1, . . . , d

)
. (Ek)

�

The following theorems refer to an inequality concerning k-outscribed polygons.
Let us introduce the notation which will be used in the sequel.

Let Pi(pi, qi) and Pi+1(pi+1, qi+1) be points in R2. Then

|Pi − Pi+1|2 = (pi − pi+1)
2 + (qi − qi+1)

2,

d

dpi

|Pi − Pi+1|2 = 2(pi − pi+1),
d

dqi

|Pi − Pi+1|2 = 2(qi − qi+1).

Remark 1. For sake of simplicity we write d
dPi
|Pi − Pi+1|2, whose meaning is

d
dPi
|Pi − Pi+1|2 = (2(pi − pi+1), 2(qi − qi+1)) or d

dPi
|Pi − Pi+1|2 = 2(Pi − Pi+1).

Of course, d
dPi+1

|Pi − Pi+1|2 = −2(Pi − Pi+1).
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Theorem 2. Let A1 . . . An be any given polygon in R2 such that n is even, d =
2 and

∑n
i=1(−1)iAi = 0. Then for every 2-outscribed polygon P1 . . . Pn to the

polygon A1 . . . An we have

n∑
i=1

|Pi − Pi+1|2 ≥
n∑

i=1

|Qi −Qi+1|2,

where Q1 . . . Qn is 2-outscribed to A1 . . . An and it can be 2-outscribed.

Proof. First, let us remark that from

n∑
i=1

(−1)iQi = 0 and Qi + Qi+1 = 2Ai,
(
i = 1, . . . , n

)
(2.20)

one gets

n

2
Q1 = (n− 1)A1 − (n− 2)A2 + (n− 3)A3 − · · ·+ An−1,

n

2
Q2 = (n− 1)A2 − (n− 2)A3 + (n− 3)A4 − · · ·+ An,

...
n

2
Qn = (n− 1)An − (n− 2)A1 + (n− 3)A2 − · · ·+ An−2 .

(2.21)

Since by Pi + Pi+1 = 2Ai, i = 1, . . . , n, it follows

P2 = 2A1 − P1,

P3 = 2A2 − 2A1 + P1,

...

Pn = 2An−1 − 2An−2 + 2An−3 − · · ·+ 2A1 − P1,

(2.22)

it is clear that the sum
∑n

i=1 |Pi − Pi+1|2 depends only on P1; the equation
d

dPi

∑n
i=1 |Pi − Pi+1|2 = 0 can be written as

(2P1 − 2A1)− (−2P1 − 2A2 + 4A1) + · · · − (2An − 2P1) = 0,

so, that we conclude

n

2
P1 = (n− 1)A1 − (n− 2)A2 + (n− 3)A3 − · · ·+ An−1.

Now, from (2.22) it follows

n

2
P2 = (n− 1)A2 − (n− 2)A3 + (n− 3)A4 − · · ·+ An,

...
n

2
Pn = (n− 1)An − (n− 2)A1 + (n− 3)A2 − · · ·+ An−2.
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Thus, Pi = Qi, i = 1, . . . , n, where Qi are given by (2.21). Indeed, it is not difficult
to see that d2

dP 2
1

∑n
i=1 |Pi−Pi+1|2 = 2n > 0. Consequently,

∑n
i=1 |Pi−Pi+1|2 takes

its minimal value for Pi = Qi, i = 1, . . . , n. �

Although this theorem is a corollary of the following one, its proof is interesting
in itself. The following theorem concerns Corollary 1.6.

Theorem 3. Let A1 . . . An and Q1 . . . Qn be as in Corollary 1.6. Then for any
k-outscribed polygon P1 . . . Pn to the polygon A1 . . . An we have

n∑
i=1

|Pi − Pi+1|2 ≥
n∑

i=1

|Qi −Qi+1|2,

that is, Pi = Qi, i = 1, . . . , n minimizes
∑n

i=1 |Pi − Pi+1|2.

Proof. Since d = 2, one rewrites
∑n

i=1 Pi = S into

P1 + P2 + (P1 + S3) + (P2 + S4) + · · ·+ (P1 + Sn−1) + (P2 + Sn) = S,

from which it follows
P2 = L− P1, (2.23)

where

L =
2

n
S − 2

n
(W1 + W2), W1 = S3 + S5 + · · ·+ Sn−1, W2 = S4 + S6 + · · ·+ Sn.

The equation
d

dP1

n∑
i=1

|Pi − Pi+1|2 = 0 (2.24)

becomes

P1 − (L− P1)− (L− P1)− (P1 + S3) + (P1 + S3)− (L− P1 + S4) + · · ·+
(P1 + Sn−1)− (L− P1 + Sn)− (L− P1 + Sn)− P1 = 0,

from which it follows
2nP1 − nL + 2W1 − 2W2 = 0,

and finally
nP1 = S − 2W1.

Now, by (2.23) and P3 = P1 + S3, . . . , Pn = P2 + Sn, we have

nP2 = S − 2W2,

P2i+1 = P1 + S2i+1, P2i+2 = P2 + S2i+2,
(
i = 1, . . . , n/2− 1

)
(cf. Corollary 1.6). It is easy to see that the second derivative equals 2n > 0).

This proves Theorem 3. �

The following theorem concerns Corollary 1.7.
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Theorem 4. Let A1 . . . An be any given k-outscribed polygon in R2, where 1 <
k < n and GCD(k, n) = d > 2. In other words, let (Ek) be fulfilled, that is

Ai + Ai+k + Ai+2k + · · ·+ Ai+(x̂−1)k =
S

d
,

(
i = 1, . . . , d

)
(2.25)

where

x̂ =
n

d
, S =

n∑
i=1

Ai. (2.26)

Then, for every k-outscribed polygon P1 . . . Pn to the polygon A1 . . . An we have
that

n∑
i=1

|Pi − Pi+1|2 ≥
n∑

i=1

|Qi −Qi+1|2, (2.27)

where Q1 . . . Qn is k-outscribed to A1 . . . An and it can be k-outscribed too.
In other words, Pi = Qi, i = 1, . . . , n minimizes

∑n
i=1 |Pi − Pi+1|2.

Proof. The following lemma will be used in the proving procedure.

Lemma 1. For all i = 1, . . . , d we have

{Ai, Ai+k, Ai+2k, . . . , Ai+(x̂−1)k} = {Ai, Ai+d, Ai+2d, . . . , Ai+(x̂−1)d}, (2.28)

calculating the indices mod n, that is,

{i, i + k, i + 2k, . . . , i + (x̂− 1)k} = {i, i + d, i + 2d, . . . , i + (x̂− 1)d}. (2.29)

Proof of Lemma 1. Let q be the integer with k = qd. By (2.25) it is clear that for
each i = 1, . . . , d there are no two integers in the sequence

i, i + qd, i + 2qd, . . . , i + (x̂− 1)qd (2.30)

equal modulo n. Also, it is clear that for each i = 1, . . . , d, between integers

i, i + d, i + 2d, . . . , i + (x̂− 1)d (2.31)

we cannot find two identical ones modulo n. But, since d is a divisor of n, that is
x̂d = n, we conclude (2.29). This proves Lemma 1. 2

Let us proceed with the proof of Theorem 4. Let P1 . . . Pn be a k-outscribed to
A1 . . . An, that is, Theorem 1 ensures the existence of points P1, . . . , Pd−1 such
that

Pi+jd = Pi + Si+jd,
(
i = 1, . . . , d

)
and

(
j = 1, . . . , x̂− 1

)
(2.32)

where Pd is given by

Pd =
d

n
S − d

n
(W1 + · · ·+ Wd)− (P1 + · · ·+ Pd−1), (2.33)
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and
Wi = Si+d + Si+2d + · · ·+ Si+(x̂−1)d,

(
i = 1, . . . , d

)
. (2.34)

It will be shown that the equations

d

dPj

n∑
i=1

|Pi − Pi+1|2 = 0,
(
j = 1, . . . , d− 1

)
are fulfilled with P1, . . . , Pd given by

nPi = S − d(Si+d + Si+2d + · · ·+ Si+(x̂−1)d),
(
i = 1, . . . , d

)
(2.35)

that means, if Pi = Qi, i = 1, . . . , n (cf. Corollary 1.7).
First, put j = 1. Then, d

dP1

∑n
i=1 |Pi − Pi+1|2 can be written as

2(P1 − P2) + 0 + · · ·+ 0 + 2(Pd−1 − Pd)− 4(Pd − P1+d)+

2(P1+d − P2+d) + 0 + · · ·+ 0 + 2(P2d−1 − P2d)− 4(P2d − P1+2d)+

...

2(P1+(x̂−1)d − P2+(x̂−1)d) + 0 + · · ·+ 0 + 2(Pn−1 − Pn)− 4(Pn − P1) = 0, (2.36)

where d− 1 + (x̂− 1)d = n− 1, i.e. x̂d = n.
Using the relations (2.35) transformed into:

Pi =
S

d
− (Pi+d + Pi+2d + · · ·+ Pi+(x̂−1)d),

(
i = 1, . . . , d

)
(2.37)

it is not difficult to see that the equation (2.36) can be written as

6P1 − 2P2 + 2Pd−1 − 6Pd+

6(P1+d + P1+2d + · · ·+ P1+(x̂−1)d)−
2(P2+d + P2+2d + · · ·+ P2+(x̂−1)d)+

2(Pd−1+d + Pd−1+2d + · · ·+ Pd−1+(x̂−1)d)−
6(Pd+d + Pd+2d + · · ·+ Pd+(x̂−1)d) = 0.

Thus, the equation (2.36) is satisfied for P1, . . . , Pd such that are given by (2.37)
when Pi = Qi, i = 1, . . . , n.

Generally, setting some integer j ∈ {2, . . . , d− 1}, the equation
d

dPj

n∑
i=1

|Pi −

Pi+1|2 = 0 will take the form

− 2(Pj−1 − Pj) + 2(Pj − Pj+1) + 0 + · · ·+ 0 + 2(Pd−1 − Pd)− 2(Pd − P1+d)−
...

− 2(Pj−1+w − Pj+w) + 2(Pj+w − Pj+1+w) + 0 + · · ·
· · ·+ 0 + 2(Pd−1+w − Px̂d)− 2(Px̂d − P1) = 0,
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where we write w := (x̂− 1)d.
Using relations (2.37), it is easy to see that the above equation can be rewritten

into

2P1 − 2Pj−1 + 4Pj − 2Pj+1 + 2Pd−1 − 4Pd

+ 2(P1+d + P1+2d + · · ·+ P1+(x̂−1)d)

− 2(Pj−1+d + Pj−1+2d + · · ·+ Pj−1+(x̂−1)d)

+ 4(Pj+d + Pj+2d + · · ·+ Pj+(x̂−1)d)

− 2(Pj+1+d + Pj+1+2d + · · ·+ Pj+1+(x̂−1)d)

+ 2(Pd−1+d + Pd−1+2d + · · ·+ Pd−1+(x̂−1)d)

− 4(Pd+d + Pd+2d + · · ·+ Pd+(x̂−1)d) = 0.

As it can be easily seen, all the second derivatives with respect to P1, . . . , Pd−1 are

positive. So, by (2.36) it follows that
d

dP1

( d

dP1

n∑
i=1

|Pi − Pi+1|2
)

= 2d + 6d > 0,

since for example, P1+d = P1 + S1+d, Pd+d = Pd + Sd+d and (2.33) holds.

Thus,
n∑

i=1

|Pi − Pi+1|2 attains its minimum when Pi = Qi, i = 1, . . . , n. �

As a corollary of Theorems 1 and 4 we have the following result concerning a
special polygon in the set of all k-outscribed polygons to A1 . . . An.

Theorem 5. Let A1 . . . An be as in Theorem 4. Then, there exists only one k-
outscribed polygon to A1 . . . An and has the property that it can be k-outscribed.

Proof. The validity of this theorem can be easily seen by Corollary 1.7. Namely,
let Q1 . . . Qn be a given k-outscribed polygon to A1 . . . An and which one has the
property that it can be k-outscribed; therefore (Ek) (in Corollary 1.7) is fulfilled.
By this fact and by the relations (2.2), (2.3) it follows that (2.18), (2.19) have to
be valid. Thus, Q1 . . . Qn must be the same as that one in Corollary 1.7. �

Theorem 6. Let Q1 . . . Qn be as in Theorem 5. Then

2 area of Q1 . . . Qn = |Q1 + Q2, . . . , Qn−1 + Qn, Qn + Q1|,

where

Qi =
S

d
− (Si+d + Si+2d + · · ·+ Si+(x̂−1)d),

(
i = 1, . . . , d

)
Qi+jd = Qi + Si+jd,

(
i = 1, . . . , d

)
and

(
j = 1, . . . , x̂− 1

)
.

The proof of Theorem 6 is analogous to the proof of Corollary 1.2.

The following question arises immediately: “What will be happen when we replace

the power 2 in
n∑

i=1

|Pi − Pi+1|2 with 2α ∈ R+?” We present an answer only in the

case of quadrilaterals, n = 4.
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Theorem 7. Let A1A2A3A4 be a 2-outscribed quadrilateral, that is A1 − A2 +
A3 − A4 = 0. Let Q1Q2Q3Q4 be a 2-outscribed quadrilateral to A1A2A3A4 and it
can be 2-outscribed, that is

2Q1 = 3A1 − 2A2 + A3,

2Q2 = 3A2 − 2A3 + A4,

2Q3 = 3A3 − 2A4 + A1,

2Q4 = 3A4 − 2A1 + A2.

Then for every 2-outscribed P1P2P3P4 to the A1A2A3A4 and for every real number
α > 0 we have

4∑
i=1

|Pi − Pi+1|2α ≥
4∑

i=1

|Qi −Qi+1|2α.

Proof. Since P1 can be arbitrary and Pi + Pi+1 = 2Ai, i = 1, 2, 3, 4, we have

P1(x, y) arbitrary

P2 = 2A1 − P1

P3 = 2A2 − 2A1 + P1

P4 = 2A3 − 2A2 + 2A1 − P1

where Ai(ai, bi), i = 1, 2, 3, 4. Thus

P1 − P2 = −2A1 + 2P1

P2 − P3 = −2A2 + 4A1 − 2P1

P3 − P4 = −2A3 + 4A2 − 4A1 + 2P1

P4 − P1 = 2A3 − 2A2 + 2A1 − 2P1 = 2A4 − 2P1.

The equation
d

dx

4∑
i=1

|Pi − Pi+1|2α = 0 becomes

F + G + H + K = 0,

where

F = 2α[(2x− 2a1)
2 + (2y − 2b1)

2]α−1(2x− 2a1),

G = 2α[(−2x− 2a2 + 4a1)
2 + (−2y − 2b2 + 4b1)

2]α−1(2x + 2a2 − 4a1),

H = 2α[(2x− 2a3 + 4a2 − 4a1)
2

+ (2y − 2b3 + 4b2 − 4b1)
2]α−1(2x− 2a3 + 4a2 − 4a1),

K = 2α[(−2x + 2a4)
2 + (−2y + 2b4)

2]α−1(2x− 2a4).

It is not difficult to see that

F + G = H + K = 0 if 2P1 = 3A1 − 2A2 + A3,
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that means:

(2x− 2a1) + (2x− 2a3 + 4a2 − 4a1) = 0 ⇐⇒ 2x = 3a1 − 2a2 + a3,

(2x + 2a2 − 4a1) + (2x− 2a4) = 0 ⇐⇒ 2x = 3a1 − 2a2 + a3,

and also

(2x− 2a1)
2 = (2x− 2a3 + 4a2 − 4a1)

2,

(−2x− 2a2 + 4a1)
2 = (−2x + 2a4)

2.

Now, we have
d

dx

( d

dx

4∑
i=1

|Pi − Pi+1|2α
)

> 0 when 2x = 3a1 − 2a2 + a3.

Analogously, the same result can be proved for y in P (x, y). This finishes the
proof of Theorem 7. �
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