Grassmannian structures on manifolds

P.F. Dhooghe

Abstract

Grassmannian structures on manifolds are introduced as subbundles of
the second order framebundle. The structure group is the isotropy group of
a Grassmannian. It is shown that such a structure is the prolongation of a
subbundle of the first order framebundle. A canonical normal connection is
constructed from a Cartan connection on the bundle and a Grassmannian
curvature tensor for the structure is derived.

1 Introduction

The theory of Cartan connections has lead S. Kobayashi and T. Nagano, in 1963, to
present a rigourous construction of projective connections [3]. Their construction,
relating the work of Eisenhart, Veblen, Thomas a.o. to the work of E. Cartan, has
a universal character which we intend to use in the construction of Grassmannian-
like structures on manifolds. The principal aim is to generalise Grassmannians in a
similar way. By doing so we very closely follow their construction of a Cartan con-
nection on a principal bundle subjected to curvature conditions and the derivation
of a normal connection on the manifold.

The action of the projective group Pl(n,) on a Grassmannian G(l,,n,) of l,-
planes in IR™ is induced from the natural action of Gi(n,) on IR"™. Let H be the
isotropy group of this action at a fixed point e of G(l,,n,). The generalisation will
consist in the construction of a bundle P with structure group H and base manifold
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M of dimension m, = [k, with k, = n, — l,. The bundle P will be equipped
with a Cartan connection with values in the Lie algebra of the projective group,
which makes the bundle P completely parallelisable. We will show that such a
connection exists and is unique if certain curvature conditions are imposed. The
Cartan connection identifies the tangent space T,(M) for each x € M with the
vectorspace L(IR'?,IR*). Identifying L(IR'>,IR*) with V = IR™, the group H
acts on V to the first order as G, = GI(l,) x "Gl(k,)™'/ exptI,, properly embedded
in Gl(m,). Let §° denote the Lie algebra of this group, which is seen as a subspace
of V.® V*. We prove that if k, > 2 and [, > 2, the Lie algebra h of H, as subspace
of V. ® V*, is the first prolongation of the Lie algebra g°. Moreover the second
prolongation equals zero.

The action of H on V allows to define a homomorphism of P into the second order
framebundle F?(M). The image, Gr(k,,l,)(M), is called a Grassmannian structure
on M. From the previous algebraic considerations it follows that a Grassmannian
structure on a manifold is equivalent with a reduction of the framebundle F'(M) to
a subbundle B®*e!)(M) with the structure group G,. A Grassmannian connection
from this point of view, is an equivalence class of symmetric affine connections, all
of which are adapted to a subbundle of F'*(M) with structure group G,. The action
of G, in each fibre is defined by a local section ¢ : * € M — F'(M)(z) together
with an identification of T, (M) with M(k,,,). This result explains in terms of
G-structures the well known fact that the structure group of the tangent bundle on
a Grassmannian, G(l,, n,), reduces to Gl(k,) x Gl(l,) [6]. The consequences for the
geometry and tensoralgebra are partly examined in the last paragraph, but will be
studied in a future publication.

We remark that as a consequence of the algebraic structure the above defined
structure is called Grassmannian if k, > 2 and [, > 2. Otherwise the structure is a
projective structure. Hence the manifolds have dimension m, = k,l,, with k,, [, > 2.

Let (%), a = 1,--+,m, be coordinates on IR™, and (%), a = 1,--- ,ky; i =
1,---,l,, the natural basis on M (k,,,). (%) are the corresponding coordinates on
M (k,,1,). We will identify both spaces by o = (a—1)l,+i. Let 0 : U C M — F'(M)
be a local section and & be the associated map identifying the tangent space T,(M)
(x € U) with M(k,,1,). An adapted local frame with respect to some coordinates
(U, (2*)) is given as ¢ 1(z)(e}) = B2 (z). If V and V are two adapted symmetric
linear connections on B*ele)(M) then there exists a map p : U — M(l,, k,) such
that for X, Y € X(M) :

VxY =VxY +6 Y (n.6(X)).a(Y) + (un.5(Y)).5(X)].

Because u € M(l,,k,) and a(X)(z) € M(k,,l,), for X € X(U), the term
(.5 (X)(z)), as composition of matices, is an element of M(l,,[,) which acts on
7(Y)(z) giving thus an element of M(k,,(,).

Analogous to the projective case we will construct a canonical normal Grass-
mannian connection and calculate the expression of the coefficients with respect to
an adapted frame. The curvature of the Grassmannian structure is given by the
forms Qé», @ () with respect to a Lie algebra decomposition of h. We prove that
if [, > 3 or k, > 3 the vanishing of 2} or () is necessary and sufficient for the
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local flatness of the bundle P. The two curvature forms Q) and € are basic forms
on the quotient 72 : Gr(k,,l,)(M) C F?(M) — F'(M) and hence determine the
Grassmannian curvature tensor, whose local components are given by
Kfo = Ko FGEL + Koo P B

with Q= Ki_,d2® @ da® and Qf,zdz® @ da”. E]* is an adapted frame and FJ
the corresponding coframe. It follows that the vanishing of the Grassmannian cur-
vature tensor is a necessary and sufficient condition for the local flatness of the
Grassmannian structure for any [, > 2 and k, > 2.

We assume all manifolds to be connected, paracompact and of class C'*°. All
maps are of class C'> as well. Gl(n,) denotes the general linear group on IR™
and gl(n,) its Lie algebra. We will use the summation convention over repeated in-
dices. The indices take values as follows : o, 3,---=1,---,m, = kolo; a, b, c--+ =
L koy iy 4, ky-o- = 1,-+-,1,. Cross references are indicated by [(.)] while refer-
ences to the bibliography by [.].

2 Grassmannians

A. Projective Group Actions

Let G(l,,n,) be the Grassmannian of the [,-dimensional subspaces in IR". Dim
G(lo,no) = loko, no = lo + ko. Let S be a k,-dimensional subspace of IR™. An
associated big cell U(S) to S in G(l,, n,) is determined by all transversal subspaces
to S of dimension [, in IR"™. One observes that

G(lo, no) = Uy u(S[)

where [ is any subset of length k, of {1, 2, ---,n,} and S; the subspace of dimension
k, spanned by the coordinates (z') in IR".
Let (x! .-, ale, bt ... 27) be the natural coordinates on IR™. For simplic-

ity we will choose a rearrangement of the coordinates such that S is given by the
condition 2! = 2? = ... = zle = 0.

Let M (n,,1,) be the space of (n, x [,) matrices (n, rows and [, columns). Any
element may be considered as [, linearly independent vectors in IR"°. Hence each
y € M(ny,,l,) determines an [,-plane in IR"™. We get a natural projection

T M(ne,l,) — U(S), (1)

which is a principal fibration over U(S) with structure group Gi(l,). Representing
the coordinate system on M (n,,l,) by a matrix Z, the big cell U(.S) is coordinatised
as follows. If Z € M (n,,l,), we will write

A
7= (%)

with Zy an [, X [, matrix and Z; an k, X [, matrix, n, = k, + [,.
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The coordinates are obtained by
7 =7,.75,

where we assumed Z; to be of maximal rank.
In terms of its elements we get
P
Z N ( : )’
zj

,7=1,---,l,anda=1,---,k,, to which we refer as the homogeneous coordinates.
Denoting by w} the inverse of 2, we obtain

1

7 = () = (z;’wf)
which are the local coordinates on the cell. In the sequel we will identify the cel
with M (ko, 1,).
The action of the group Gi(n,) on IR™ induces a transitive action of Pl(n,) on

G(lp,n0). On a big cell the action of Pl(n,) is induced from the action of Gi(n,) on
Z on the left. Let § be in Gl(n,). In matrix representation we write (3 as :

_ [ Boo Bor
B_<510 511)’ @)

with B()() c M( 05 o) Bll € M(ko, k ) 510 c M( ) 501 c M(lo, ko).
The local action of an open neighbourhood of the identity in the subset of Gl(n,)
defined by det Gpo # 0 on M (k,,1,) is given in fractional form by

¢p x> (Bro+ Br1)(Boo + Borx) " (3)

for 5 € Gl(n,) as in [(2)] and x € M (k,,l,).

Because the elements of the center of Gl(n,) are in the kernel of ¢4 this action
induces an action of an open neighbourhood of the identity in Pl(n,).
In terms of the coordinates and using the notation

Boo = (5;): Bor = (ﬁé): o = (67), Bu = (By) and B&)l - (Vé)’

we find the Taylor expression

T= B+ (B = BB
—Bearm B e + BB B + (4)
Consequences :

(a) The orbit of the origin of the coordinates in M (k,,1,), is locally given by (0) —

BroBao
(b) The isotropy group H at 0 € M(l,, k,) is the group

H:{3= ( 580 g‘i )/expt.Ino}, (5)
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with Boo € Gl(l,) and (11 € Gl(k,). The subgroup H in Taylor form is given by

—a a,.m 1 a1 a % c
T = By — SUBE, + BBl + (6)

B. The Maurer Cartan Equations

ug,ul), withi,5 =1,--+,1, ,a,b=1,--- k,, be local coordinates at

Let (u, u},
the identity on Gl(n,) according to the decomposition [(2)] and (&}, @}, &, of) the
left invariant forms coinciding with (du?,, dué», dug, du) at the identity. The Maurer

Cartan equations are

(1) dof = —wp A&l —ap A&
2) do! = —wp NS - NG
(3) dof = —@fAGF — @A
(4) doif = —@ine—oing.

Let w; = @} and Wy = ©%. We define

i

A 1 1 1

1

T a __ —a a —, B T T
Z—(Sj W1, Wy =Wy — —0p Wa, Wy = —W1 — —Ws. (7)
o

By
J

Passing to the quotient Gl(n,)/expt.l,, we find the Maurer Cartan equations on
Pl(n,).

Proposition 2.1 The Maurer Cartan equations on Pl(n,) are

(1) dwf = —wg/\wf—wg/\w?—wf/\w*

i i i L c
(2) dw = —wk/\wf—wb/\w?—l—jéjwf/\wk

1

3) dwf = —wWiAWF—wWr AW+ 6w AW 8

b kN Wy T We AWy T 9 0p Wi A We
(4) do’® = —wiAWF—wi AW+ WA w,

ko + 1o ,

(5) dw, = k—; wi A w.

Remark that w} = w® = 0.

The Lie algebra of Pl(n,), g, in this representation is found by taking the tangent
space at the identity, W, to the submanifold in GI(n,) defined by (det By0)*(det ;)"
= 1. The quotient of the algebra of left invariant vectorfields, originated from W,
by the vectorfield expt.l,,, determines the Lie algebra structure. The vectorspace
for this Lie algebra is formed by the direct sum

g=9g'ag"ag, (9)
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g' = L(R" R")
¢’ = {(u,v) € gl(l,) ® gl(k,); k.Tr(u) + . Tr(v) =0}
g' = L(R™, R"). (10)

Let € g7', *y € g' and (u,v) € g°, the induced brackets on this vector space are

u,z] = zu; [v,x] = var; |u, Y = w y;
v, W] = s fena] = 05 [, ] = 0
[ur + w1, ug +va] = [ur, ug) + [v1, va] ; (11)
Tr(x.*y)
Yyl = 2y —"yax— (lob — ko) ————=1d,,.
[z,7y] = «"y—"yao—( ST o
Id,, denotes the identity on IR'> @ IR*.
C. Representations and prolongation
We will use the following identifications :
K koxlo S Mo
M(k‘;’ ZO) : R at : Ra (12)
xS = =
where IR*** stands for IR x --- x IR" ; a = (a—1)lg4i, Mo = kolo ;0 = 1,---,m,
ko times
sa=1,--- k,andi=1,---,l,.
We introduce the following two subgroups.
(1) The subgroup G, of GI(l,) x Gl(k,) :
G, = {(A, B) € Gl(l,) x Gl(k,)]| (det(A))™.(det(B))" = 1}. (13)

Let (A, B) and (A’, B') be elements in G,. Then from (det(A))* (det(B)) = 1
and (det(A’))k (det(B’))" = 1 it follows that (det(AA’))* (det(BB'))l = 1. We
also remark that G, is isomorphic to the subgroup defined by Gy = [0 = 0 in
Gl(l, + k,)/ expt.l,,. There indeed always exists an « such that

(det aA)¥e (det aB)l = ot (det(A))*.(det(B))" = 1.

(2) The subgroup G, of Gl(m,) defined by

{AG SVt G, = ALAY| (AY) € GI(L), (Af) € Gl(k,)}. (14)
Multiplication in the group yields
ASA oot 50 L= ALARASBE
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We will intoduce the following notations
Afal = 3% & ALAGY = 37 & Agal AT = 3, (15)
which we will use throughout this paper. We also will use x for s og.

Let (A, By) and (As, Bs) be in G,. We then have
(Al.AQ,Bl.BQ) — ( T(Al.Ag)_l,Bl.Bg) - ( T(Al)_l. T(Ag)_l,Bl.Bg),
which proves the following proposition.

Proposition 2.2 The morphism

G, — G,
(A,B) — (™A, B) (16)

s a group isomorphism sending left invariant vectorfields into left invariant vector-
fields.

Proposition 2.3 The Lie algebra, g, of G, is given by the subalgebra of the (M X
me) matrices which are defined by

K

25 £ aloy + ol (17)
with a = (a — 1)l, + 1, 3= (b—1)lo + j, (@}) € gl(l,), (a) € gl(k,).

It is a direct consequence of proposition [(2.2)] that this Lie algebra, §°, is isomorphic
to g°. The isomorphism is induced from ™u = —(@}), v = (uf).

Let V be the real vectorspace isomorphic to IR™. The algebra g is a subalgebra
of V®@V*. The first prologation ") is defined as the vectorspace V* ®g°NS2(V*) eV

and the k' prolongation likewise as the vectorspace [1] [10]

M =V®- Vi’ NS (Ve V.

k times

A subspace of V* ® V is called of finite type if g = 0 for some (and hence all
larger) k and otherwise of infinite type. We refer to [10] [1] [8] for the details.
We then have the following theorem.

Theorem 2.1 The algebra V & g° is of infinite type if ko orl, equals 1. If k, and 1,
are both different from 1 the algebra is of finite type. Moreover in this case g2 =0
and the algebra V & §° & f](l) is isomorphic to the algebra g~ @© g° @ g*.

In order to prove the theorem we will make use of the representation of g° into the
linear polynomial vectorfields on V. Let (z®) be the coordinates on V. Define the
subalgebra g° as the set of vectorfields

0 v s o
&gxﬂ% with 45 = @]d, + 0,67 (18)
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If k, = 1 or I, = 1, the algebra g=' @ g° @ g' is the algebra of projective
transformations on IR™ [11]. Hence g° = g° = gl(m,), from which it follows that
the algebra V @ g° is of infinite type.

We assume from now on k, and [, to be different from 1. The second prolongation
g? is zero as a consequence of a classification theorem by Matsushima [7] [8] or by
a direct calculation from g™ once this is derived.

Before proving the theorem we will prove the following lemmas.

Lemma 2.1 Any second order vectorfield X = THe x¢z¢ a = such that

s of the form
TZlde, = U 5k‘5d + udék(sc

a

Proof

fé)

For any ub»—b € V the bracket with any homogeneous second order vectorfield

T a0 T a - taking values in g° satisfies the equation

, O

6
[ 4 P b’TUC T

0
1 c?
oxf
for some constants A}, and Bg.

This equation becomes
2uiThs = ALS5 + Bgoy.

Which together with the symmetry 7% = T4 proves the lemma.
8 adk dak
O

Call W be the vector space of the second order vectorfields of the form X =
T 39 82 Let X € V,Y € g° and Z € W. Because the set of all formal

vectorfields on V' is a Lie algebra, we can consider the Jacobi identity
[[XY].2] +[[Y.2] . X] +[[ 4 X].Y] =0.
Lemma 2.2 LetY € g° and Z € W. Then :

[V.Z] €g"

Proof

Because [ X,Y] € V the first term takes values in g°. The thirth term also takes

values in g° by the construction of W. Hence the second term [ [ Y, Z] , X] takes

values in g". But this imples that [ Y, Z] takes values in W by the former lemma.
(I
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As a consequence of both lemmas we are able to write the algebra V & g° & gV as
the vectorspace £ spanned by the vectorfields

~a d ~j ca ~a ] d ~k ca i ~j ca c d
(g —83:;1’ (w0 + Ub(sf)l“? oza’ (56207 + wloy 55)33?% 83:;1)
I R R R
= (u® ) @ ) @€ . 1
(uz ax;ﬂulxj 633';1 + ubxj ax?’ucxkxz 633';1) ( 9)

We find the following proposition.
Proposition 2.4 Both Lie algebras L and g are isomorphic. The isomorphism
Tig=9  ©g°ag' =L
18 induced from
r(ul) = af, T(u') = —a’, 7(u)) = ag, 7(u.) = a’ (20)
with (uf, uf, ug, ul) € g.

This proposition together with both lemmas proves the theorem.

3 The Cartan connections

A. The structure equations

Let P be a principal bundle, of dimension n2—1 (n, = k,+1,), over M with fibre
group H, the isotropy group [(5)]. We then have dim P/H = k,l,. The right action
of H on P is denoted as R,, for a € H, while ad stands for the adjoint representation
of H on the Lie algebra g = pl(ne). Every A € h induces in a natural manner a
vectorfield A*, called fundamental vectorfield, on P as a consequence of the action
of H on P. The vectorfield A* obviously is a vertical vectorfield on P.

A Cartan connection on P is a 1-form w on P, with values in the Lie algebra g,
such that :

(1) w(A)=A, VAeh
(2) Rrw=oadla)w,ac H
(3) W(X)#0, VX € X(P) with X #0. (21)

The form w defines for each x € P an isomorphism of 7, P with ¢g. Hence the
space P is globally parallelisable.
In terms of the natural basis in matrix representation of pl(ne) as given in [(10)]

and [(11)], we write the connection form w as (wf, W}, wf, w., W), with w} = w} = 0.

As basis for the subalgebra h = sl(lo) @ sl(ko) ® IR @ L(IR*,IR") we choose
(eé», ef, ey, €%).
The structure equations of Cartan on P are now defined as
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(1) dwf = —wZ/\wf—w{f/\w?—w?/\w*—i—Q?

i P k P b ik c 7
(2) dw = —wk/\wj—wb/\wj—i-jéjwc/\wk—i—ﬂj

1
(3) dwl = —wWiAwk—w'Awf+ z Spwi A wh +Qf (22)
(4) dui = —winw—winW+u Aw +Q
ko + 1o ;

(5) dw, = k—; wi A wy +

with w! = w? = Q! = Q2 = 0.

In analogy with the projective case described by Kobayashi and Nagano, the
form Qf is called the torsion form while ( 5, Qf, @, €. ) are called the curvature
forms of the connection. The connection form satisfies the following conditions :
wi(AY) =0, wi(A*) = A%, wi(A%) = A}, we(A%) = A, for A= (A}, A}, AL, A,) €
h. Furthermore if X € X such that wf(X) = 0, then X is vertical.

Proposition 3.1 The torsion and the curvature forms are basic forms on the bundle
P. Hence we define :

a __ grabc, j k i __ gribe |l k
Qs —Kijk wy A\ wyg, Qj—Kﬂkwb/\wc,

d j k i i b j k b
OF = Kgdew) AWk, QL = Kit ol Awk, Q= K

ajk *,7k wlj) N Wf (23)

Proof

Let F,, x € M, be the fibre above x. The restriction of w{ to F, is identically
zero and the forms w}, w, w!, w, are linearly independent on F, as a consequence
of [(21 (1)(3))]. Because the form w sends the fundamental vectorfields A* which
are tangent to F), into the left invariant vectorfields A on the group H, the forms
w}, w, W w, satisfy the equations of Maurer cartan on H. The combination of
these equations and equations [(22)] implies the vanishing of the curvature forms
when restricted to Fj.

OJ
From now on we assume the torsion ¢ to be zero.
Proposition 3.2 Let P be a principal fibre bundle over M with structure group H

and ( wé, w}, Wy, Wy ) a Cartan connection on P satisfying the structure equations
[(22)]. The curvature forms possess the following properties :

(1)
(2)

= wg/\Qf—l—Q‘;/\w?—l—w?/\Q*

0
0 = d% —w!AQ. (24)



Grassmannian structures on manifolds 607

Proof

These equations are obtained by taking the exterior differential of equations [(22,(1)
and (5))].
O

B. The normal Cartan connection

The first equation of the structure equations of Cartan with 2 = 0 is called the
torsion zero equation and does not contain the form w?, while the other equations de-
fine the curvature forms. A natural question then arises, namely : let (wf, w}, Wi wy)
be given a priori on P which satisfy the torsion equation, does there then exists a
w! such that w is a Cartan connection on P and if so is there a canonical one.

Theorem 3.1 Let the bundle P be given as defined and (wf, wy, w}, wy) be 1-forms
satisfying :
(1) Wi (A7) = 0, wy (A7) = Af, wj(A") = Aj, w. (A7) = A,

VA= (A}, A}, AL, A,) €h

(2) (Ra)*(wf, Wi, wit,wyi) = ad(a™") (W, Wi, wi, w.), Ya € H
(3) If X € X(P) such that w}(X) =0, then X is vertical.

(4) dwfz—ngwf—w;Awg—waw*.

Ifl, # 1 and k, # 1 then there exists an unique Cartan connection w on P

_ a 7 a 7
w = (wf, Wiy Wy Wi, Wa):

such that : A A
Q=0 and K%=KH (25)

Proof

The existence of a Cartan connection satisfying the given conditions follows from a
classical construction using the partition of unity. Because the manifold is supposed
to be paracompact there exists a locally finite cover {U,} of M such that P(U,) is
trivial, for each . Let {(fa, U,)} then be a subordinate partition of unity. If for each
a the form w, is a Cartan connection on P(U,) with prescribed (wf, wf, wi, w.), then
>a(fa 0T)w, is a Cartan connection in P (7 being the bundle projection P — M).

Hence the problem is reduced to a local problem for a trivial P. Let o : U C
M — P be a local section we define the 1-form w! over o as wi(X) = 0 for all
tangent vectors to o and w!(A*) = A’ for A € h. Now any vectorfield Y on P can
be written uniquely as Y = R,(X) + V, where X is tangent to o and a € H and V
is tangent to the fibre. Hence the condition

w(Y)(p.a) = ad(a™)(w(X))(p) + A, p=o(), s€M

with *A the unique fundamental vectorfield corresponding to A, such that *A(p.a) =
V(p.a), determines w(Y").
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We will prove the existence of a Cartan connection satisfying the required con-
ditions [(25)] by means of a set of propositions.
O

Proposition 3.3 Let w be a Cartan connection on P. Then there exists a Cartan
connection satifying the condz’tion Q, = 0. Two Cartan connections satisfying this
same condition are related by OF = wi — AR with A% = AKl

Proof

Using conditions [(21,(1) (3))] the unkown form can be written as
Wl =wi — ARG
Equation [(22, (5))] then yields

ko +1
kolo

0= 203 A AR +Q, — Q.

If Q. # 0 choose A% such that

ko + 1,
0= ];; WO A ALY 10,
or
: : 2k,l ;
Azk_Akz:_ OOsz'
ab ba ko+lo *ab

As follows directly from this equation two Cartan connections satisfying the curva-
ture condition Q, = 0 are related by &} = wi — A%WP with A% — Akl = 0.
O

Proposition 3.4 Let w be a Cartan connection on P satisfying condition ), = 0.
Then the Bianchi identities [(24)] become

(1) K 0+ Katy o+ Kt o+ Kt 07" 4+ Kl o2 + Ky o) = 0
(2) Koo+ Ky + Kl = 0. (26)

Consequences : From equation [(26,(1))] we find by contraction of the indices k,
& jand a & d

Kiie' + Kige' — Ky’ — Kegy' =0 (27)
and by contraction of k, & j and a & c the expression
myjl aml ljm aml

kKjd(JZ leac ijdc + Kcad = 0. (28)

Lemma 3.1 The expression
mkl dlm
Kkbc - chb

is symmetric in the pair ((m,b), (l,c)).



Grassmannian structures on manifolds 609

Proposition 3.5 Let w be a Cartan connection on P satisfying 2, = 0. Then there
exists a unique Cartan connection satisfying the curvature conditions [(25)].

Proof

It is sufficient to consider the class of Cartan connections determined by the condi-
tion 2, = 0. Two such connections are related by

ol =Wl — AkGE

with A% — A% [(3.3)]
Equation [(22, (2))] then gives

Q= — Al Aw§ =0

or

K5 — Kot — AL 0F | Awi =0,
which yields

Kik — itk (5ngb—5§Ag’;) = 0.

jba jba
Summation on the indices [ and j gives :
ilk ik L ( pin ik
Kipa — Klba B) (Aab - lAba) =0. (29)
From [(22),(3)] we derive in a similar way the following equation :

(62 ALE — 52 A + K — R — o,

bca bca

N | —

Contraction on d and c¢ yields

(A — kAL + Kl — Ky = 0. (30)

a a

N | —

From the lemma [(3.1)] we know that the expression
Kipo = Kaai

is symmetric in the pair ((i,b), (k,a)). If
Kigo = Koay # 0

we define A% such that

. 1 .
K — K25 = A%~ 0,4 kAl 31

a
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Or
Aki — # Akz + l(l + k )Azk (32)
ab 4 — (lo + kQ)Q ba 2 o o ba |
with
Al = K = K2 )

Substitution of [(31)] in the sum of equations [(29)] and [(30)] gives
i Kl =o

This proves the theorem for [, # 1 and k, # 1. If [, or k, equals one we refer to
the projective case treated by Kobayashi S., Nagano T. [3]. The uniqueness follows
from the same considerations.

(|

Definition 3.1 The unique Cartan connection w on P satisfying the curvature con-
ditions [(25)], will be called the normal Grassmannian connection on P.

Proposition 3.6 Let w be a normal Cartan connection on the bundle P. The
following curvature equations are identities :

kI = LK

jde dac

koK = 1K

jde jed
kolni = LK (34)

Proof

These relations follow from the conditions [(25)] and the identities [(28)].
|

Proposition 3.7 Let P and w be as above. If Qz =0 and Qf = 0, then it follows
that Q& = 0.
Proof

If K, # 1 and [, # 1 then the manifold M has dimension larger than 3. The
proposition follows from differentiation of equations [(22, (2)(3))] :

) ) ) 1 . )
dQ}—QZAwf+w,’€AQf+E(5}Qwa,§—Q},/\w?:O (35)
and
1
ng—QgAwg+ngQg—k—agngQ’;ngQ’g:o. (36)

From equation [(35)] one finds

1

lQ’j/\w,ﬁ/\w}’—QZ/\w?/\w;’:O.
o



Grassmannian structures on manifolds 611

While from equation [(36)] one has

L k b
k—OQC/\wg/\qu—Qb ANwi Awj = 0.

Combining the two equations gives
(ko + 1o)Q2 A wip Aw? =0,
which substituted in equation [(35)] gives
QA w? =0
and in equation [(36)]
Wi A Q= 0.
Or in terms of the components we find the two equations :
Kb + Kahedy, + Koy, = 0.
and
7 a i sa lik sa
Kbﬁé(se + Klfdle c + Kbec(sd = 0.
In case [, > 3, let [ be different from k and j. We find by taking m = [ that K}* = 0
. In case k, > 3, let ¢ be different from e and d. One finds the same result by taking
a=c.
The special case k, = 2 and [, = 2 is easily proven by consideration of the different

casesk=7=1,k=1#j,e=c=dand e=c #d.
OJ

Proposition 3.8 Let P with k, > 3, l, > 3 and w be as above. Then
Q=0 iff Q=0

Proof
From the Bianchi identities [(24,(1))] we find with Q) =0

Qp A w? = 0.
In terms of the components this equation is
K307 + Koo' + Kgi*0h = 0,
Let m be different from k and [. Taking j equal to m yields K2 = 0.
Conversally, the condition 2§ = 0 implies Qz = 0 by an analogous argument using
the Bianchi equations [(24,(1))].

O
This proves the following theorem.

Theorem 3.2 Let P with k, > 3, [, > 3 and w as above. The bundle P 1is locally
flat iff Q5 =0 or Qp = 0.

Local flatness of P means vanishing of the structure functions [2].
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4 The Ehresmann connection

A. Second order frames

Let M be a manifold of dimension m, and f a diffeomorphism of an neighborhood
of 0 in IR™ onto an open neighborhood of M. If f is a local diffeomorphism then
the r-jet jj(f) is an r-frame at © = f(0). The set of r-frames of M will be denoted by
F7 (M), while the set of r-frames at f(0) forms a group G"(m,) with multiplication
defined by the composition of jets :

Jo(91) - Jo(92) = jo (g1 092).
The group G"(m,) acts on F"(M) on the right :
Jo(f)-do(g) = Jo(f og). (37)

The Lie algebra of G"(m,) will be denoted by ¢"(m,). We mainly will be interested
in the bundle of 2-frames on M. Let (z*) be some local coordinates on M and z°
the natural coordinates on IR™. A 2-frame u then is given by u = j3(f).

From

1
f(z) = 2%q + uz’eq + iugwa‘:%”ea, (38)

we get a set of local coordinates (2%, uf, ug,) on F*(M).
In a similar way we may use (s3, s3,) as coordinates on G*(m,). The multipli-
cation in G?(m,) is given by

(5. 53,)-(s5. 55,) = (5557, 55, + 55,5750). (39)

while the action of G*(m,) on F?(M) is given by

(z%, ug, ug,).(s3, s5,) = (2%, ugsy, ugsy, +ug,s3s"). (40)
Let
0 0
(e 55’ €8 = pza ® dz"”)

be a basis for the Lie algebra of affine transformations on IR™°. The canonical one
form 6 on F?(M), which we write as

0 = 0%, + O5¢l,
is given in local coordinates by (with v§ is the inverse matrix of uf) [4] :
0 = vgdxﬁ , )
05 = v5duy — viu)zvhda’. 42)
Because the group G?%(m,) acts on F?(M) on the right, with each A € ¢*(m,)

corresponds a fundamental vectorfield A* € X (F?(M). Let 72 : g*(m,) — g*(m.),
we have the following proposition [3] :
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Proposition 4.1
(1) 9(A*) = 7 (A) for A € g*(m,)
(2) R0 = ad(a™1)0, a € G*(m,).

The canonical form satisfies the structure equation [4] :

dg* = — 05 N 6°. (43)

B. The Grassmannian bundle Gr(k,,,)(M)

We will now define a subbundle of F?(M) which is isomorphic with the bundle
P. In this section we use the identification IR = IR™~.

Proposition 4.2 The embedding H — G*(my,), m, = kol,, defined by

o S i Qa

i go gt H{Sﬂ - oo | | 44

(B0 = g < apadeat + Bromad]. a

with o = (a—1)l,+7, 6=0b—-1)l,+7,v7v=(c—1)l,+k and 042 = TB_I}, Yre = 3%,

18 a group morphism. Let H designate image of the embedding in G*(m,).

Proof
The multiplication in H yields

(85, B2, B8)- (B4, B2, 82) = (B3B3, B3B3 + BiBs, B.52).- (45)
Let
s =alBy, 8§, =~ |Bralmeal, + Blajmal]
and
s§=aify, 85, =— |BralAar + flolinal]

We find for the multiplication
(55, 55,)-(s3, s3,) = (&5 45 0q3,

~ipa [ ab 1 i b 1 j Aa Al ~ Ad na 1 ~ ~i| § ab_mpje

—& 3y | Bhak,mead, + Bhafmacd,| — [BalAad, + BlakAndl | of, 8505 50),
which proves the group morphism.

O

Definition 4.1 A Grassmannian structure, Gr(k,,l,)(M), on a manifold M is a
subbundle of F*(M) with structure group H.

Proposition [(4.2)] together with some classical results in bundle theory [9] proves
the following theorem.
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Theorem 4.1 Let P be a H-bundle over M. Then there exists a Gr(k,,l,)(M),
subbundle of F?(M), which is isomorphic to P.

Definition 4.2 A (k,,l,)-structure on a manifold, B%*l) (M), is a subbundle of
FY(M) with structure group G,.

Theorem 4.2 Fach Grassmannian structure, Gr(k,,l,)(M), on M is the prolon-
gation of a (ko,l,)-structure. Moreover this structure has vanishing second prolon-
gation.

Proof

Let B(ol)(M) be any subbundle of F'(M) with structure group G,. The first
prolongation of B®*«!) (M) is a subbundle of F2(M) with structure group the semi
direct product of G, and the group of automorphisms of V'~ IR™° generated by the
Lie algebra gV [10]. Hence the first prolongation is a Gr(ko, L,)(M).

Let Gr(k,,l,)(M) be given and 7? : F?(M) — F'(M) the bundle projection.
Then 72(Gr(ko,1,)(M) is a bundle B%l)(M) whose prolongation coincides with
Gr(ko,l,)(M) by the isomorphism of the structure groups. The second prolongation
of a B lo) (M) vanishes identically [(2.1)].

(I

We refer to S. Sternberg [10] for a detailled exposition of the relationship between
connections on G structures and prolongations. In particular the set of adapted
symmetric connections is parametrised by the first prolongation of the Lie algebra
g™, To make this clear we first need the following lemma on symmetric affine
connections.

Lemma 4.1 LetT' : M — F*(M)/Gl(m,) be an affine symmetric connection. Then
there exists a canonical homomorphism T : FY(M) — F?*(M) canonically associated
with L.

Proof

For a proof we refer to [5]. In local coordinates the map I is given by

[:2%=2%; ug=ug; ug, =—uglyul. (46)

Remark that .

05 = v (duj + I, ujdx’). (47)
Let B%olo)(M) be a (ko,l,) structure on M. An adapted affine symmetric connec-
tion on B*elo) (M) is a map I' : M — F?(M)/GI(m,) such that I*0 restricted to
Bolo) (M) is a connection form with values in g°. Let ®(B%l))(M) be the set

of adapted affine symmetric connection and denote the set of associated homomor-
phisms by ®(Bkelo))(M).
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In order to prove the next proposition we need some local expressions. Let
(z% = %) be the coordinates on IR™ ~ IR**!>. The Lie algebra of the second
order formal vector fields £ on this space as given in [(19)] has the following basis

0 A A .0 A A o
J— Z‘ a a ’L — a . Cct ;—ak ar — ~A) wCl
Cai = o es0p + ey0; = 0, T oz T 05T S0 © it (48)

In terms of local coordinates on M and taking the identification ¢ directly into
account, a 2-frame is given by

F(x) = |2 + ugm + ugy 275 | e (49)

Let o be a local section of F'(M), then ¢ is given by the functions
o ()= Ep(x) = o up;. (50)
The fundamental form along o becomes

0" = o0 = Fg'(x)da”, (51)

while the connection form with respect to a given I' € ®(Bklo) (M) is
Oyt = o' = FdEy; + FoTo, By .da?. (52)

g

The form 6 satisfies the structure equation [(43)]
4% = g A 5.

Let ég; be a second connection form with respect to a different morphism belonging
to ®(Bkelo)(M). This form satisfies the same equation [(43)]. Hence we find
0= (B2 — 635y N 6¥. (53)

The difference (6% — 6§4) defines a morphism V — g° C V ® V* at each z € M,
satisfying [(53)] and hence defines an element in g™"). This implies that at z € M :

i — 03 = w020 + ;030 (54)
with ul € M(lo, k,).

Proposition 4.3 Any two adapted affine symmetric connections on B(kO’lo)(M) are
locally related by :

T —T7, = 2uELFNFY. (55)

with up, an element of M (1, ko).
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Proof

We know that any connection form on B®*o!)(M) takes values in g°. Hence
g;a = l()loz i + eéa(sb
We find along the section o :

P A
Opo 5.0 + 05, E5.65 = F“Z(a—EbJ)EEZ FIT B By

From the theorem [(2.1)] and equation [(54)] it follows that for any two of such
connection forms there exists an element u; such that

w020 + u; 0oy, = FO(T0 — T2, ) ES By,
Hence
EQ; [upk620% + e;050; | FEMFY =107 — T,
O

Because the first prolongation g can be identified with M (lo, ko) this describes
the parametrisation of the set of adapted connections. This allows us to formulate
the following theorem.

Theorem 4.3 Let Belo) (M) be a (k,,1,)-structure on M. The set
{L(BE(M)) | T e o(BEY)(M)} (56)

forms a Grassmannian structure on M.

Consequences :

(1) Each Gr(k,,l,)(M) is locally determined by a section
Too: M — F*(M)

where I' € ®(B% 1)) (M) and o a section M — Bl (M),

(2) The set of Gr(k,,1,)(M) bundles is given by F?(M)/H. Each local section T oo
determines locally an element of F?(M)/H.

(3) Each Gr(k,,1,)(M) is equivalent with a B%ol)(M) together with its set of
adapted connections.

As alternative formulation of former theorem we have :

Theorem 4.4 Each Gr(k,,l,)(M) is locally uniquely defined by a section o : M —
FY(M) and an identification IR™ = IR*.

C. The normal Grassmannian connection coefficients
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We will now investigate the coefficients of a normal Grassmannian connection
in terms of an adapted frame and give an expression of the normal Grassman-
nian curvature tensor. Let Gr(ko,[,)(M) be a Grassmannian structure defined as
a subbundle of F?(M). Let 6, 65 be the fundamental and the connection form on

Gr(ko,1,)(M). Because of the identification IR™ = IR**!* we write these forms as
(6%, 93», 6¢) with k0! —1,0% = 0 in order to fix their uniqueness in the decomposition.
We then define on Gr(k,,,)(M)

1 , 1
T 0305wy = 0 — 7 005 we = —

1

1
0= 0s (57)

a __ pat ., i 70t
0

J
As a consequence of theorem [(3.1)] there exists a unique normal connection form

w = (W, Wi, Wi, we, wh) on Gr(ko, o) (M).
Theorem 4.5 Let M be a manifold equipped with a (ko,1,) structure B%eto) (M)
and U C M an open subset carrying an adapted coframe F3dx®. Let further
Gr(ko, 1) (M) be the Grassmannian structure on M determined by B¥ o) (M) and
w= (W, wj», Wy y Wiy w;)

the normal Cartan connection.

Then there ezists a unique local section v : U — Gr(ko,l,)(M) determined by the

conditions
viwhdz® = Fidx®, viw. =0. (58)

Proof

Any section ¥ may be decomposed into a section o of Bel)(M) and a section
9+ BUolod(M) — Gr(k,,l,)(M). The requirement v*wl dz® = F2drz® implies
o*wi dx® = F¢ dx®, which determines the section o. Let I’ be a morphism F*'(M) —

F?(M) defined by an adapted symmetric connection. Using proposition [(4.3)] and
expression [(48)] the map ¢ can be written as

o, ck, bj

gy = —upll'G, + 2upugivigu,lul,

with wup, a function on Y. Or also

@ o [T a pck by
Upi o = —Ep5[IG, + 2“b’fEch(fF B

p) 1~ ai>

with E% the local frame dual to the coframe F%.
We remark that 6% = —ﬁw*. The calculation of (¥ 00)*05 = 0 yields, with the
use of expression [(42)], the equation

FUdE), + T da’ + 2up Bl FEF Filda? = 0

or

1 .
U Fytda? = =S [PYdE] + 17, da”).
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The unicity follows from the same calculations. Any two morphisms of B*ele) (M)
into F?(M) indeed are, as a consequence of proposition [(4.3)], defined by affine con-
nections on B¥elo) (M) which are related by

Y T, = 2u B FEEFY.

7 (™ o)

A simple substitution then yields the unicity.
OJ

The theorem allows us to introduce the normal Grassmannian connection coef-
ficients. We set

* 4 7 «@ *x a __ T1Q «@ * 4 7 «
o'w; =1, dz®,  o'wy =1y, dz%,  o'w, = II;,dx". (59)

Dual to the coframe F dx® we define the frame E}f‘a%a by the conditions

FLE)" = 6;4]. (60)
From equation [(22)(5)] we find
o*wl Aol =0

or
FiIll, — FEIT,, = 0.

iaaf

Define IT}, ; E¥’ = II}}. The former equation becomes

1 - 1 = o 0
Let A
L = dwj + wi A wf (62)
and
L} = dwy + wi A\ wy. (63)

The equations [(22)(2) and (3)] become

i i | i b
Kjas = Lijap + 5(Ihatjs — MysFy,)
a a 1 a 7 a 7
Kpog = Lpopt+ i(Hian,H — 15 Fy,, ). (64)
Using the notations ‘ o
Ly BB = LY (65)
and ‘ ‘
LB B = L33, (66)
we find
. . 1 . .
K = L SIS, — )
1
Kpy = Liki + S (15 6eoy, — 15F646,,). (67)

2
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From the condition
Kilk - dei =0
lba adb
we obtain
ko + 1,

ilk dki
lea - Ladb - 9

ki ik
Hab + Hab - 0
This gives

o = L)y —1 [(ko + o) (Lipe — Ligy) +2(Lipg — Lﬁfd@)} : (68)

Let M be equipped with an adapted symmetric affine connection on B (koslo) (M),
We define the coefficients (77, 42 by

Vi B = YLl + Vi By,

a a

together with k,yi% — 4k = 0.
A Grassmannian related covariant derivation is defined as

VB = |(ve +uidl) of
+ (i +uld)) o] BL. (69)
Or ) ‘ ‘
VE}lElz = VE}lElz + U’(L)E(jl + UiEé (70)

Using this expression we find

Proposition 4.4 Let X,Y € X(M), V and V be two adapted connections on the
bundle B¥ol)(M). Let further o : U — B*D(M) be a local section and &(x) the
corresponding identification of the tangent space T,(M) at x € U with M(ko,1,).
Then there exists a map pu: U — M(l,, ko) such that

VxY =VxY +6 3 (n.5(X)).a(Y) + (u.a(Y)).a5(X)]. (71)

Because p € M(l,,k,) and ¢ € M(k,,l,) the composition (p.a(X)(x)) is an
element of M(l,,1,) which acts on ¢(Y)(z) by composition, giving thus an element
of M(k,,1,).

Remark We can define the (2, 1)-tensorfield

~ -1

n=a “.u.0.

The Grassmannian relationship of two symmetric affine adapted connections is then
given by
VxY = VxY + i(X)(Y) + a(Y)(X).

We define the splitting of the coefficients v into the trace free parts and the trace
part as (5%, 7ik, A%.), with (358 = 7% = 0). A Grassmannian related covariant
derivation is then given by
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. , o 1. ,
VB = |(5 -+l - —uisy) o

(T i - i) 8

. ko+1, . .
+ (%ﬁ = ué) 55521 Ey (72)
with
] 1 i ci
:)/ia = W(k(f)ga + lOﬁYca)' (73)

The normal Cartan connection is defined by the requirement

‘ 1 . ‘
v ko Jl lo Ccl
ua ko + lo( P)/ja + P)/ca)

and the coeflicients of this connection are

W = i sl + i)
. . . 1 .
R R ] (74

We now are able to investigate the Grassmannian curvature tensor. Because the
bundle Gr(k,,1,)(M) is a subbundle of F?(M) the restriction of the homomorphism
72 F2(M) — FY(M) to Gr(ke,l,)(M) is the homomorphism :

1 : Gr(ky, 1) (M) — B¥alo)(Ar). (75)

The fibres of n are isomorphic to the kernel M* of the homomorphism H — G,.
The following theorem proves that the curvature forms Qz and €U are defined on
the bundle B®V(M) C FY(M).

Proposition 4.5 Let Gr(k,,l,)(M) be a Grassmannian structure equipped with a
normal Grassmannian connection. Then the curvature forms Qz and QF satisfy the
following conditions. Let A* be a fundamental vectorfield with A € g*.

Then

(1)

La- () = La(Qf) = 0. (76)
(2) The tensor
o ) a jo b a i
K,@'y(f - Kj'yaF’i,@E(jz + Ka“/O'F”i,@Eb (77)

is a (1, 3)-tensorfield on M, which we call the Grassmannian curvature tensor.



Grassmannian structures on manifolds 621

Proof

The relations (1) are a direct consequence of the equations [(36)], while (2) is a con-
sequence of the fact that B*ele)(M) is a subbundle of F''(M) together with proposi-
tion [(3.1)]. Writing the curvature forms as Q = K sdz® ® dz” and Qf, zdz® @ dz”,

E}®, the Grassmannian curvature tensorfield is defined as

K§yo = [K;vaaz - ng(sﬂ FEy”
which is equivalent with [(77)].
(I

We call a Grassmannian structure on M locally flat if the structure has vanishing
structure constants, which means that the structure is locally isomorphic with a
flat structure [2]. The flat structure here means the structure of a Grassmannian.
As a consequence of proposition [(3.7)] and because the dimension of the manifold
admitting a Grassmannian structure is larger than 3, we have

Theorem 4.6 A Grassmannian structure on M s locally flat iff the Grassmannian
curvature equals zero.

References

[1] Guillemin V.W., Sternberg S., ‘An Algebraic Model of Transitive Differential
Geometry’, Bull. Am. Math. Soc., 70, 1964, 16-47

[2] Guillemin V.W., ¢ The integrability problem for G-structures’, Trans. Am.
Math. Soc., 116, 4, 1965, 544-560

[3] Kobayashi S., Nagano T., ‘On Projective Connections’ , J. Math. and Mech.,
13, 2, 1964, 215-235

[4] Kobayashi S., ‘Canonical Forms on Framebundles of higher order contact’,
Proc. Symp. Pure Math., Vol. 3., Amer. Math. Soc., 1961, 186-193

[5] Kobayashi S., Nomizu K., ‘Foundations of Differential Geometry, Vol I, Inter-
science Publ., 1963, J. Wiley & Sons, New York - London

[6] Manin Y.I., ‘Gauge Field Theory’, Springer Verlag, Berlin New York, 1988

[7] Matsushima Y., ‘Sur les algé bres de Lie lineaires semi-involutives’, Colloque
de topologie de Strassbourg (1954)

[8] Singer I.M., Sternberg S, ‘On the infinite groups of Lie and Cartan’, Journal
&’ Analyse Math., XV, 1965, 306-445

[9] Steenrod N., ‘The Topology of Fibrebundles’, Princeton Univ. Press, 1951,
Princeton



622 P.F. Dhooghe

[10] Sternberg S., ‘Lectures on Differential Geometry’, Prentice Hall, 1965, N.Y.

[11] Tanaka N., ‘Projective connections and projective transfomations, Nagoya
Math. J., 12, 1957, 1-24

P.F. Dhooghe

DEPARTMENT OF MATHEMATICS, KULeuven,
Celestijnenlaan, 200B,

B 3001 LEUVEN, BELGIUM

Email : paul dhooghe@mtk@wisk.kul.ac.be



