Bialgebra structures on a real
semisimple Lie algebra.

Véronique Chloup

Abstract

We describe some results on the classification of bialgebra structures on
a real semisimple Lie algebra. We first describe the possible Manin algebras
(i.e. big algebra in the Manin triple ) for such a bialgebra structure. We then
determine all the bialgebra structures on a real semisimple Lie algebra for the
nonzero standard modified Yang-Baxter equation. Finally we consider the
case of a real simple Lie algebra the complexification of which is not simple
and we give some partial results about the bialgebra structures for any nonzero
modified Yang-Baxter equation.

1 Definitions and notations.

Our work is a continuation of a paper from M. Cahen, S. Gutt and J. Rawnsley [1];
we use the same notations as theirs which we now recall.

Definition 1. (cf[3]) A Lie bialgebra (g, p) is a Lie algebra g with a 1-cocycle
p : g — A?g (relative to the adjoint action) such that p* : g* x g* — g* (§,n) —
€, n] with
([&,n], X) = (& An,p(X))

is a Lie bracket on g*. One also denotes the bialgebra by (g, g*).
A Lie bialgebra (g, p) is said to be ezact if the 1-cocycle p is a coboundary, p = 0Q),
for Q € A%g.

This means that 0Qx = [X, @] and then the condition for (g,0Q) to be a
Lie bialgebra is that the bracket [Q, Q] be invariant under the adjoint action in A®g.
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Definition 2. (cf [3]) A Manin triple consists of three Lie algebras (£, g1, g2)
and a nondegenerate invariant symmetric bilinear form <,>> on £ such that
1)g; and go are subalgebras of £;
2)£ = g1 + g2 as vector spaces;
3)g1 and gy are isotropic for <, >.
We shall call the Lie algebra £ the associated Manin algebra.

Proposition 1. (cf [3]) There is a bijective correspondance between Lie bialge-
bras and Manin triples.

Notation. Let g be a Lie algebra of dimension n. Consider any vector space
£ of dimension 2n with a nondegenerate symmetric bilinear form < , > and a
skewsymmetric bilinear map |, ]:£ x £ — £ such that

i) £ contains g;

ii) the bracket restricted to g x g is the Lie bracket of g;
iii) g is isotropic;

V) < [X,)Y],Z>+<Y,[X,Z] >=0, VX,Y,Z € £.

Then, choosing an isotropic subspace supplementary to g in £ and identifying it
with g* vie <, >, £ =g+ g¢g* as vector spaces and one has :

) < (X,a),Y,v) > = (a,Y) + (v, X);
2) [(X,a),(Y,v)] = ([X,Y]+Ci(a,Y)=Ci(v, X)+S(a, v), adiv — adia+
T(a,v)).
The invariance condition reads:
3) S(a, v, ) = {7, S(a, v)) is totally skewsymmetric;
) (T(v,v), Z) = (a,C1(v, Z)).

We denote by £g, where p = T : g — A?g, the space £ = g + g* with < , >
and | , ] defined by 1 and 2 with the conditions 3 and 4.

Definition 3. (cf [4]) A Manin pair is a pair of Lie algebras (£, g) and a nonde-
generate symmetric bilinear form <, > on £ such that the conditions i),ii),iii),iv)
are satisfied.

So if (£, g) is a Manin pair, then a choice of an isotropic subspace in £ supple-
mentary to g identifies £ with a Lie algebra £g,,

Remark that the bracket defined on £ is a Lie bracket (i.e. satisfies Jacobi’s
identity) if and only if :

5) Op =0 where p = 'T : g — A%g;

6) [X,S)(a,v,7) + (Xary T'(T(cv,v),7)), X) = 0 where ¥ denotes the sum
over cyclic permutations;

7) By (S(T(a,n),v,v) + S(T(a,v),n,7)) = 0.

Definition 4. A map ¢ : £5, — £g , which is linear, maps g to g, preserves
<, > and is such that ¢[(X, ), (Y,v)]|s, = [¢(X,a),d(Y,v)]s  is called an
isomorphism of Manin pair.

Remark that it is of the form ¢(X,a) = (A(X 4 Q(a)), ‘A~ (a)) where
i) A: g — gis Lie automorphism of g and Q : g* — g is induced by an element
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Q € A%g through (v,Q(a)) = Q(a, v) such that
i) A7 p’ = p = —0Q; o
iii) (A7 8" — ), 1,7) = Baun (Q(T (e, v),7) + (o, [Q(v), Q()]))

= 1/2[Q, Ql(, ,7) + Lawr (T (v, ), 7)

where (A-p)x(a,v) = plr(x)("Aa, "Av) and (A-S5)(a,v,7) = S('Aa, *Av, TAy).
We then say that £g, and £g ;s are isomorphic under ¢.

Remark 1. A Manin pair (£, g) yields a Manin triple (£, g,g*) if and only if
there is an isotropic subspace supplementary to g in £ which is a subalgebra of
£. Hence a bialgebra structure on g yields as its corresponding Manin algebra an
algebra £g,, which is isomorphic to a Lie algebra £y, and vice versa.

Definition 5. (cf [1]) We shall say that two Manin algebras £ and £’ are isomorphic
if there exists a map ¢ : £ — £’ which

e is an isomorphism of Lie algebras ,

e maps g to g,

e is a homothetic transformation from £ to £, i.e. € ¢(X), (V) >'=s <
X, Y > VXY € £ for some nonzero real s .

Lemma 1. (cf [1]) Two Lie bialgebra structures on a given Lie algebra g, (g, p)
and (g, p") yield isomorphic Manin algebras if and only if there are Q € A®g, A an
automorphism of g and s a nonzero real number such that

{p’ = sA(p — 0Q);
1/2(Q, Q) (e, v,7) + Loy Q( "pla, v),7) = 0.

In particular, two exact Lie bialgebra structures on g, (g, 0Q) and (g,0Q’) yield iso-
morphic Manin algebras if and only if [Q, Q] = s*A[Q’, Q'] for some automorphism
A of g and some s # 0 € R.

Lemma 2. If g is a ( real or complex ) semisimple Lie algebra and (3 its Killing
form, the linear map p : (S%g")™ — (A3g)"™" defined by B3 (pB, X NY N Z) =
B([X,Y],Z) for X,Y,Z € g is a linear isomorphism.

Hence any bialgebra structure one g is defined by a @ € A®g such that [Q, Q] =
pB where B € (S%g*)"™" is of the form B(X,Y) = 8(MX,Y).

Suppose g has a nondegenerate invariant symmetric bilinear form 3. Then @
determines a linear map @) : g — g defined by (o, Q(X)) = 8(Q(a), X)

or equivalentely BQY),X)=8D(Q, X NY) = Q(B(X),3(Y))

~

where (§: g — g* is such that (5(X),Y) = 8(X,Y).

Remark 2. If gg is a simple real Lie algebra such that g = go* is simple then
(A%go)™ is 1- dimensional. Hence any exact Lie bialgebra structure on g is of the
form (go, p) where p = 9Q with Q € A%gy and [Q, Q] = A2 such that

B(X AY A Z,Q) = B(X,[Y, Z]).
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Corollary 1. When we look at all the Lie bialgebra structures on a simple
real Lie algebra go such that g = g0 is simple there are only three cases up to
1somorphism:

e \=0;
o )\ > (;
e \<0.

2 The Manin algebras associated to a real semisim-
ple Lie algebra

Aim: we determine the Manin algebra £ which is associated to the Lie bialgebra

structure (go, p) where go is a semisimple real Lie algebra, p satisfies p = 0Q and

[Q,Q] = pB where B € (5%g*)™, hence B(X,Y) = B(MX,Y) where M o adX =
adX o M VX € gy.

Theorem 1.Up to isomorphism the Manin algebra £ associated to a real semi-

simple Lie algebra go which can be writen gy = ? Ji where Ty are simple ideals
1<k<p
of 9o, is of the form £ = ? L where £ is one of the following:
1<k<p

L = Lie(T*(Ix)) where I}, is the Lie group associated to the Lie algebra Jy;
L= ()
L =T D Tp.

The rest of this paragraph is devoted to the proof of the theorem 1.

The Manin algebra we consider is given by £ s which is isomorphic to £_1/91¢,q1,0 =
L.

So £ = go + go* as vector spaces

with the duality < (X, a), (Y,v) >,, = (o, Y) + (v, X)

and the bracket :

(1) (X, a), (Y. 0)]y, = (X, Y] + S(a,v), adyv — adya)

where S = —1/2[Q, Q] = —1/2pB so that 3O(S, X AY AN Z) = —1/2B(M[X, Y], Z)
and MoadX = adXoM VX € go. So we have M [ Xy, Yy] = [Xi, MYy| for 1 <k <p,
this implies M (Jy) C Ty,

Thus we write M (3 1<p<p Xk) = S1<r<p Mie(Xk)

Proposition 1. Suppose g is a real semisimple Lie algebra and S=0 then £ =
Lie(T*G).

proof: We first identify T*G with G x g*: to a € T*G we associate the couple
(g, @) such that & = L* a,.
We define the product on 7*G by ay - vy = (R* 10 + L*j-114), s0 it is given on
G x g* by (9,a)-(¢',V) = (99", Ad;.a + D).
The bracket on Lie(T*G) reads: ad(X,a) - (Y,v) = ([X,Y], —ad} & + adv) which
is the bracket (1) when S = 0. 0
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Remark that in what follows the hypothesis that gy is semisimple is too strong,
it’s sufficient that gy possesses a nondegenerate invariant bilinear form.

We identify go + g with go +go by ¥ : go + 85 — g0 + 80 (X, ) — (X, 7' (a))
Hence the duality is given by

< (X, 4), (Y, B) >y = <B(A>7Y> + <B(B)7X> = B(A,Y) + B(B, X)
And from (1) the bracket is given by:

(2)

{ (X, A), (Y. B)ly, = ([X.Y]+5(B6(A), B(B)), 57" (adx (B)) — 57" (ad;. 3(A)))

7/3
([X,Y] - 1/2M[A, B, [X, B] - [Y, A))

As go = ? Jr any X € go is of the form X = >3,.;-, X so the bracket reads:
1<k<p =

(X, A), (Y, B)lyy = > ([ Xk, Y] = 1/2My[Ag, B, [Xk, B] — [Yi, Ax])

1<k<p

Thus we only have to study the Manin algebra £ associated to a real simple Lie
algebra go. In this case go° is either simple or not simple. If it is not simple then
M = a+bJ where a,b € R and .J is such that J? = —Id, JoadX = adXoJ VX € go;
if it is simple M = Al d for A € R.

Proposition 2. Assume that there exists N : go — @o such that
1) N is a linear isomorphism;
2) N? =1/2M;
3) NoadX =adX o N VX € go.
Then
£ =~ go" as Lie algebras, go ~ {(X,0) € go°}
and the duality is given by < (X, A),(Y,B)>,, = (X, N7'B) + B(N7'A,Y).

proof: the isomorphism is given by:
Uig® — £=go+go(X,A) — (X,N'A)

Recall that go“ = {(X,Y) | X,Y € go} with the bracket [, ], given by:

[(XaA)a(YaB>]C:([Xay]_[AaB]a[XaB]_ [YaA]) U
Corollary 1. If M = M d with A > 0 we obtain the Manin pair (g0, go) where
the duality is given by:
< (X, A),(Y,B) >= B(A,Y) + B(B, X).

Corollary 2. If go© is not simple then M = a+bJ with a®>4+b*> # 0 if M # 0, thus
N exits and is given by N=c+d.J with (c+id)* = a+ib in C. Then the Manin algebra
associated to a Lie bialgebra structure with M # 0 on a real simple Lie algebra g
such that go* is not simple, is £ ~ goC.
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Remark 1. If go© is simple and M = M d with A\ < 0 there is no possible N.

Proposition 3. If go* is simple and M = X\ d with A\ < 0 then £ ~ go @ go, the
direct sum of two copies of the Lie algebra go, go ~ Ago = {(X,X) | X € go} and
the duality is given by:

< (X,Y),(X,Y') >=1/28(X, X") — 1/2B(Y,Y").

proof: we can suppose that A = —1 because when go* is simple the structures
are isomorphic when multiplied by a positive constant, then from (2) the bracket is
given by:
[(XY), (X5 Y)] = (X, XT+ [V, Y [X Y]+ [V, X)),
The isomorphism is ¢ : £=go+g0 — goPgo=L (X,Y) — (X+Y, X -Y)
The duality is given by:
< (X,Y),X,Y') /= < 67U X, Y), 671X, V) >y = LBX, X) = BY,Y7) =
Remark 2. We have go* ~ go @ go if and only if there exits such a J.
The isomorphism is ¢ : go ® go — go= (X,Y) — (L )
Remark that if go© ~ go @ go then go* is not simple.
Theorem 3. The Manin algebra £ which is associated to the Lie bialgebra struc-

ture (go, p) where go is a simple real Lie algebra, p satisfies p = 0Q and [Q, Q] = pB
where B € (S%g*)™", hence B(X,Y) = 3(MX,Y) where MoadX = adXoM VX €

go, 18
oL = Lie(T*G) if B =0, where G is the Lie group associated to go;
o8 = go° if go° is not simple;
o8 = go° if go* is simple and M = N\ d with X\ € R*;
oL = go D go if go* is simple and M = N\ d with X\ € R*_.

3 Solutions of the nonzero standard modified
Yang-Baxter’s equation.

Aim: we want to find all the solutions of the modified Yang-Baxter equation of the
form:

(3) { QX, QY] — QIQX.Y] — Q[X. QY] = A[X.Y]
BRX,Y) = —-B(X,QY)

for X,Y € go when g is a real semisimple Lie algebra, and for nonzero .

In this case the algebra g = go* is semisimple; remark that this equation has
been studied for complex semisimple Lie algebra by A. Belavin and V. Drinfeld [2];
we use their methods and results.

A. The case )\ > 0.

a. Existence of a solution.
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Proposition 1. There always exists a solution @ € End(go), it is related to the
existence of a Cartan subalgebra o of go such that by contains a mazimal torus of
t where go = € B p is a Cartan decomposition of go.

proof: to obtain this result we work on g = g, we extend Q C-linearly to g.
The equation satisfied by @) on g is:

(4) {[@{(, QY] - QIOX,Y] - QX, QY] = A[X, Y]
BRX,Y) = —B(X,QY)

For any complex number 1 let g, denote the generalized eigenspace given by:

g, ={X€eg| (@ — ,u)kX = 0 for some positive integer k}.

Let a? = —), then a is purely imaginary; g, and g_, are subalgebras of g which are
isotropic with respect to § and g_, = @,-

Besides g’ = 3,24, 9, is a subalgebra and ¢’ = ¢’

From ( [2] and [1] p. 8 ) we know that there exist two Borel subalgebras by of g such
that g, +¢' C by and g_, +¢' C b_, moreover they satisfy b, = b_ and h = b Nb_
is a Cartan subalgebra of g such that h = b thus h = hC where b, is a Cartan
subalgebra of gp.

Let go = €+ p be a Cartan decomposition of gy and let hy = t + a be the
corresponding decomposition of hy i.e. t C € and a C p.
Denote by A* the set of roots of (g, ) such that the corresponding eigenspaces are
in b,.
Denote by o the restriction of a € A to hq.
Then g% = g~ where —&@ = @ and @ € At if a € A*.
Remark that t' = t+ ia is a maximal torus of € 4 ip which is a compact subalgebra
of g.
Hence we have o € AT if and only if 3X € it’ such that «(X) > 0.
i (Z)+(Y)>0
—i(Z)+d'(Y) <0
So there must be a Z € t such that a(Z) # 0 Va € A.

But (o € A') = (o/ € A7) thus we obtain: {

Reciprocally suppose there exists X € t such that a(X) # 0 Va e A then let
At ={ae A |ia(X) >0}, by = (ho)® + > g and define Q as follow:

aeAt

aXifX e ) ga

acAt
(5) QIX)={0if X eh=h§
—aXif X € ) ga

aeAt

Such a @ satisfies (4) and when restricted to gy it satisfies (3).
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So there ezists a solution of (3) if and only if there exits X € t such that
a(X) #0Va € AT, And in this case a solution of (3) is given by (5). Remark that
the fact that there exits X € t such that a(X) # 0 Ya € A is equivalent to the fact
that t is a mazximal torus of €. Hence we can always find a solution of (3) for A > 0.
m

b. Research of all the solutions.

We work on g = g§, we extend Q C-lineairely to g.
The equation satisfied by @ on g is (4)

But we impose futhermore that Q € End(go) i.e. Q(X) = Q(X) VX € g.

We have from Belavin-Drinfeld [2] :
Theorem 1. Let g be a complex semisimple Lie algebra and let Q € A%g satisfying

I9(Q.QL X AY £ 2) = BIX. Y], 2)

Then, there exists a Cartan subalgebra b of g, a system of positive roots AT of
(g,h), two subsets 'y and T'_ of the set ® of simple roots corresponding to A™ and
amap 7 : 'y — I'_ satisfying

(1) <7(a),7(v) >=<a,v >, Va,v eIy,

(2) Ya € Ty, there exists a positive integer k such that /(o) € Ty, VI < k
and 7™%(a)) & T'y such that, for a choice of Weyl bases Eq, in g* with 3(Ea, E_y) =1

Q=Qv+a( Y EoNE,+2 Y FE_,AE,)

aEAT ael'y,a<v

where a* = —\ and Qo € A?Y is determined by Q(a,v), Ya,v € ® and those must
verify:
(3) Q(1(a),v) =Q(a,v) —a(< a,v >+ < 7(a),v >), Ya e 'y, Vv e d.

Where f+ is the set of the positive roots which can be written as integer combi-
nations of the simple roots in I';.
Where < a,v >= ((H,, H,).
Where the notation v > « for a € f+ means that there exists an integer £ > 1 such
that 7%(a) = v.

Lemma 1. As we work on g = g5 with A > 0 we have:

) b _’bOCa

2) g% = g~ where — Qpp, = Qjy, thus By = \E_3;

3) I'. ={a when o € T' };

4) H—a: —H; fora € A,

5 QE_o) = —aE_o —2a Y E_, where Y E_,=0ifv ¢,

v<o v<o

proof:
) from the paragraphe 3.a we already have 1 and 2.
) for 3: if ¢4 = Im(Q + a) then c = Im(Q — a) =¢f
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A

and > (g 4+ g7 + [g%,g7°]) is the Levy factor of ¢ so I, =T_ie I'. =
acl'y

{& when a € '} }

x) for 4: we use [E,, F_o,] = H, and 2 to obtain H, = —A\A_oH;, [H,E,]

1.

a(H)E, and 2 to obtain a(H) = —a(H ) and G(H,, H) = a(H ) to obtain A\, A_,
>l<~) for 5: from theorem 1 we have
QE,=a(E,+2> E,) Va € vy where Y E, =0ifa € A \I';
v>a v>a
To determine QE_, we use: 3(QX,Y) = —3(X,QY), Q(Paca+0™®) C Bacarg ®
and B(Eqy, E_y) = 6ay- O

Remark 1. The equality 5 of Lemma 1. does not depend of the sign of \.

Theorem 2. Let gy be a real semisimple Lie algebra and let Q € A%gq satisfying

{ X, QY] - QIQX.Y] - QIX,QY] = A[X,Y]
BQX,Y) = —B(X,QY) with A > 0

Then, there exists a Cartan subalgebra Ho of go which is as in a.proposition 1, a
system of positive roots At of (goC, f)o(c), one subset 'y of the set ® of simple roots
corresponding to AT and a map 7 : T — T'_ = {a when o € T} satisfying
(1) <7(a),7(v) >=<a,v >, Va,v eIy,
(2) Yo € Ty, there exists a positive integer k such that /(o) € Ty, VI < k
and (o) ¢ Ty
3) () =v = 7(v)=aVaely
such that, for a choice of Weyl bases E, in g* where E, = \oE_=
with B(Ea, F—o) =1 and
(4) M) = Aa Yo € T' we have

Q=Qu+a(Y EoNE,+2 Y FE_,AE,)

aEAT ael'y,a<v

where a®> = —\ and Qo € A*hy is determined by Q(«,v), Ya,v € ® and those must

verify:
(5) Q(t(a),v) = Q(a,v) —a(< v >+ < 7(),v >), Yae 'y, Vv e ®

(6) Q(H) = —Q(Ha) Vo

proof: we want that a @) given by theorem 1 satisfies @(7) = @(X ) VX €g
In particular for X = E, we obtain:
1 case :

Ifael, and 7(a) =7 €', 7 €Ty then Q(E,) = —a(MF_5 + 2\ F_5) and

Q(Ea) = —ala(E_5 +2 dy<a E_,)

There is equality if and only if A;) = Ay and 7(v) = &
2" case :

We apply a recursive process in the case where o € f+ is such that 7'(a) € f+, [l =
1,---,kand 7" () =D £ T,



274 V. Chloup

We apply recursive hypothese to 7(«).
Then Q(E,) = —a(MaE_z + 2\ () E_ripy + -+ + 2X ki1 () E_y) and

@(E_> = —CL)\ (E—a + 227<a E—’Y>

There is equality if and only if : Ay = Ar(q) =+ = Art1() and 7(77(v)) = & that
is

T (v) = a.

We also want that Q(X) = Q(X) VX € b, that gives immediately 6. O

Remarks
1) If 7(a) = & then A, € C.
2) If 7(a) = v and 7(v) = & then A\; = A, and \; = \,.
3) If (o) = @ then Q(H, — aH,) € iA%h,.

B. The case A < 0.
The existence of a solution in this case has been studied in [1]:

Theorem 1. There exists a solution of (3) for A < 0 if and only if go is the sum
of simple ideals which are either split, complex or one of the following cases (using
the notation of Helgason [5]):

(4) SU(p,p), SU(p,p +1);
(it) SO(p,p +2);
(1i1) E11.
We extend Q C— linearly to g as in A. and we use the same A.b.theorem 1.

Lemma 1. As we work on g = g§ with A\ < 0 we have:

)b_bOa

2) g% = g* where ap, = Ay, thus B, = Ao Ex;
3) Ho = H for a € A,
4) Q(E_ )——aE_ —QaZE_thereZE_y—Osz¢F+
v<o v<o
proof:
) for 1: as a®> = — )\, a is real,

thus go = (g.%)%, g-a = (-.%)% ¢’ = (@), bs = (0.5, b= (0_5)°
50 b = ho"

%) for 2: we use g* C by and b, = b,.

x) for 3: we use [E,, E_] = H, and 2 to obtain H, = A A_o Hz; [H, E,]
and 2 to obtain a(H) = a(H) and 3(H,, H) = a(H) to obtain )\ )\_ =

a(H)Eq

1. O

Theorem 2. Let gy be a real semisimple Lie algebra as in theorem 1 and let
Q € N%gq satisfying

[QX, QY] - QIQX,Y] - Q[X,QY] = \[X, Y]
BRX,Y) =—-0(X,QY) with A <0
Then, there exists a Cartan subalgebra by of go, a system of positive roots A of

(90", f)o(c), two subsets I'y and T'_ of the set ® of simple roots corresponding to AT
and a map 7 : 'y — T'_ satisfying
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(1) <7(),7(v) >=<a,v >, Vo,v eTy;

(2) Yo € Ty, there exists a positive integer k such that /() € Ty, VI < k
and 7™(a) ¢ T
(3) 75(a) €T, <= 75(a) €T
(4) 7(a) = T( ) Va e I'y
such that, for a choice of Weyl bases E, in g where Eo = A\ Ex
with B(Ea, F—o) = 1 and

(5) Ar(a) = Aa Yo € T' we have

Q=Qo+a(d E.oANE,+2 > E_,AE,)

acAt acly a<v

where a® = —\ and Qo € A*hy is determined by Q(«,v), Ya,v € ® and those must

verify:
6) Q(T(),v) = Q(a,v) —a(< v >+ < 7(a),v >), Yae 'y, Vv e d

(7) QUH;) = Q(H.) Vo

proof: we want that a @ given by b.theorem 1 satisfies Q(X) = Q(X) VX € g
In particular for X = E, we obtain:

Q(Ey) = aa(E5; + 2525 B,) and Q(E,) = aXaEz +2a %20 M\ Es

Assume that 7%(a) € 'y fork = 1,---,1 — 1 and 7/(a) € T'y; and that 7%(a) €
[, fori=1,---,7—1and 77(a) € T.

Then the previous equality reads:

(%) adaBz+200a B, Gyt - 2000 B = 6haBit20Mn B,

+- - '+2a)\7_j(a)E7_7(‘;)

We must have j=I this is 3.

We apply a recursive process to get 4 and 5.

1% case : for 1=1

If o €'y and 7(a) € 'y, then by 3 we have & € 'y and 7(a) € 'y
So () gives: \aE, (5 = Ay B

m(a)’
2" case : Assume that (Vo € 'y such that 7%(a) € Ty for k= 1,---,I' — 1 and

(a) €T, we have: A, = AT(Q and 7(@) = 7(a) ) forall ' <1
We write (x) for I+1: A\aE 5+ + AaEng) = AEo + 0+ A E

7(@) 711 (a)
We successively apply the recursive hypothesis to 7!(a) for I’ = 1; to 771(a) for
I'=2; to 7'72(a) for I’ = 3;--+; to 7(a) for I’ = [, this gives 4 and 5. O

4 Case of a complex structure.

Aim: We show that there exist solutions of the modified Yang-Baxter equation
when gq is a simple real Lie algebra such that go* is not simple, which are not
preserving the ideals in go°.

We see go© as go + igo, the conjugation is given by (X,Y) = (X, -Y)
Here go(c = I, @& I, where Iy and I, are two simple ideals of go(c.
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Let J be a complex structure on go, extended C—linearely to go® it is given by
J = ZId|[1 —ZId|[2 Hence Il = {(X,—JX) ’ X € go} and IQ = {(X, JX) ’ X € go}

Let M : go — go satisfying M o adX = adX o M VX € go; if we still denote by
M its C—linear extension to go*, we have M = uld + v.J.

Hence when we restricted M to go, the most general modified Yang Baxter’s
equation on go is:

BN(@XLY> :N_ﬁN(Xa @Y> _ _
(6) [QX, QY] —Q[QX,Y] - Q[X,QY] = (uld+vJ)[X,Y]
with u2 + v2 # 0

We still denote by @ the C—linear extension of Q to g0°C.
We extend (6) C—linearely to go, we obtain the same equation but for X, Y € go°.

(O Qu
Q=1 __ _
Q2 Q2

where @Vl I — Il,@; L — 12,65;2 L — 11,65;1 : Iy — I, are linear maps.

On g0 we can see () as

Remark 1. Q(X) = Q(X), so Q2(X) = Q1(X) and Q12(X) = Qu (X)

We obtain the following equations:

(7)
[Q1X, QY] — Qi@ X, Y] — Q1[X, QY] = (u+iv)[X,Y] VXY € I, (a)
[Q21X, QY] — Qu[Q:1X,Y] — Qu[X, Q1Y] =0VX,Y € I (b)

(@1X, QY] = QulQuX, Y] = QuX, QY| =0YX €I, W e, (0]

Our study of those equations is not an exhaustive one.

e 1% case : Suppose Q1o = Qa1 =0
We then have to solve the following problem:

[QX, QY] —QIQX.Y]-Q[X, QY] =AXY]VXY €g
Where g is a complex semisimple Lie algebra and A € C.

Proposition 1. In the case where ijg = Cj;l = 0 there exist solutions @ of (6)
which are given by 3.A.b.theorem 1 with A € C
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e 2" case : Suppose @Vl = @/2 = 0.
Proposition 2. There is no solution for (6) when Q1=0Q,=0.

Indeed for XY € I; we obtain from (a): (u + iv)[X,Y] = 0. This is impossible as
u—+iv#0

e 3" case :

Remark 2. For any Q; solution of (a), Q21 = 0 is a trivial solution of (b) and
().

From 3.A.b.theorem 1, we know that for a Cartan subalgebra b, of 1, a system
of positive roots AT of (I1,h;) and if we note nix = 3, ca+(I1)*®, a solution of (a)
is given by:

s aX if X € Nt
(9) Qi(X)=130if X €
—aX if X € n;_ where a satisfies a® = u + iv

Proposition 3.For Q; given by (9), a solution Qa1 of (b) and (c) is given by:

proof: we only have to check (b) and (c) for this Qa; writing for X € I;, X =
X+ + Xo 4+ X_ where Xy € nyy, Xp € by, X_ € ny_, this is an immediate result. o
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