
Grassmannian structures on manifolds

P.F. Dhooghe

Abstract

Grassmannian structures on manifolds are introduced as subbundles of
the second order framebundle. The structure group is the isotropy group of
a Grassmannian. It is shown that such a structure is the prolongation of a
subbundle of the first order framebundle. A canonical normal connection is
constructed from a Cartan connection on the bundle and a Grassmannian
curvature tensor for the structure is derived.

1 Introduction

The theory of Cartan connections has lead S. Kobayashi and T. Nagano, in 1963, to
present a rigourous construction of projective connections [3]. Their construction,

relating the work of Eisenhart, Veblen, Thomas a.o. to the work of E. Cartan, has
a universal character which we intend to use in the construction of Grassmannian-
like structures on manifolds. The principal aim is to generalise Grassmannians in a

similar way. By doing so we very closely follow their construction of a Cartan con-
nection on a principal bundle subjected to curvature conditions and the derivation
of a normal connection on the manifold.

The action of the projective group Pl(no) on a Grassmannian G(lo, no) of lo-
planes in IR

no is induced from the natural action of Gl(no) on IR
no . Let H be the

isotropy group of this action at a fixed point e of G(lo, no). The generalisation will

consist in the construction of a bundle P with structure group H and base manifold
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M of dimension mo = loko with ko = no − lo. The bundle P will be equipped
with a Cartan connection with values in the Lie algebra of the projective group,

which makes the bundle P completely parallelisable. We will show that such a
connection exists and is unique if certain curvature conditions are imposed. The
Cartan connection identifies the tangent space Tx(M) for each x ∈ M with the
vectorspace L(IRlo, IRko). Identifying L(IRlo, IRko) with V = IR

mo , the group H

acts on V to the first order as Go = Gl(lo)× τGl(ko)
−1/ exp tIno properly embedded

in Gl(mo). Let g̃0 denote the Lie algebra of this group, which is seen as a subspace
of V ⊗ V ∗. We prove that if ko ≥ 2 and lo ≥ 2, the Lie algebra h of H, as subspace

of V ⊗ V ∗, is the first prolongation of the Lie algebra g̃0. Moreover the second
prolongation equals zero.

The action of H on V allows to define a homomorphism of P into the second order

framebundle F 2(M). The image, Gr(ko, lo)(M), is called a Grassmannian structure
on M . From the previous algebraic considerations it follows that a Grassmannian
structure on a manifold is equivalent with a reduction of the framebundle F 1(M) to

a subbundle B(ko,lo)(M) with the structure group Go. A Grassmannian connection
from this point of view, is an equivalence class of symmetric affine connections, all
of which are adapted to a subbundle of F 1(M) with structure group Go. The action
of Go in each fibre is defined by a local section σ : x ∈ M → F 1(M)(x) together

with an identification of Tx(M) with M(ko, lo). This result explains in terms of
G-structures the well known fact that the structure group of the tangent bundle on
a Grassmannian, G(lo, no), reduces to Gl(ko)×Gl(lo) [6]. The consequences for the
geometry and tensoralgebra are partly examined in the last paragraph, but will be

studied in a future publication.

We remark that as a consequence of the algebraic structure the above defined

structure is called Grassmannian if ko ≥ 2 and lo ≥ 2. Otherwise the structure is a
projective structure. Hence the manifolds have dimension mo = kolo, with ko, lo ≥ 2.

Let (x̄α), α = 1, · · · , mo be coordinates on IR
mo , and (eia), a = 1, · · · , ko; i =

1, · · · , lo, the natural basis on M(ko, lo). (xai ) are the corresponding coordinates on
M(ko, lo). We will identify both spaces by α = (a−1)lo+i. Let σ : U ⊂M → F 1(M)
be a local section and σ̄ be the associated map identifying the tangent space Tx(M)

(x ∈ U) with M(ko, lo). An adapted local frame with respect to some coordinates
(U , (xα)) is given as σ̄−1(x)(eia) = Eiα

a
∂
∂xα

(x). If∇ and ∇̃ are two adapted symmetric
linear connections on B(ko,lo)(M), then there exists a map µ : U → M(lo, ko) such
that for X, Y ∈ X (M) :

∇̃XY = ∇XY + σ̄−1[(µ . σ̄(X)) . σ̄(Y ) + (µ . σ̄(Y )) . σ̄(X)].

Because µ ∈ M(lo, ko) and σ̄(X)(x) ∈ M(ko, lo), for X ∈ X (U), the term
(µ . σ̄(X)(x)), as composition of matices, is an element of M(lo, lo) which acts on
σ̄(Y )(x) giving thus an element of M(ko, lo).

Analogous to the projective case we will construct a canonical normal Grass-
mannian connection and calculate the expression of the coefficients with respect to

an adapted frame. The curvature of the Grassmannian structure is given by the
forms Ωi

j, Ωa
b , Ωi

a, with respect to a Lie algebra decomposition of h. We prove that
if lo ≥ 3 or ko ≥ 3 the vanishing of Ωi

j or Ωa
b is necessary and sufficient for the
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local flatness of the bundle P . The two curvature forms Ωi
j and Ωa

b are basic forms
on the quotient π2

1 : Gr(ko, lo)(M) ⊂ F 2(M) → F 1(M) and hence determine the

Grassmannian curvature tensor, whose local components are given by

Kα
βγσ = Ki

jγσF
a
iβE

jα
a + Kb

aγσF
a
iβE

iα
b ,

with Ωi
j = Ki

jαβdxα ⊗ dxβ and Ωa
bαβdxα ⊗ dxβ. Ejα

b is an adapted frame and F a
iβ

the corresponding coframe. It follows that the vanishing of the Grassmannian cur-
vature tensor is a necessary and sufficient condition for the local flatness of the
Grassmannian structure for any lo ≥ 2 and ko ≥ 2.

We assume all manifolds to be connected, paracompact and of class C∞. All

maps are of class C∞ as well. Gl(no) denotes the general linear group on IR
no

and gl(no) its Lie algebra. We will use the summation convention over repeated in-
dices. The indices take values as follows : α, β, · · · = 1, · · · , mo = kolo; a, b, c · · · =
1, · · · , ko; i, j, k, · · · = 1, · · · , lo. Cross references are indicated by [(.)] while refer-
ences to the bibliography by [.].

2 Grassmannians

A. Projective Group Actions

Let G(lo, no) be the Grassmannian of the lo-dimensional subspaces in IR
no . Dim

G(lo, no) = loko, no = lo + ko. Let S be a ko-dimensional subspace of IR
no . An

associated big cell U(S) to S in G(lo, no) is determined by all transversal subspaces

to S of dimension lo in IR
no . One observes that

G(lo, no) = ∪I U(SI)

where I is any subset of length ko of {1, 2, · · · , no} and SI the subspace of dimension

ko spanned by the coordinates (xI) in IR
no .

Let (x1 · · · , xlo, xlo+1, · · · , xno) be the natural coordinates on IR
no . For simplic-

ity we will choose a rearrangement of the coordinates such that S is given by the

condition x1 = x2 = · · · = xlo = 0.
Let M(no, lo) be the space of (no × lo) matrices (no rows and lo columns). Any

element may be considered as lo linearly independent vectors in IR
no . Hence each

y ∈M(no, lo) determines an lo-plane in IR
no . We get a natural projection

π : M(no, lo)→ U(S), (1)

which is a principal fibration over U(S) with structure group Gl(lo). Representing

the coordinate system on M(no, lo) by a matrix Z, the big cell U(S) is coordinatised
as follows. If Z ∈M(no, lo), we will write

Z =

(
Z0

Z1

)
,

with Z0 an lo × lo matrix and Z1 an ko × lo matrix, no = ko + lo.
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The coordinates are obtained by

Z̃ = Z1.Z
−1
0 ,

where we assumed Z0 to be of maximal rank.

In terms of its elements we get

Z =

(
zij
zaj

)
,

i, j = 1, · · · , lo and a = 1, · · · , ko, to which we refer as the homogeneous coordinates.
Denoting by wi

j the inverse of zij, we obtain

Z̃ = (xai ) = (zajw
j
i ).

which are the local coordinates on the cell. In the sequel we will identify the cel

with M(ko, lo).
The action of the group Gl(no) on IR

no induces a transitive action of Pl(no) on
G(lo, no). On a big cell the action of Pl(no) is induced from the action of Gl(no) on
Z on the left. Let β be in Gl(no). In matrix representation we write β as :

β =

(
β00 β01

β10 β11

)
, (2)

with β00 ∈M(lo, lo), β11 ∈M(ko, ko), β10 ∈M(ko, lo), β01 ∈M(lo, ko).
The local action of an open neighbourhood of the identity in the subset of Gl(no)

defined by detβ00 6= 0 on M(ko, lo) is given in fractional form by

φβ : x 7→ (β10 + β11 x)(β00 + β01 x)−1 (3)

for β ∈ Gl(no) as in [(2)] and x ∈M(ko, lo).
Because the elements of the center of Gl(no) are in the kernel of φβ this action

induces an action of an open neighbourhood of the identity in Pl(no).
In terms of the coordinates and using the notation

β00 = (βij), β01 = (βia), β10 = (βai ), β11 = (βab ) and β−1
00 = (γij),

we find the Taylor expression

x̄al = βakγ
k
l + (βab − βakγ

k
j β

j
b)x

b
mγml

−βacx
c
kγ

k
mβmb xbnγ

n
l + βakγ

k
mβmc xcjγ

j
nβ

n
e x

e
rγ
r
l + · · · . (4)

Consequences :

(a) The orbit of the origin of the coordinates in M(ko, lo), is locally given by (0) 7→
β10β

−1
00 .

(b) The isotropy group H at 0 ∈M(lo, ko) is the group

H : {β =

(
β00 β01

0 β11

)
/ exp t.Ino}, (5)
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with β00 ∈ Gl(lo) and β11 ∈ Gl(ko). The subgroup H in Taylor form is given by

x̄aj = βab γ
m
j xbm −

1

2
[βab γ

i
kβ

k
c γ

l
j + βac γ

l
kβ

k
b γ

i
j]x

b
ix
c
l + · · · . (6)

B. The Maurer Cartan Equations

Let (uia, u
i
j, u

a
b , u

a
i ), with i, j = 1, · · · , lo , a, b = 1, · · · , ko, be local coordinates at

the identity on Gl(no) according to the decomposition [(2)] and (ω̄ia, ω̄
i
j , ω̄

a
b , ω̄

a
i ) the

left invariant forms cöınciding with (duia, duij, duab , duai ) at the identity. The Maurer

Cartan equations are

(1) dω̄aj = −ω̄ak ∧ ω̄kj − ω̄ab ∧ ω̄bj

(2) dω̄ij = −ω̄ik ∧ ω̄kj − ω̄ib ∧ ω̄bj

(3) dω̄ab = −ω̄ak ∧ ω̄kb − ω̄ac ∧ ω̄cb

(4) dω̄ia = −ω̄ik ∧ ω̄ka − ω̄ib ∧ ω̄ba.

Let ω̄1 = ω̄ii and ω̄2 = ω̄aa . We define

ωij = ω̄ij −
1

lo
δij ω̄1, ωab = ω̄ab −

1

ko
δab ω̄2, ω∗ =

1

lo
ω̄1 −

1

ko
ω̄2. (7)

Passing to the quotient Gl(no)/ exp t.Ino we find the Maurer Cartan equations on
Pl(no).

Proposition 2.1 The Maurer Cartan equations on Pl(no) are

(1) dωaj = −ωak ∧ ωkj − ωab ∧ ωbj − ωai ∧ ω∗

(2) dωij = −ωik ∧ ωkj − ωib ∧ ωbj +
1

l
δij ω

k
c ∧ ωck

(3) dωab = −ωak ∧ ωkb − ωac ∧ ωcb +
1

k
δab ωck ∧ ωkc (8)

(4) dωia = −ωik ∧ ωka − ωib ∧ ωba + ωia ∧ ω∗

(5) dω∗ =
ko + lo
kolo

ωai ∧ ωia.

Remark that ωii = ωaa = 0.

The Lie algebra of Pl(no), g, in this representation is found by taking the tangent
space at the identity, W , to the submanifold in Gl(no) defined by (detβ00)

k(detβ11)
l

= 1. The quotient of the algebra of left invariant vectorfields, originated from W ,
by the vectorfield exp t.Ino determines the Lie algebra structure. The vectorspace
for this Lie algebra is formed by the direct sum

g = g−1 ⊕ g0 ⊕ g1, (9)
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where

g−1 = L(IRlo, IRko)

g0 = {(u, v) ∈ gl(lo)⊕ gl(ko) ; k.Tr(u) + l.Tr(v) = 0}
g1 = L(IRko, IRlo). (10)

Let x ∈ g−1, ∗y ∈ g1 and (u, v) ∈ g0, the induced brackets on this vector space are
:

[u, x] = x.u ; [v, x] = v.x ; [u, ∗y] = u. ∗y ;

[v, ∗y] = ∗y.v ; [x1, x2] = 0 ; [ ∗y1,
∗y2] = 0 ;

[u1 + v1, u2 + v2] = [u1, u2] + [v1, v2] ; (11)

[x, ∗y] = x∗y − ∗y.x− (lo − ko)
Tr(x.∗y)

2kolo
.Idno .

Idno denotes the identity on IR
lo ⊕ IR

ko .

C. Representations and prolongation

We will use the following identifications :

M(ko, lo)
κ
= IR

ko×lo ς
= IR

mo

xai
κ
= xa i

ς
= xα

(12)

where IR
ko×lo stands for IR

lo × · · · × IR
lo︸ ︷︷ ︸

ko times

; α = (a−1)lo+i, mo = kolo ; α = 1, · · · , mo

; a = 1, · · · , ko and i = 1, · · · , lo.

We introduce the following two subgroups.

(1) The subgroup Go of Gl(lo)×Gl(ko) :

Go = {(A, B) ∈ Gl(lo)×Gl(ko) | (det(A))ko.(det(B))lo = 1}. (13)

Let (A, B) and (A′, B ′) be elements in Go. Then from (det(A))ko(det(B))lo = 1
and (det(A′))ko(det(B ′))lo = 1 it follows that (det(AA′))ko(det(BB ′))lo = 1. We
also remark that Go is isomorphic to the subgroup defined by β01 = β10 = 0 in

Gl(lo + ko)/ exp t.Ino. There indeed always exists an α such that

(detαA)ko .(detαB)lo = αk+l(det(A))ko.(det(B))lo = 1.

(2) The subgroup G̃o of Gl(mo) defined by

{Aα
β δ(a−1)lo+i

α δβ(b−1)lo+j
= Ai

jA
a
b | (Ai

j) ∈ Gl(lo), (Aa
b) ∈ Gl(ko)}. (14)

Multiplication in the group yields

Aα
γA

γ
β δ(a−1)lo+i

α δβ(b−1)lo+j
= Ai

kA
k
jA

a
cB

c
b.
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We will intoduce the following notations

Aα
βx

β = x̃α
ς↔ Ai

jA
a
bx

bj = x̃ai
κ↔ Aa

bx
b
j
τAj
i = x̃ai , (15)

which we will use throughout this paper. We also will use κ for κ o ς .

Let (A1, B1) and (A2, B2) be in Go. We then have

(A1.A2, B1.B2) 7→ ( τ(A1.A2)
−1, B1.B2) = ( τ(A1)

−1. τ(A2)
−1, B1.B2),

which proves the following proposition.

Proposition 2.2 The morphism

τ : Go → G̃o

(A, B) 7→ ( τA−1, B) (16)

is a group isomorphism sending left invariant vectorfields into left invariant vector-
fields.

Proposition 2.3 The Lie algebra, g̃o of G̃o is given by the subalgebra of the (mo×
mo) matrices which are defined by

zαβ
κ
= ũjiδ

a
b + ũabδ

j
i (17)

with α = (a− 1)lo + i, β = (b− 1)lo + j, (ũij) ∈ gl(lo), (ũab ) ∈ gl(ko).

It is a direct consequence of proposition [(2.2)] that this Lie algebra, g̃0, is isomorphic

to g0. The isomorphism is induced from τu = −(ũij), v = (ũab ).
Let V be the real vectorspace isomorphic to IR

mo . The algebra g̃0 is a subalgebra
of V ⊗V ∗. The first prologation g̃(1) is defined as the vectorspace V ∗⊗g̃0∩S2(V ∗)⊗V
and the kth prolongation likewise as the vectorspace [1] [10]

g̃(k) = V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
k times

⊗g̃0 ∩ Sk+1(V ∗)⊗ V.

A subspace of V ∗ ⊗ V is called of finite type if g̃(k) = 0 for some (and hence all
larger) k and otherwise of infinite type. We refer to [10] [1] [8] for the details.

We then have the following theorem.

Theorem 2.1 The algebra V ⊕ g̃0 is of infinite type if ko or lo equals 1. If ko and lo
are both different from 1 the algebra is of finite type. Moreover in this case g̃(2) = 0
and the algebra V ⊕ g̃0 ⊕ g̃(1) is isomorphic to the algebra g−1 ⊕ g0 ⊕ g1.

In order to prove the theorem we will make use of the representation of g̃0 into the
linear polynomial vectorfields on V . Let (xα) be the coordinates on V . Define the
subalgebra g0 as the set of vectorfields

ũαβx
β ∂

∂xα
with ũαβ

κ
= ũjiδ

a
b + ṽab δ

j
i . (18)
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If ko = 1 or lo = 1, the algebra g−1 ⊕ g0 ⊕ g1 is the algebra of projective
transformations on IR

mo [11]. Hence g0 = g̃0 = gl(mo), from which it follows that

the algebra V ⊕ g̃0 is of infinite type.
We assume from now on ko and lo to be different from 1. The second prolongation

g̃(2) is zero as a consequence of a classification theorem by Matsushima [7] [8] or by
a direct calculation from g̃(1) once this is derived.

Before proving the theorem we will prove the following lemmas.

Lemma 2.1 Any second order vectorfield X
κ
= T ilc

adkx
a
ix

d
l
∂
∂xc

k
, such that

[[ ubl
∂

∂xbl
, X]] ∈ g̃0

is of the form

T ilc
adk = uiaδ

l
kδ
c
d + uldδ

i
kδ
c
a.

Proof

For any ubj
∂
∂xbj
∈ V the bracket with any homogeneous second order vectorfield

T ijc
abkx

a
ix

b
j
∂
∂xc

k
taking values in g̃0 satisfies the equation

[[ ubj
∂

∂xbj
, T ijc

abkx
a
i x

b
j

∂

∂xck
]] = [Al

kδ
c
d + Bc

dδ
l
k]x

d
l

∂

∂xck
,

for some constants Al
k and Bc

d.
This equation becomes

2uai T
ilc
adk = Al

kδ
c
d + Bc

dδ
l
k.

Which together with the symmetry T ilc
adk = T lic

dak proves the lemma.
@A

Call W be the vector space of the second order vectorfields of the form X
κ
=

T ilc
adkx

a
ix

d
l
∂
∂xc

k
. Let X ∈ V , Y ∈ g̃0 and Z ∈ W . Because the set of all formal

vectorfields on V is a Lie algebra, we can consider the Jacobi identity

[[ [[ X, Y ]] , Z]] + [[ [[ Y, Z]] , X]] + [[ [[ Z, X]] , Y ]] = 0.

Lemma 2.2 Let Y ∈ g̃0 and Z ∈W . Then :

[[ Y, Z]] ∈ g̃0.

Proof

Because [[ X, Y ]] ∈ V the first term takes values in g̃0. The thirth term also takes

values in g̃0 by the construction of W . Hence the second term [[ [[ Y, Z]] , X]] takes
values in g̃0. But this imples that [[ Y, Z]] takes values in W by the former lemma.

@A



Grassmannian structures on manifolds 605

As a consequence of both lemmas we are able to write the algebra V ⊕ g̃0 ⊕ g̃(1) as
the vectorspace L spanned by the vectorfields

(ũai
∂

∂xai
, (ũjiδ

a
b + ũabδ

j
i )x

b
j

∂

∂xai
, (ũkbδ

a
c δ

j
i + ũjcδ

a
b δ

k
i )x

b
jx
c
k

∂

∂xai
)

= (ũai
∂

∂xai
, ũjix

a
j

∂

∂xai
+ ũabx

b
j

∂

∂xaj
, ũkcx

a
kx

c
i

∂

∂xai
). (19)

We find the following proposition.

Proposition 2.4 Both Lie algebras L and g are isomorphic. The isomorphism

τ : g = g−1 ⊕ g0 ⊕ g1 → L

is induced from

τ (uai ) = ũai , τ (uij) = −ũij, τ (uab) = ũab , τ (uia) = ũia, (20)

with (uai , uij, uab , uia) ∈ g.

This proposition together with both lemmas proves the theorem.

3 The Cartan connections

A. The structure equations

Let P be a principal bundle, of dimension n2
o−1 (no = ko+ lo), over M with fibre

group H, the isotropy group [(5)]. We then have dim P/H = kolo. The right action

of H on P is denoted as Ra, for a ∈ H, while ad stands for the adjoint representation
of H on the Lie algebra g = pl(no). Every A ∈ h induces in a natural manner a
vectorfield A?, called fundamental vectorfield, on P as a consequence of the action
of H on P . The vectorfield A? obviously is a vertical vectorfield on P .

A Cartan connection on P is a 1-form ω on P , with values in the Lie algebra g,
such that :

(1) ω(A?) = A, ∀A ∈ h

(2) R?
a ω = ad(a−1)ω, a ∈ H

(3) ω(X) 6= 0 , ∀X ∈ X (P ) with X 6= 0. (21)

The form ω defines for each x ∈ P an isomorphism of TxP with g. Hence the

space P is globally parallelisable.
In terms of the natural basis in matrix representation of pl(no) as given in [(10)]

and [(11)], we write the connection form ω as (ωai , ωij, ωab , ω∗, ωia), with ωii = ωaa = 0.

As basis for the subalgebra h = sl(lo) ⊕ sl(ko) ⊕ IR ⊕ L(IRko , IRlo) we choose
(eij, eab , e∗, eai ).

The structure equations of Cartan on P are now defined as
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(1) dωaj = −ωak ∧ ωkj − ωab ∧ ωbj − ωaj ∧ ω∗ + Ωa
j

(2) dωij = −ωik ∧ ωkj − ωib ∧ ωbj +
1

l
δij ω

k
c ∧ ωck + Ωi

j

(3) dωab = −ωak ∧ ωkb − ωac ∧ ωcb +
1

k
δab ωck ∧ ωkc + Ωa

b (22)

(4) dωia = −ωik ∧ ωka − ωib ∧ ωba + ωia ∧ ω∗ + Ωi
a

(5) dω∗ =
ko + lo
kolo

ωai ∧ ωia + Ω∗,

with ωii = ωaa = Ωi
i = Ωa

a = 0.

In analogy with the projective case described by Kobayashi and Nagano, the

form Ωa
i is called the torsion form while ( Ωi

j, Ωa
b , Ωi

a, Ω∗ ) are called the curvature
forms of the connection. The connection form satisfies the following conditions :
ωai (A

?) = 0 , ωij(A
?) = Ai

j, ωab (A
?) = Aa

b , ω∗(A
?) = A∗ for A = (Ai

j, Aa
b , Ai

a, A∗) ∈
h. Furthermore if X ∈ X such that ωai (X) = 0, then X is vertical.

Proposition 3.1 The torsion and the curvature forms are basic forms on the bundle

P . Hence we define :

Ωa
i = Ka bc

i jk ωjb ∧ ωkc , Ωi
j = Ki bc

j lk ωlb ∧ ωkc ,

Ωa
b = Ka dc

b jk ωjd ∧ ωkc , Ωi
a = Ki bc

a jk ωjb ∧ ωkc , Ω∗ = Kbc
∗,jk ωjb ∧ ωkc (23)

Proof

Let Fx, x ∈ M , be the fibre above x. The restriction of ωai to Fx is identically

zero and the forms ωij, ωab , ωia, ω∗ are linearly independent on Fx as a consequence
of [(21 (1)(3))]. Because the form ω sends the fundamental vectorfields A∗ which
are tangent to Fx into the left invariant vectorfields A on the group H, the forms
ωij , ωab , ωia, ω∗ satisfy the equations of Maurer cartan on H. The combination of

these equations and equations [(22)] implies the vanishing of the curvature forms
when restricted to Fx.

@A

From now on we assume the torsion Ωa
i to be zero.

Proposition 3.2 Let P be a principal fibre bundle over M with structure group H
and ( ωib, ωij , ωab , ωaj ) a Cartan connection on P satisfying the structure equations

[(22)]. The curvature forms possess the following properties :

(1) 0 = ωak ∧ Ωk
j + Ωa

b ∧ ωbj + ωaj ∧ Ω∗

(2) 0 = dΩ∗ − ωai ∧ Ωi
a (24)
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Proof

These equations are obtained by taking the exterior differential of equations [(22,(1)

and (5))].
@A

B. The normal Cartan connection

The first equation of the structure equations of Cartan with Ωa
i = 0 is called the

torsion zero equation and does not contain the form ωia, while the other equations de-
fine the curvature forms. A natural question then arises, namely : let (ωai , ωij , ωab , ω∗)
be given a priori on P which satisfy the torsion equation, does there then exists a

ωia such that ω is a Cartan connection on P and if so is there a canonical one.

Theorem 3.1 Let the bundle P be given as defined and (ωai , ωab , ωij, ω∗) be 1-forms

satisfying :
(1) ωai (A

∗) = 0, ωab (A
∗) = Aa

b , ωij(A
∗) = Ai

j, ω∗(A
∗) = A∗

∀A = (Ai
j, Aa

b , Ai
a, A∗) ∈ h

(2) (Ra)
∗(ωai , ωij , ωab , ω∗) = ad(a−1)(ωai , ωij , ωab , ω∗), ∀a ∈ H

(3) If X ∈ X (P ) such that ωai (X) = 0, then X is vertical.

(4) dωai = −ωab ∧ ωbi − ωaj ∧ ωji − ωai ∧ ω∗.

If lo 6= 1 and ko 6= 1 then there exists an unique Cartan connection ω on P

ω = (ωai , ωij , ωab , ω∗, ωia),

such that :
Ω∗ = 0 and Kilk

lab = Kdki
adb. (25)

Proof

The existence of a Cartan connection satisfying the given conditions follows from a

classical construction using the partition of unity. Because the manifold is supposed
to be paracompact there exists a locally finite cover {Uα} of M such that P (Uα) is
trivial, for each α. Let {(fα, Uα)} then be a subordinate partition of unity. If for each
α the form ωα is a Cartan connection on P (Uα) with prescribed (ωai , ωab , ωij , ω∗), then∑
α(fα oπ)ωα is a Cartan connection in P (π being the bundle projection P → M).
Hence the problem is reduced to a local problem for a trivial P . Let σ : U ⊂

M → P be a local section we define the 1-form ωia over σ as ωia(X) = 0 for all
tangent vectors to σ and ωia(A

∗) = Ai
a for A ∈ h. Now any vectorfield Y on P can

be written uniquely as Y = Ra(X) + V , where X is tangent to σ and a ∈ H and V
is tangent to the fibre. Hence the condition

ω(Y )(p.a) = ad(a−1)(ω(X))(p) + A, p = σ(x), x ∈M

with ∗A the unique fundamental vectorfield corresponding to A, such that ∗A(p.a) =
V (p.a), determines ωia(Y ).
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We will prove the existence of a Cartan connection satisfying the required con-
ditions [(25)] by means of a set of propositions.

@A

Proposition 3.3 Let ω be a Cartan connection on P . Then there exists a Cartan

connection satifying the condition Ω∗ = 0. Two Cartan connections satisfying this
same condition are related by ω̄ia = ωia − Aik

abω
b
k, with Aik

ab = Aki
ba.

Proof

Using conditions [(21,(1) (3))] the unkown form can be written as

ω̄ia = ωia −Aik
abω

b
k.

Equation [(22, (5))] then yields

0 =
ko + lo
kolo

ωai ∧Aik
abω

b
k + Ω∗ − Ω̄∗.

If Ω∗ 6= 0 choose Aik
ab such that

0 =
ko + lo
kolo

ωai ∧ Aik
abω

b
k + Ω∗

or

Aik
ab − Aki

ba = − 2kolo
ko + lo

Kik
∗ ab.

As follows directly from this equation two Cartan connections satisfying the curva-
ture condition Ω∗ = 0 are related by ω̄ia = ωia − Aik

abω
b
k, with Aik

ab − Aki
ba = 0.

@A

Proposition 3.4 Let ω be a Cartan connection on P satisfying condition Ω∗ = 0.
Then the Bianchi identities [(24)] become

(1) Kklm
jcb δad + Kalm

dcb δkj + Kmkl
jdc δab + Kakl

bdc δmj + K lmk
jbd δac + Kamk

abd δlj = 0

(2) Kikl
acb + K lik

bac + Kkli
cba = 0. (26)

Consequences : From equation [(26,(1))] we find by contraction of the indices ko
& j and a & d

Kmkl
kbc + Kdml

bdc −K lkm
kcb −Kdlm

cdb = 0 (27)

and by contraction of ko & j and a & c the expression

kKmjl
jdc − lKaml

dac −K ljm
jdc + Kaml

cad = 0. (28)

Lemma 3.1 The expression
Kmkl
kbc −Kdlm

cdb

is symmetric in the pair ((m, b), (l, c)).
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Proposition 3.5 Let ω be a Cartan connection on P satisfying Ω∗ = 0. Then there
exists a unique Cartan connection satisfying the curvature conditions [(25)].

Proof

It is sufficient to consider the class of Cartan connections determined by the condi-
tion Ω∗ = 0. Two such connections are related by

ω̄ia = ωia − Aik
abω

b
k,

with Aik
ab = Aki

ba [(3.3)].

Equation [(22, (2))] then gives

Ωi
j − Ω̄i

j − Ail
ab ω

b
l ∧ ωaj = 0

or [
Kilk
jba − K̄ilk

jba − Ail
ab δ

k
j

]
ωbl ∧ ωak = 0,

which yields

Kilk
jba − K̄ilk

jba −
1

2

(
δkjA

il
ab − δljA

ik
ba

)
= 0.

Summation on the indices l and j gives :

Kilk
lba − K̄ilk

lba −
1

2

(
Aik
ab − lAik

ba

)
= 0. (29)

From [(22),(3)] we derive in a similar way the following equation :

1

2

(
δda Alk

bc − δdc Akl
ba

)
+ Kdkl

bca − K̄dkl
bca = 0.

Contraction on d and c yields

1

2

(
Aik
ab − kAki

ab

)
+ Kdki

adb − K̄dki
adb = 0. (30)

From the lemma [(3.1)] we know that the expression

Kilk
lba −Kdki

adb

is symmetric in the pair ((i, b), (k, a)). If

Kilk
lba −Kdki

adb 6= 0

we define Aik
ab such that

Kilk
lba −Kdki

adb = Aik
ab −

1

2
(lo + ko)A

ik
ba. (31)
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Or

Aki
ab =

4

4− (lo + ko)2

[
∆ki
ba +

1

2
(lo + ko)∆

ik
ba

]
, (32)

with
∆ik
ba = Kilk

lba −Kdki
adb. (33)

Substitution of [(31)] in the sum of equations [(29)] and [(30)] gives

K̄ilk
lba − K̄dki

adb = 0.

This proves the theorem for lo 6= 1 and ko 6= 1. If lo or ko equals one we refer to
the projective case treated by Kobayashi S., Nagano T. [3]. The uniqueness follows
from the same considerations.

@A

Definition 3.1 The unique Cartan connection ω on P satisfying the curvature con-
ditions [(25)], will be called the normal Grassmannian connection on P .

Proposition 3.6 Let ω be a normal Cartan connection on the bundle P . The
following curvature equations are identities :

koK
mjl
jdc = loK

aml
dac

koK
mjl
jdc = loK

ljm
jcd

koK
alm
cad = loK

aml
dac (34)

Proof

These relations follow from the conditions [(25)] and the identities [(28)].
@A

Proposition 3.7 Let P and ω be as above. If Ωi
j = 0 and Ωa

b = 0, then it follows
that Ωi

a = 0.

Proof

If ko 6= 1 and lo 6= 1 then the manifold M has dimension larger than 3. The
proposition follows from differentiation of equations [(22, (2)(3))] :

dΩi
j −Ωi

k ∧ ωkl + ωik ∧ Ωk
j +

1

lo
δij Ω

k
c ∧ ωck − Ωi

b ∧ ωbj = 0 (35)

and

dΩa
b − Ωa

c ∧ ωcb + ωac ∧ Ωc
b −

1

ko
δabω

c
k ∧ Ωk

c + ωak ∧ Ωk
b = 0. (36)

From equation [(35)] one finds

1

lo
Ωk
c ∧ ωck ∧ ωaj − Ωi

b ∧ ωbj ∧ ωai = 0.
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While from equation [(36)] one has

1

ko
Ωk
c ∧ ωck ∧ ωaj − Ωk

b ∧ ωak ∧ ωbj = 0.

Combining the two equations gives

(ko + lo)Ω
k
b ∧ ωak ∧ ωbj = 0,

which substituted in equation [(35)] gives

Ωi
b ∧ ωbj = 0

and in equation [(36)]
ωak ∧ Ωk

b = 0.

Or in terms of the components we find the two equations :

Kikl
bcdδ

j
m + Kijk

dbcδ
l
m + Kilj

cdbδ
k
m = 0.

and
Kikl
bcdδ

a
e + Kkli

bdeδ
a
c + K lik

becδ
a
d = 0.

In case lo ≥ 3, let l be different from k and j. We find by taking m = l that Kijk
dbc = 0

. In case ko ≥ 3, let c be different from e and d. One finds the same result by taking
a = c.

The special case ko = 2 and lo = 2 is easily proven by consideration of the different
cases k = j = l , k = l 6= j , e = c = d and e = c 6= d.

@A

Proposition 3.8 Let P with ko ≥ 3, lo ≥ 3 and ω be as above. Then

Ωi
j = 0 iff Ωa

b = 0.

Proof

From the Bianchi identities [(24,(1))] we find with Ωi
j = 0

Ωa
b ∧ ωbj = 0.

In terms of the components this equation is

Kalm
dcb δkj + Kakl

bdc δ
m
j + Kamk

cbd δlj = 0.

Let m be different from k and l. Taking j equal to m yields Kakl
bdc = 0.

Conversally, the condition Ωa
b = 0 implies Ωi

j = 0 by an analogous argument using
the Bianchi equations [(24,(1))].

@A
This proves the following theorem.

Theorem 3.2 Let P with ko ≥ 3, lo ≥ 3 and ω as above. The bundle P is locally
flat iff Ωi

j = 0 or Ωa
b = 0.

Local flatness of P means vanishing of the structure functions [2].
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4 The Ehresmann connection

A. Second order frames

Let M be a manifold of dimension mo and f a diffeomorphism of an neighborhood

of 0 in IR
mo onto an open neighborhood of M . If f is a local diffeomorphism then

the r-jet jr0(f) is an r-frame at x = f(0). The set of r-frames of M will be denoted by
F r(M), while the set of r-frames at f(0) forms a group Gr(mo) with multiplication
defined by the composition of jets :

jr0(g1) . jr0(g2) = jr0(g1 o g2).

The group Gr(mo) acts on F r(M) on the right :

jr0(f) . jr0(g) = jr0(f o g). (37)

The Lie algebra of Gr(mo) will be denoted by gr(mo). We mainly will be interested
in the bundle of 2-frames on M . Let (xα) be some local coordinates on M and x̄α

the natural coordinates on IR
mo . A 2-frame u then is given by u = j2

0(f).
From

f(x̄) = xαeα + uαβ x̄
βeα +

1

2
uαβγx̄

βx̄γeα, (38)

we get a set of local coordinates (xα, uαβ , uαβγ) on F 2(M).
In a similar way we may use (sαβ , sαβγ) as coordinates on G2(mo). The multipli-

cation in G2(mo) is given by

(s̄αβ , s̄αβγ).(s
α
β , sαβγ) = (s̄ασs

σ
β , s̄ασs

σ
βγ + s̄ασρs

σ
βs

ρ
γ), (39)

while the action of G2(mo) on F 2(M) is given by

(xα, uαβ , uαβγ).(s
α
β , sαβγ) = (xα, uασs

σ
β, uασs

σ
βγ + uασρs

σ
βs

ρ
γ). (40)

Let

(eα =
∂

∂x̄α
, eαβ =

∂

∂x̄α
⊗ dx̄β)

be a basis for the Lie algebra of affine transformations on IR
mo . The canonical one

form θ on F 2(M), which we write as

θ = θαeα + θαβe
β
α,

is given in local coordinates by (with vαβ is the inverse matrix of uαβ) [4] :

θα = vαβdxβ , (41)

θαβ = vαγ duγβ − vαγu
γ
ρβv

ρ
σdxσ. (42)

Because the group G2(mo) acts on F 2(M) on the right, with each A ∈ g2(mo)
corresponds a fundamental vectorfield A? ∈ X (F 2(M). Let π2

1 : g2(mo) → g1(mo),
we have the following proposition [3] :
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Proposition 4.1
(1) θ(A?) = π2

1(A) for A ∈ g2(mo)

(2) R?
aθ = ad(a−1)θ, a ∈ G2(mo).

The canonical form satisfies the structure equation [4] :

dθα = − θαβ ∧ θβ . (43)

B. The Grassmannian bundle Gr(ko, lo)(M)

We will now define a subbundle of F 2(M) which is isomorphic with the bundle

P . In this section we use the identification IR
ko×lo ς

= IR
mo .

Proposition 4.2 The embedding H → G2(mo), mo = kolo, defined by

(
βij, β

a
b , β

k
c

)
7→
{

sαβ
ς
= αijβ

a
b

sαβ γ
ς
= −

[
βabα

l
jγlcα

i
k + βacα

l
kγlbα

i
j

]
,

(44)

with α = (a−1)lo+ j, β = (b−1)lo+ j, γ = (c−1)lo+k and αij = τβ−1 i
j , γkc = βkc ,

is a group morphism. Let H̃ designate image of the embedding in G2(mo).

Proof

The multiplication in H yields

(β̂ij, β̂
i
c, β̂

a
b ).(β

j
k, β

j
c , β

b
c) = (β̂ijβ

j
k, β̂

i
jβ

j
b + β̂icβ

c
b, β̂

a
bβ

b
c). (45)

Let

sαβ = αijβ
a
b , sαβ γ = −

[
βabα

l
jγlcα

i
k + βacα

l
kγlbα

i
j

]
and

ŝαβ = α̂ijβ̂
a
b , ŝαβ γ = −

[
β̂ab α̂

l
jγ̂lcα̂

i
k + β̂acα

l
kγ̂lbα̂

i
j

]
.

We find for the multiplication

(s̄αβ , s̄αβγ).(s
α
β , sαβγ) = (α̂ij β̂

a
bα

j
kβ

b
c,

−α̂ijβ̂
a
b

[
βbdα

l
mγlcα

i
k + βbcα

l
kγldα

j
m

]
−
[
β̂ab α̂

l
j γ̂leα̂

i
m + β̂aeα

l
mγ̂lbα̂

i
j

]
αjmβbdα

m
k βec ),

which proves the group morphism.

@A

Definition 4.1 A Grassmannian structure, Gr(ko, lo)(M), on a manifold M is a
subbundle of F 2(M) with structure group H̃.

Proposition [(4.2)] together with some classical results in bundle theory [9] proves

the following theorem.
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Theorem 4.1 Let P be a H-bundle over M . Then there exists a Gr(ko, lo)(M),
subbundle of F 2(M), which is isomorphic to P .

Definition 4.2 A (ko, lo)-structure on a manifold, B(ko,lo)(M), is a subbundle of
F 1(M) with structure group Go.

Theorem 4.2 Each Grassmannian structure, Gr(ko, lo)(M), on M is the prolon-
gation of a (ko, lo)-structure. Moreover this structure has vanishing second prolon-
gation.

Proof

Let B(ko,lo)(M) be any subbundle of F 1(M) with structure group Go. The first
prolongation of B(ko,lo)(M) is a subbundle of F 2(M) with structure group the semi

direct product of Go and the group of automorphisms of V ' IR
mo generated by the

Lie algebra g̃(1) [10]. Hence the first prolongation is a Gr(ko, lo)(M).
Let Gr(ko, lo)(M) be given and π2

1 : F 2(M) → F 1(M) the bundle projection.
Then π2

1(Gr(ko, lo)(M) is a bundle B(ko,lo)(M) whose prolongation cöıncides with

Gr(ko, lo)(M) by the isomorphism of the structure groups. The second prolongation
of a B(ko,lo)(M) vanishes identically [(2.1)].

@A

We refer to S. Sternberg [10] for a detailled exposition of the relationship between

connections on G structures and prolongations. In particular the set of adapted
symmetric connections is parametrised by the first prolongation of the Lie algebra
g̃(1). To make this clear we first need the following lemma on symmetric affine
connections.

Lemma 4.1 Let Γ : M → F 2(M)/Gl(mo) be an affine symmetric connection. Then
there exists a canonical homomorphism Γ̃ : F 1(M)→ F 2(M) canonically associated
with Γ.

Proof

For a proof we refer to [5]. In local coordinates the map Γ is given by

Γ̃ : x̄α = xα ; ūαβ = uαβ ; ūαβγ = −uσβΓ
α
σρu

ρ
γ. (46)

@A
Remark that

Γ̃∗θαβ = vαγ (duγβ + Γγρσu
σ
βdxρ). (47)

Let B(ko,lo)(M) be a (ko, lo) structure on M . An adapted affine symmetric connec-
tion on B(ko,lo)(M) is a map Γ : M → F 2(M)/Gl(mo) such that Γ̃∗θαβ restricted to

B(ko,lo)(M) is a connection form with values in g0. Let Φ(B(ko,lo))(M) be the set
of adapted affine symmetric connection and denote the set of associated homomor-
phisms by Φ̃(B(ko,lo))(M).
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In order to prove the next proposition we need some local expressions. Let
(x̄ai

ς
= x̄α) be the coordinates on IR

mo ' IR
ko×lo. The Lie algebra of the second

order formal vector fields L on this space as given in [(19)] has the following basis

eai =
∂

∂x̄ai
, eijδ

a
b + eabδ

i
j = δab x̄

ci ∂

∂x̄cj
+ δijx̄

ak ∂

∂x̄bk
, eai = x̄ajx̄ci

∂

∂x̄cj
. (48)

In terms of local coordinates on M and taking the identification ς directly into
account, a 2-frame is given by

f(x̄) =
[
xα + uαbjx̄

bj + uαbjckx̄
bjx̄ck

]
eα. (49)

Let σ be a local section of F 1(M), then σ is given by the functions

σ : (x) 7→ Eα
bj(x) = σ∗uαbj. (50)

The fundamental form along σ becomes

θ̄ai = σ∗θai = F ai
β (x)dxβ, (51)

while the connection form with respect to a given Γ̃ ∈ Φ(B(ko,lo)(M) is

θ̄aibj = σ∗θaibj = F ai
α dEα

bj + F ai
α ΓαρσE

σ
bjdxρ. (52)

The form θ̄aibj satisfies the structure equation [(43)]

dθ̄ai = −θ̄aibj ∧ θ̄bj.

Let θ̂aibj be a second connection form with respect to a different morphism belonging

to Φ(B(ko,lo)(M). This form satisfies the same equation [(43)]. Hence we find

0 = (θ̄aibj − θ̂aibj) ∧ θ̂bj. (53)

The difference (θ̄aibj − θ̂aibj) defines a morphism V → g0 ⊂ V ⊗ V ∗ at each x ∈ M ,
satisfying [(53)] and hence defines an element in g(1). This implies that at x ∈M :

θ̄aibj − θ̂aibj = ubkδ
a
c δ
i
j + ucjδ

a
b δ
i
k, (54)

with uia ∈M(lo, ko).

Proposition 4.3 Any two adapted affine symmetric connections on B(ko,lo)(M) are
locally related by :

Γ′ γασ − Γγασ = 2ubkE
γ
cjF

ck
(αF bj

σ) . (55)

with ubk an element of M(lo, ko).
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Proof

We know that any connection form on B(ko,lo)(M) takes values in g0. Hence

θaibjα = θabαδ
i
j + θijαδ

a
b .

We find along the section σ :

θ̄abαE
α
ckδ

i
j + θ̄ijαE

α
ckδ

a
b = F ai

γ (
∂

∂xα
Eγ
bj)E

α
ck + F ai

γ ΓγασE
α
ckE

σ
bj .

From the theorem [(2.1)] and equation [(54)] it follows that for any two of such
connection forms there exists an element ubk such that

ubkδ
a
c δ

i
j + ucjδ

a
b δ
i
k = F ai

γ (Γ′ γασ − Γγασ)E
α
ckE

σ
bj.

Hence

Eγ
ai

[
ubkδ

a
c δ
i
j + ucjδ

a
b δ
i
k

]
F ck
α F bj

σ = Γ′ γασ − Γγασ.

@A

Because the first prolongation g̃(1) can be identified with M(lo, ko) this describes
the parametrisation of the set of adapted connections. This allows us to formulate
the following theorem.

Theorem 4.3 Let B(ko,lo)(M) be a (ko, lo)-structure on M . The set

{Γ̃(B(k,l)(M)) | Γ̃ ∈ Φ̃(B(k,l))(M)} (56)

forms a Grassmannian structure on M .

Consequences :

(1) Each Gr(ko, lo)(M) is locally determined by a section

Γ̃ oσ : M → F 2(M)

where Γ̃ ∈ Φ̃(B(ko,lo))(M) and σ a section M → B(ko,lo)(M).

(2) The set of Gr(ko, lo)(M) bundles is given by F 2(M)/H. Each local section Γ̃ oσ
determines locally an element of F 2(M)/H.

(3) Each Gr(ko, lo)(M) is equivalent with a B(ko,lo)(M) together with its set of
adapted connections.

As alternative formulation of former theorem we have :

Theorem 4.4 Each Gr(ko, lo)(M) is locally uniquely defined by a section σ : M →
F 1(M) and an identification IR

mo ς
= IR

kolo.

C. The normal Grassmannian connection coefficients
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We will now investigate the coefficients of a normal Grassmannian connection
in terms of an adapted frame and give an expression of the normal Grassman-

nian curvature tensor. Let Gr(ko, lo)(M) be a Grassmannian structure defined as
a subbundle of F 2(M). Let θα, θαβ be the fundamental and the connection form on

Gr(ko, lo)(M). Because of the identification IR
mo ς

= IR
ko×lo we write these forms as

(θai, θij, θab ) with koθ
i
i−loθ

a
a = 0 in order to fix their uniqueness in the decomposition.

We then define on Gr(ko, lo)(M)

ωai = θai ; ωij = − τθij +
1

lo
τθkkδ

i
j ; ωab = θab −

1

ko
θccδ

a
b ; ω∗ = − 1

lo
θii −

1

ko
θaa. (57)

As a consequence of theorem [(3.1)] there exists a unique normal connection form
ω = (ωai , ωij , ωab , ω∗, ωia) on Gr(ko, lo)(M).

Theorem 4.5 Let M be a manifold equipped with a (ko, lo) structure B(ko,lo)(M)

and U ⊂ M an open subset carrying an adapted coframe F a
iαdxα. Let further

Gr(ko, lo)(M) be the Grassmannian structure on M determined by B(ko,lo)(M) and

ω = (ωai , ωij, ωab , ω∗, ωia)

the normal Cartan connection.
Then there exists a unique local section ν : U → Gr(ko, lo)(M) determined by the

conditions

ν∗ωaiαdxα = F a
iαdxα, ν∗ω∗ = 0. (58)

Proof

Any section ν may be decomposed into a section σ of B(ko,lo)(M) and a section
ϑ : B(ko,lo)(M) → Gr(ko, lo)(M). The requirement ν∗ωaiαdxα = F a

iαdxα implies
σ∗ωaiαdxα = F a

iαdxα, which determines the section σ. Let Γ̃ be a morphism F 1(M)→
F 2(M) defined by an adapted symmetric connection. Using proposition [(4.3)] and
expression [(48)] the map ϑ can be written as

uαβγ = −uσβ[Γ
α
σρ + 2ubku

α
cjv

ck
(σv

bj
ρ)]u

ρ
γ,

with ubk a function on U . Or also

uαbj ai = −Eσ
bj [Γ

α
σρ + 2ubkE

α
cjF

ck
(σF bj

ρ) ]E
ρ
ai,

with Eα
ai the local frame dual to the coframe F ai

α .

We remark that θαα = − 1
kolo

ω∗. The calculation of (ϑ oσ)∗θαα = 0 yields, with the
use of expression [(42)], the equation

F ai
γ dEγ

ai + Γγργdxρ + 2ubkE
β
cjF

ck
(ρ F bj

β)dxρ = 0

or

uckF
ck
ρ dxρ = −1

2
[F ai
γ dEγ

ai + Γγργdxρ].
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The unicity follows from the same calculations. Any two morphisms of B(ko,lo)(M)
into F 2(M) indeed are, as a consequence of proposition [(4.3)], defined by affine con-
nections on B(ko,lo)(M) which are related by

Γ′ γασ − Γγασ = 2ubkE
γ
cjF

ck
(αF bj

σ) .

A simple substitution then yields the unicity.
@A

The theorem allows us to introduce the normal Grassmannian connection coef-

ficients. We set

σ∗ωij = Πi
jαdxα, σ∗ωab = Πa

bαdxα, σ∗ωia = Πi
aαdxα. (59)

Dual to the coframe F a
iαdxα we define the frame Eiα

a
∂
∂xα

by the conditions

F a
iαE

jα
b = δab δ

j
i . (60)

From equation [(22)(5)] we find

σ∗ωai ∧ σ∗ωia = 0

or

F a
iαΠ

i
aβ − F a

iβΠ
i
aα = 0.

Define Πi
aβE

kβ
c = Πik

ac. The former equation becomes

Πkl
cd − Πlk

dc = 0. (61)

Let

Li
j = dωij + ωik ∧ ωkj (62)

and
La
b = dωab + ωac ∧ ωcb. (63)

The equations [(22)(2) and (3)] become

Ki
jαβ = Li

jαβ +
1

2
(Πi

bαF
b
jβ − Πi

bβF
b
jα)

Ka
bαβ = La

bαβ +
1

2
(Πa

iαF
i
bβ −Πa

iβF
i
bα). (64)

Using the notations
Li
lαβE

kα
c Ejβ

b = Likj
lcb (65)

and
La
dαβE

kα
c Ejβ

b = Lakj
dcb , (66)

we find

Kikl
jcd = Likl

jcd +
1

2
(Πik

bcδ
b
dδ
l
j − Πil

bdδ
b
cδ
k
j )

Kakl
bcd = Lakl

bcd +
1

2
(Πml

bd δac δ
k
m − Πmk

bc δadδ
l
m). (67)
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From the condition
Kilk
lba −Kdki

adb = 0

we obtain

Lilk
lba − Ldki

adb −
ko + lo

2
Πki
ab + Πik

ab = 0.

This gives

Πki
ab =

2

(ko + lo)2 − 4

[
(ko + lo)(L

ilk
lba − Ldki

adb) + 2(Lkli
lba − Ldik

adb)
]
. (68)

Let M be equipped with an adapted symmetric affine connection on B(ko,lo)(M).

We define the coefficients (γjklc , γdkbc ) by

∇Eia
Ej
b = γdibaE

j
d + γjilaE

l
b,

together with koγ
i k
i c − loγ

d k
d c = 0.

A Grassmannian related covariant derivation is defined as

∇̃Eia
Ej
b =

[(
γdiba + uibδ

d
a

)
δjl

+
(
γjila + ujaδ

i
l

)
δdb
]
El
d. (69)

Or
∇̃Eia

Ej
b = ∇Eia

Ej
b + uibE

j
a + ujaE

i
b. (70)

Using this expression we find

Proposition 4.4 Let X, Y ∈ X (M), ∇ and ∇̃ be two adapted connections on the

bundle B(ko,lo)(M). Let further σ : U → B(k,l)(M) be a local section and σ̄(x) the
corresponding identification of the tangent space Tx(M) at x ∈ U with M(ko, lo).
Then there exists a map µ : U → M(lo, ko) such that

∇̃XY = ∇XY + σ̄−1[(µ . σ̄(X)) . σ̄(Y ) + (µ . σ̄(Y )) . σ̄(X)]. (71)

Because µ ∈ M(lo, ko) and σ̄ ∈ M(ko, lo) the composition (µ . σ̄(X)(x)) is an
element of M(lo, lo) which acts on σ̄(Y )(x) by composition, giving thus an element

of M(ko, lo).

Remark We can define the (2, 1)-tensorfield

µ̃ = σ̄−1.µ.σ̄.

The Grassmannian relationship of two symmetric affine adapted connections is then
given by

∇̂XY = ∇XY + µ̃(X)(Y ) + µ̃(Y )(X).

We define the splitting of the coefficients γ into the trace free parts and the trace
part as (γ̄akbc , γ̄ikjc , γ̄k∗ c), with (γ̄akac = γ̄ikic = 0). A Grassmannian related covariant
derivation is then given by



620 P.F. Dhooghe

∇̃Eia
Ej
b =

[(
γ̄diba + uibδ

d
a −

1

ko
uiaδ

d
b

)
δjl

+
(
γ̄jila + ujaδ

i
l −

1

lo
uiaδ

j
l

)
δdb

+

(
γ̄i∗ a +

ko + lo
kolo

uia

)
δdbδ

j
l

]
El
d (72)

with

γ̄i∗ a =
1

kolo
(koγ

ji
ja + loγ

ci
ca). (73)

The normal Cartan connection is defined by the requirement

uia = − 1

ko + lo
(koγ

ji
ja + loγ

ci
ca)

and the coefficients of this connection are

Πji
la = −γ̄jila − ujaδ

j
i +

1

lo
uiaδ

j
l

Πdi
ba = γ̄diba + uibδ

d
a −

1

ko
uiaδ

d
b . (74)

We now are able to investigate the Grassmannian curvature tensor. Because the
bundle Gr(ko, lo)(M) is a subbundle of F 2(M) the restriction of the homomorphism
π2

1 : F 2(M)→ F 1(M) to Gr(ko, lo)(M) is the homomorphism :

η : Gr(ko, lo)(M)→ B(ko,lo)(M). (75)

The fibres of η are isomorphic to the kernel M∗ of the homomorphism H → Go.
The following theorem proves that the curvature forms Ωi

j and Ωa
b are defined on

the bundle B(k,l)(M) ⊂ F 1(M).

Proposition 4.5 Let Gr(ko, lo)(M) be a Grassmannian structure equipped with a
normal Grassmannian connection. Then the curvature forms Ωi

j and Ωa
b satisfy the

following conditions. Let A∗ be a fundamental vectorfield with A ∈ g1.

Then

(1)

LA∗(Ωi
j) = LA∗(Ωa

b ) = 0. (76)

(2) The tensor

Kα
βγσ = Ki

jγσF
a
iβE

jα
a + Kb

aγσF
a
iβE

iα
b (77)

is a (1, 3)-tensorfield on M , which we call the Grassmannian curvature tensor.
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Proof

The relations (1) are a direct consequence of the equations [(36)], while (2) is a con-

sequence of the fact that B(ko,lo)(M) is a subbundle of F 1(M) together with proposi-
tion [(3.1)]. Writing the curvature forms as Ωi

j = Ki
jαβdxα⊗dxβ and Ωa

bαβdxα⊗dxβ,

Ejα
b , the Grassmannian curvature tensorfield is defined as

Kα
βγσ =

[
Ki
jγσδ

b
a + Kb

aγσδ
i
j

]
F a
iβE

jα
b

which is equivalent with [(77)].

@A
We call a Grassmannian structure on M locally flat if the structure has vanishing
structure constants, which means that the structure is locally isomorphic with a
flat structure [2]. The flat structure here means the structure of a Grassmannian.

As a consequence of proposition [(3.7)] and because the dimension of the manifold
admitting a Grassmannian structure is larger than 3, we have

Theorem 4.6 A Grassmannian structure on M is locally flat iff the Grassmannian
curvature equals zero.
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