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1. Introduction

Laplace transform of numerical functions has been elaborated as a pow-
erful mathematical theory very useful in practice and many a time applied
by engineers. Although it has been belived to have two important short-
comings. First, application of the Laplace transform (In short, LT) (not
only to functions but to distributions, ultra distributions, Laplace hyper-
functions,...) calls always for some growth conditions of them ([4], [8], [11],
[14], [16], [17], [18] and [19]). Secondly, there is no simple characterisation
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of the functions which are LT of the numerical functions. Hence, we are not
always sure whether or not an obtained function f(s) is the LT of a function
g(t) of exponential type.

To overcome these difficulties mathematiciens defined LT of functions as
classes ([2], [3]) without a rich repercussions, or used algebraic approaches
to the Heaviside calculus ([11], [13]).

Recently H.Komatsu [7] overcame successfully all defects of the classical
LT. He defined the LT of Laplace hyperfunctions and of hyperfunctions, as
well, but in one dimensional case. Since it is a very abstract theory, it cannot
be easily accepted by the greater part of people working in applications.

In [10] a definition was developed of the LT applicable to locally Bochner
integrable, Banach space valued functions with arbitrary growth at infinity
based on old ideas (cf. [2], [3]). For f ⊂ Lloc this LT coincides with the LT
defined by Komatsu.

The aim of this paper is to define and to elaborate the LT of a subset
of distributions which contains also the space Lloc(R), distributions with
compact supports and tempered distributions, elements which are sufficient
for a wide class of applications, if it is a question of classical or generalized
solutions to mathematical models. It can be also used to analyse reasons
of the nonexistence of classical solutions. Such a definition does not assume
any growth condition for functions belonging to L1

loc(R) and there is a simple
characterisation of the LT images. From generalized functions we use only
the space S′ of tempered distributions which is becoming a workaday tool
of mathematicians, physicists and engineers.

So defined LT can be successfully applied to solve linear equations with
derivatives, partial derivatives, fractional derivatives and convolutions all
with initial or boundary conditions, regardless of the existence of classical
or generalized solutions.

2. The space of tempered distributions and the Laplace transform

We repeat some definitions and facts related to the space S′ of tempered
distributions and to the Laplace transform (in short LT) of them (cf. [17]
and [18]).

Let Γ be a closed convex acute cone in Rn, Γ∗ = {t ∈ Rn, tx ≡ t1x1 +
... + tnxn ≥ 0, ∀x ∈ Γ} and C = intΓ∗. Let K be a compact set in Rn.

By S ′(Γ + K) is denoted the space of tempered distributions defined on
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the close set Γ + K ⊂ Rn. Then S ′(Γ+) is defined by way of

S ′(Γ+) =
⋃

K⊂Rn

S ′(Γ + K). (1)

The set S ′(Γ+) forms an algebra that is associative and commutative if
for the operation of multiplication one takes the convolution, denoted by ∗.

If Γ + K is convex, as it will be in our case, then the LT of f ∈ S ′(Γ+)
is defined by

f̂(z) = L(f)(z) = 〈f(t), e−zt〉, z ∈ C + iRn, (2)

where t = (t1, ..., tn), z = (z1, ..., zn) and zt = z1t1 + ... + zntn. It is one to
one operation.

For the properties of so defined LT one can consult [17]. We shall cite
only some of them which we use in the sequel:

1) L
( ∂m

∂tmi
f
)
(z) = (zi)mL(f)(z).

2) If f ∈ S ′(Γ1+) and g ∈ S ′(Γ2+), then L(f×g)(z, s) = L(f)(z)L(g)(s),
z ∈ C1 + iRn, s ∈ C2 + iRn.

3) If f, g ∈ S ′(Γ+), then f ∗ g ∈ S ′(Γ+) and
L(f ∗ g)(z) = L(f)(z)L(g)(z), z ∈ C + iRn.

4) If f ∈ Lloc([0,∞)) and bounded in a neighbourhood of zero,
0 < β < 1, n = 1, then L(f (β))(z) = zβL(f)(z).

5) L(δ(t− t0))(z) = e−zt0 .

6) L(f)(z + a) = L(e−atf)(z), Rea > 0.

7) If f ∈ Lloc(Rn
+) and |f(x)| ≤ Ceqx, x ≥ x0 > 0, then

f(x)e−qx ∈ S ′(Rn
+) and

∫

Rn
+

e−(z+q)tf(t)dt =
∫

Rn
+

e−zte−qtf(t)dt = L(e−qtf)(z).

Let H(α,β)
a (C), α ≥ 0, β ≥ 0, a ≥ 0, denote the sets of holomorphic

functions on C + iRn which satisfy the following growth condition

|f(z)| ≤ Mea|x|(1 + |z|2)α/2(1 + ∆−β(x, ∂C)), z = x + iy ∈ C + iRn, (3)
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where ∂C is the boundary of C and ∆(x, ∂C) is the distance between x and
∂C. We set

Ha(C) =
⋃

α≥0,β≥0

H(α,β)
a (C) and H+(C) =

⋃

a≥0

Ha(C).

Proposition A. ([17] p.191). The algebras H+(C) and S ′(C∗+) and
also their subalgebras H0(C) and S ′(C∗) are isomorphic. This isomorphism
is accomplished via the LT.

A property of the defined LT which can be used in a practical way is the
following:

Let f ∈ S ′(Rn
+ +P ). The LT of f, L(f), can be obtained by one after the

other applications of the LT-s L1(f), ...,Ln(f), L(f) = L1(f) ◦ ... ◦Ln(f).
If σ ≥ 0, f ∈ S ′(C∗+) and g = eσtf then bydefinition L(g)(s) =

〈f(t), e−(s−σ)t〉, Res > σ.

Let F (s) be a function holomorphic for Res > σ. The function F (ξ+σ) is
holomorphic for Reξ > 0. If F (ξ+σ) ∈ H(R+), then there exists f ∈ S ′(R+)
such that L(eσtf)(s) = F (s).

3. The space D′∗(P )

Let P be the set
n∏

i=1
[ai, bi), 0 ≤ ai < bi, i = 1, ..., n. P is compact. Since

Rn
+ is a closed convex and acute cone, S ′(Rn

+ + P ) is well defined.
Let A be the vector space:

A = {T ∈ eωtS ′(Rn
+ + P ); suppT ⊂ {(Rn

+ + P ) \ P}}, ω ∈ R,

where eωt = eωt1 ...eωtn . A is a subspace of eωtS ′(Rn
+P ).

Now we can define an equivalence relation in eωtS ′(Rn
+ +P ) : f ∼ g ⇐⇒

f − g ∈ A. Let us denote B by:

B = eωtS ′(Rn
+ +P )/A, b ∈ B ⇐⇒ b = class(T ) ≡ cl(T ), T ∈ eωtS ′(Rn

+ +P ).
(4)

Definition 1. Let D′(P ) denote the space of distributions defined on P.
Then

D′∗(P ) = {T ∈ D′(P );∃T ∈ eωtS ′((Rn
+ + P )), T |P = T}, (5)
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where T |P is the restriction of T on P. Since D′ is not a flabby sheaf,
D′∗(P ) 6= D′(P ).

Proposition 1. D′∗(P ) is algebraically isomorphic to B.

P r o o f. If T∗ ∈ D′∗(P ), then there exists T ∈ eωtS ′(Rn
+ + P ) such

that T |P = T∗. We can define the mapping λ : D′∗(P ) → B, for T∗ ∈
D′∗(P ), λ(T∗) = cl(T ) ∈ B. The inverse mapping λ−1 exists and λ−1(cl(T )) =
T |P = T∗ ∈ D′∗(P ). T∗ does not tend on the chosen element from cl(T ). If
we take an other representative T1 of the cl(T ), then T1 = T + S, S ∈ A.
Then T1|P = T |P . Now it is easily seen that λ is an algebraic isomorphism
of two vector spaces.

Definition 2. The LT of elements in D′∗(P ) is defined by

L(D′∗(P )) = L(eωtS ′(Rn
+ + P ))/L(A).

If T∗ ∈ D′∗(P ), then L(T∗) = cl(LT ), where T is such that T |P = T∗.

Remark 1. a) Let HP denote the function HP (t) = 1, t ∈ P, H(t) =
0, t ∈ Rn \ P.

b) If f ∈ Lloc(Rn), then the regular distribution [HP f ] defined by HP f
belongs to D′∗(P ) for every P ⊂ Rn and f has the LT in the sense of Defi-
nition 2.

c) If f ∈ eωtS ′(R+ + P ) and g ∈ A, then f ∗ g ∈ A, as well.

4. Localization of functions

4.1. One dimensional case

Let f ∈ C(p)((−∞, b)), p ∈ N0 = N ∪ {0}, and Ha be a function such
that Ha(x) = 0, −∞ < x < a < b; Ha(x) = 1, a ≤ x < b. De-
note by [Haf ] the regular distribution defined by Haf. Hence, [Haf ] ∈
D′((−∞, b)), supp[Haf ] ⊂ [a, b) or [Haf ] ∈ D′([a, b)), as well (cf. [17]).
By [f (p)

a ], p ∈ N, we denote the distribution defined by the function f
(p)
a

that equals to f (p)(x), x ∈ (a, b) and equals to zero for x ∈ (−∞, a) and is
not defined for x = a.

Since the function (Haf)(k) has in general a discontinuity of the first
kind in x = a, k = 0, 1, ..., p, by the well-known formula (cf. [14])
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Dp[Haf ] = [f (p)
a ] + f (p−1)(a)δ(x− a) + ... + f(a)δ(p−1)(x− a)

= [f (p)
a ] + Rp,a(f) = [Haf

(p)] + Rp,a(f),
(6)

where Dp[Haf ] is the derivative of order p in the sense of distributions, and

Rp,a(f) = f (p−1)(a)δ(x− a) + ... + f(a)δ(p−1)(x− a). (7)

Proposition 2.For f, g ∈ Lloc(R) and θ the Heaviside function

[H0(θf ∗ θg)] = [(H0f ∗ θg)].

P r o o f. For ϕ ∈ D([0, b))

〈[H0(θf ∗ θg)], ϕ〉 =
x2∫
0

H0(x)
x∫
0

f(t)g(x− t)dtϕ(x)dx

=
x2∫
0

x∫
0

H0(t)f(t)g(x− t)dt ϕ(x)dx

=
x2∫
0

((H0f ∗ θg)(x)ϕ(x)dx

= 〈[(H0f ∗ θg)], ϕ〉.

This completes the proof.

Definition 3. ([6]) Let α be a positive real number such that m−1 < α <
m for a fixed m ∈ N. The α-fractional derivative of a function f ∈ C([0,∞))
is defined by

f (α)(x) =
1

Γ(n− α)
dm

dxm

x∫

0

f(x− t)tm−1−αdt, x > 0, (8)

if this derivative exists.

Proposition 3. Let α be a real number such that m − 1 < α < m and
f ∈ C(m)((0, b)).
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1) If f (k) is bounded in [0, η] for an η > 0, k = 0, 1, ...,m, then f (α) ∈
C((0, b)).

2) If in addition f (k)(0) = 0, k = 0, ..., m− 1, then f (α) ∈ C([0, b)).
3) If f (k) is bounded in [0, η] for any η > 0, k = 0, 1, ..., m − 1, and for

m ≥ 2, f (j)(0) = 0, j = 0, 1, ..., m− 2, then

[H0f
(α)] =

1
Γ(m− α)

Dm
x [((H0f) ∗ (θ(t)tm−1−α))(x)]. (9)

P r o o f. Since 0 > m− 1− α > −1 and

dm

dxm

x∫

0

f(x− t)tm−1−αdt = f(0)
dm−1

dxm−1
xm−1−α + ...+

+f (m−1)(0)xm−1−α +
x∫

0

f (m)(x− t)tm−1−αdt, 0 < x < b,

it follows the first part of Proposition 3.
With the additional assumptions we have

dm

dxm

x∫

0

f(x− t)tm−1−αdt =
x∫

0

f (m)(x− t)tm−1−αdt, 0 < x < b, (10)

and

|
x∫

0

f (m)(x− t)tm−1−αdt| ≤ Mxm−α, x ∈ [0, η].

Hence, f (α) ∈ C([0, b)).
By Definition 3 and by (6)

[H0f
(α)(x)|(0,b)] =

1
Γ(m− α)

[H0(x)
dm

dxm

x∫

0

f(x− t)tm−1−αdt|(0,b)]

=
1

Γ(m− α)
Dm

x [H0(x)((θf) ∗ (θ(t)tm−1−α))(x)]

−Rm.0((θf) ∗ (θ(t)tm−1−α)).
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By assumption in 3) it follows that

dk

dxk

x∫

0

f(x− t)tm−1−αdt|x=0 = 0, k = 0, ..., m− 2, m ≥ 2.

Therefore, Rm,0((θf) ∗ (θ(t)tm−1−α)) = 0. Now, by Proposition 2 it follows

[H0f
(α)
0 ] =

1
Γ(m− α)

Dm[(H0f ∗ θ(t)tm−1−α)].

If m = 1

[H0f
(α)] =

1
Γ(1− α)

D[H0f ∗ θ(τ)τ−α].

4.2. n-dimensional case

We keep the following notation:

P =
n∏

i=1
[ai, bi), 0 ≤ ai < bi, i = 1, ..., n;

Ω = Rn
− + P, then P ⊂ Ω;

Hn
a (x) = Ha1(x1)...Han(xn), Hai(xi) = 1, ai ≤ xi < bi; Hai(xi) =

0, xi < ai, i = 1, ..., n.

f is a function with continuous partial derivatives on Ω; [Hn
a f ] is the

distribution, defined by Hn
a f, belonging to D′(Ω) and to D′(P ), as well.( ∂p

∂xp
i

f
)

ai

is the function equal to
∂p

∂xp
i

f on the intP and equal to zero

on Ω \ P, but is not defined for x ∈ P \ intP.

Proposition 4.With the notation as above we have

Dp
xi

[Hn
a f ] =

[
Hn

a

( ∂p

∂xp
i

f
)

ai

]
+ Rp,ai(f), p ∈ N, (11)

where

Rp,ai(f) =
[
Hn

a

∂p−1

∂xp−1
i

f(x)|xi=ai

]
× δ(xi − ai) + ...

+[Hn
a f(x)|xi=ai ]× δ(p−1)(xi − ai).
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P r o o f. The method of the proof is just the same as for (6).

Proposition 5. With the notation as in Proposition 5.

Dq
xj

Dp
xi

[Hn
a f ] =

[
Hn

a

∂q

∂xq
j

(( ∂p

∂xp
i

f
)

ai

)
aj

]

+
[
Hn

a

∂q−1

∂xq−1
j

( ∂p

∂xp
i

f
)

ai

(x)|xj=aj

]
× δ(xj − aj)+

+
[
Hn

a

( ∂p

∂xp
i

f
)

ai

(x)|xj=aj

]

×δ(q−1)(xj − aj) + Dq
xj

Rp,ai(f).

(12)

P r o o f. We have only to apply Dq
xj

to (11).

Remark 2. To realize
Dq

xj
Rp,ai

we have to use (11).
We illustrate Proposition 5 by calculating

Dx2Dx1 [H
2
af ], D2

x1
D2

x2
[H2

af ] and Dα
x1

D2
x2

[H2
af ],

1) Dx2Dx1 [H
2
af ].

Let us start with the first derivatives.

Dx1 [H
2
af ] =

[
H2

a

( ∂

∂x1
f
)

a1

]
+ δ(x1 − a1)× [Ha2(x2)f(a1, x2)]

Dx2 [H
2
af ] =

[
H2

a

( ∂

∂x2
f
)

a2

]
+ [Ha1(x1)f(x1, a2)]× δ(x2 − a2)

Dx2Dx1 [H
2
af ] = Dx2

[
H2

a

( ∂

∂x1
f
)

a1

]
+ δ(x1 − a1)×

Dx2 [Ha2(x2)f(a1, x2)] =
[
H2

a

( ∂2

∂x1∂x1
f
)

a1,a2

]
+ Dx1 [Ha1(x1)f(x1, a2)]

×δ(x2−a2)−f(a1, a2)δ(x1−a1)×δ(x2−a2)+δ(x1−a1)×Dx2 [Ha2(x2)f(a1x2)],

where
( ∂2

∂x2∂x1
f
)

a1,a2

=
∂2

∂x2∂x1
f(x, y), (x, y) ∈ (a1, b1)× (a2, b2).
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Remark 3. a) This formula is derived by supposing:

( ∂f

∂x1
f
)

a1

(x1, x2)
∣∣∣
x2=a2

=
( ∂

∂x1
f(x1, a2)

)
a1

and ( ∂f

∂x2
f
)

a2

(x1, x2)
∣∣∣
x1=a2

=
( ∂

∂x2
f(a1, x2)

)
a2

b) It follows that Dx1Dx2 [H
2
af ] = Dx2Dx1 [H

2
af ].

2) D2
x1

D2
x2

[H2
af ].

By a similar procedure as in 1) we have

D2
x1

D2
x2

[H2
af ] =

[
H2

a

( ∂4

∂x2
1∂x2

2

f
)

a1,a2

]
+ D2

x1
[Ha1f(x1, a2)]× δ(1)(x2 − a2)

+δ(1)(x1 − a1)×D2
x2

[Ha2f(a1, x2)] + D2
x1

[Ha1

∂

∂x2
f(x1, a2)]× δ(x2 − a2)

+δ(1)(x1−a1)×D2
x2

[Ha2

∂

∂x1
f(a1, x2)]−f(a1, a2)(δ(1)(x1−a1)×δ(2)(x2−a2))

− ∂

∂x2
f(a1, a2)(δ(1)(x1−a1)×δ(x2−a2))− ∂

∂x1
f(a1, a2)(δ(x1−a1)×δ(1)(x2−a2))

− ∂2

∂x1∂x2
f(a1, a2)(δ(x1 − a1)× δ(x2 − a2)).

3) Dα
x1

D2
x2

[H2
af ], a1 = 0, b1 = ∞.

[
Dα

x1

( ∂2

∂x2
2

f
)

a2

]
=

1
Γ(1− α)

Dx1

[
H2

a

(( ∂2

∂x2
2

f
)

a2

∗x1 θ(x1)x−α
1

)]

=
1

Γ(1− α)
Dx1D

2
x2

[(H2
af ∗x1 θ(x1)x−α

1 )]

− 1
Γ(1− α)

Dx1 [(H
2
a

∂

∂x2
f(x1, x2)

∣∣∣
x2=a2

∗x1 θ(x1)x−α
1 )]× δ(x2)

− 1
Γ(1− α)

Dx1 [(H
2
af(x1, x2)

∣∣∣
x2=a2

∗x1 θ(x1)x−α
1 )]× δ(1)(x2)
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5. Applications

The LT defined in Section 2 can be successfully applied to linear equa-
tions with derivatives, partial derivatives, fractional derivatives and convo-
lutions to find classical and generalized solutions.

The mode of proceeding to solve such an equation is the following. First
we have to localize it on P ; of course P and Ha depend on additional con-
ditions (initial, boundary,...). The second step is to find the corresponding
equation in D′∗(P ) using Propositions in Section 4. The third step is to solve
this equation in D′∗(P ) applying the LT. Since the LT of a T∗ ∈ D′∗(P ) is a
class, after applying the LT to the obtained equation in D′∗(P ), we have a
class of equations. To construct this class of equations and to work with it
we use some properties of the vector space A, specially the following: A is
closely related to derivatives and to convolution by g ∈ eωtS ′(Rn

+ + P ).
Also we can realize the n-dimensional LT by applying the LT in one

dimension successively n-times. The same procedure can be used to realize
the inverse LT. Property 7) of the LT (cf. Part 2) can often help giving
possibility to use tables for classical LT. At least, Proposition A establishes
the existence of a g such that L(g) equals to the found function f(z) which is
the solution to the transformed equation by LT. The solution to the starting
equation is given by g|P . If this works for every a, b ∈ Ω ⊂ R̄n, then we have
a solution to the starting equation in Ω. In case we have some condition in
a point x ∈ ∂Ω, we realize it by taking a limit of the found solution.

We give two examples to illustrate the exposed method and nothing else.

5.1. A differencial equation with fractional derivative

We consider a type of equations which describes the dynamics of a rod
made of generalized Kelvin-Voight Viscoelastic material (cf. [1], [15]) in
which the force F = ω + Aδ(t− t0), t0 > 0, where ω is a constant and δ is
the Dirac distribution, γ ∈ R+ and Q ∈ Lloc(R).

This equation is the following:

T (2)(t) + γT (α)(t) + ωT (t) + Aδ(t− t0)T (t) = Q(t), t > 0. (13)

With initial condition T (0) ≡ T0, T (1)(0) ≡ T ′0.
We look for a solution to (13) belonging to C([0, b)) ⊂ D′∗([0, b)).
Since δ can be treated as a measure, (13) has a meaning if T ∈ C([0,∞)).

Then δ(t− t0)T (t) = T (t0)δ(t− t0) (cf. [14] Vol. I, Chapter V).
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Firts we have to localize the suposed solution T (cf. 4.1.). In this case
a = 0 and b is any positive number; the corresponding function Ha, we
denote in short by H, and by HT is denoted the distribution belonging to
eωtS ′(R+) such that HT |[0,b) = [HT ] ∈ D′∗([0, b)) defined by the function
HT. Let us multiply (13) by H

(HT (2))(t) +γ(HT (α))(t) + ω(HT )(t)+
+Aδ(t− t0)(HT )(t0) = (HQ)(t), 0 ≤ t < b.

(14)

By (6) and Proposition 3, to (13) it corresponds in D′∗([0, b))
D2[HT ] +γDα[HT ] + ω[HT ] =

= T0D
1δ(t) + T ′0δ(t)−AT (t0)δ(t− t0) + [HQ].

(15)

Applying LT to (15) we have

(z2 + γzα + ω)L(HT ) = zT0 + T ′0 −AT (t0)e−t0z + L(HQ) + L(W ),

where W ∈ A. This gives

L(HT )(z) =
zT0 + T ′0

z2 + γzα + ω
− AT (t0)eit0z

z2 + γzα + ω
+

+
L(HQ)(z)

z2 + γzα + ω
+ L(W1)(z), W1 ∈ A, as well .

(16)

Now, we can analyse the solution to (13) in [0, t0) or in [0, b), b > t0. If
we seek a solution only in [0, t0), then in (16) we can take T (t0) = 0.

If ω > 0, it is easy to check by Proposition A that HT exists. Namely
the function ∆(z) = (z2 + γzα + ω)−1 is holomorphic in R+ + iR. We know
that zα denotes the principal value and there is no z0 ∈ R+ + iR such that
z2
0+γzα

0 +ω = 0. Suppose this was false. Then we could have z0 = ρeθi, |θ| <
π/2, θ 6= 0 such that ρ2 sin 2θ + γ sinαθ = 0, but such a θ does not exist.

If ω = −q2 < 0, then there exists one and only one z0 = ρ0 > 0 such that
ρ2
0 + γρα

0 − q2 = 0. If we introduce the new variable s = z − ρ0 in (16), then
we will also have ∆(s + ρ0) = ((s + ρ0)2 + γ(s + ρ0)α − q2)−1 holomorphic
in R+ + iR. Thus we can apply once again Theorem A.

L−1(∆−1(z))(t) = eρ0tL−1(∆−1(s + ρ0))(t).

Property 7) enable us to establish the analytic form of HT (cf. [4], [17]).
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5.2. A partial differential equation

∂4

∂x4
u(x, t) + A2 ∂2

∂t2
u(x, t) = f(x, t), t > 0, 0 < x < 1, (17)

with possible additional conditions (cf. [1]):

a) Conditions in x = 0 and t = 0

∂k

∂xk
u(x, t)|x=0 = Ak(t), Ak ∈ Lloc([0,∞)), k = 0, 1, 2, 3;

u(x, 0) = B0(x),
∂

∂t
u(x, t)|t=0 = B1(x);B0, B1 ∈ Lloc([0,∞)).

b) Conditions in x = l

∂k

∂xk
u(x, t)|x=l = Ck(t), k = 0, 1, 2, 3.

We are interested in finding a classical solution or a solution belonging to
Lloc(R2).

If f(x, t) ≡ 0, A0(t) = a sint, A1(t) = 0, C2(t) = 0 and C3(t) = 0,
then equation (17) is the mathematical model of a flag pole. This model
describes the lateral variations of the amplitude u(x, t) of a beam of length
l when one end, x = 0 (the ground), is forced to move with a prescribed
periodic motion of frequency ω (period T ) and amplitude a; the other end
is free to move (cf. [5]).

This special case can be solved by taking u(x, t) = U(x)V (t) (cf. [1]).
In general case solution is much more complicated.

To localize u(x, t) we take P = [0, l) × [0, b), where b is any positive
number. Then we choose the corresponding function H0(x, t) = H0(x)H0(t).

Let us multiply (17) by H0(x, t)

H0(x, t)
∂4

∂x4
u(x, t) + A2H0(x, t)

∂2

∂t2
u(x, t) = H0(x, t)f(x, t),

b > t > 0, 0 < x < l.

We denote by U(x, t) = H0(x, t)u(x, t) and by F (x, t) = H0(x, t)f(x, t).
By Proposition 5 we have

∂4

∂x4
[U(x, t)] + A2 ∂2

∂t2
[U(x, t)] =

3∑

k=0

[H0(t)Ak(t)]× δ(3−k)(x)

+[H0(x)B0(x)]× δ(1)(t) + [H0(x)B1(x)]× δ(t) + [F (x, t)].

(19)
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This is an equation in D′∗(P ).
Now, we apply the LT to (19) (cf. Section 2)

(z4 + A2s2)(L(U)(z, s) +L(W )(z, s)) =
3∑

k=0
L(Ak)(s)z3−k

+L(B0)(z)s + L(B1)(z) + L(F )(z, s)

(20)

where W ∈ A and U ∈ eωtS ′(R2 + P ), U |P = U(x, t). Thus,

L(U)(z, s) =
Q(z, s)

z4 + A2s2
− L(W )(z, s), z = x + iy, s = ξ + iη, (21)

where

Q(z, s) =
3∑

k+1

L(Ak)(s)z3−k + L(B0)(z)s + L(B1)(z) + L(F )(z, s).

Let us consider the function M(z, s),

M(z, s) =
Q(z, s)

z4 + A2s2
(22)

By Theorem A there exists a function g ∈ S ′(R2
+) such that

M(z, s) = L(g)(z, s) if and only if M(z, s) ∈ H0(R
2
+).

Conseqquently, M(z, s) has to be a holomorphic function on R2
+ + iR2

and to satisfy the inequality

|M(z, s)| ≤ c(1+ |z|2 + |s|2)α/2(1+∆−β((y, η), ∂C)), (z, s) ∈ R2
+ + iR2 (23)

for an α ≥ 0, β ≥ 0 and c > 0.

We start with the condition that M(z, s) has to be holomorphic in R2
+ +

iR2.

We can decompose the denominator in M(z, s), s ∈ R+ + iR :

z4 + A2s2 = (z2 + iAs)(z2 − iAs)

= (z +
√

e−πi/2As)(z −
√

e−πi/2As)(z +
√

eπi/2As)(z −
√

eπi/2As),



Solution of mathematical models by localization 15

where the root takes the principal branch. Then

M(z, s) =
Q(z, s)
4Asi

( 1√
e−πi/2As

1

z +
√

e−πi/2As

− 1√
eπi/2As

1

z +
√

eπi/2As

)
+

Q(z, s)
4Asi

( 1√
eπi/2As

1

z −
√

eπi/2As
(24)

− 1√
e−πi/2As

1

z −
√

e−πi/2As

)
= M1(z, s) + M2(z, s), s ∈ R+ + iR.

The first addend in (24), denoted by M1(z, s), is holomorphic in R2
++iR2. In

the second one, denoted by M2(z, s), we have to fix additional conditions a)
in such a manner that M2(z, s) becomes holomorphic, as well. A necessary
condition is that there exist

lim
z→

√
eπi/2As

M2(z, s) and lim
z→

√
e−πi/2As

M2(z, s).

After we obtained M2(z, s) to be holomorphic in R2
+ + iR2, we can use

the inverse LT, L−1(M(z, s)) = L−1(M1(z, s)) + L−1(M2(z, s)).
Let us consider how to realize L−(M1(z, s)). We can do it by applying

one after the other the inverse LT in one dimension using Tables of the
classical LT:

L−1(M1(z, s)) = L−1
z ◦ L−1

s (M1(z, s)).

So, for example,

L−1
( 1√

As

1

z +
√

e−πi/2As

)
(x, t)

= L1
s ◦ L−1

z

( 1√
A
√

s

1
z + eπi/4

√
A
√

s

)
(x, t)

= L−1
s

( θ(x)√
A
√

s
e−

√
2

2

√
A x

√
s(cos

√
2

2

√
Ax

√
s + i sin

√
2

2

√
Ax
√

s)
)

=
θ(t)θ(x)√

πAt
θ(t)

(
cos

x2A

t
+ i sin

x2A

t

)
.

When we find a U(x, t), solution to (21), then u(x, t) = U(x, t)/P , where
P = [0, `) × [0, b) for every b ∈ R+;u(x, t) is a solution to (17). To satisfy
condition b), we only have to take lim

x→`
u(x, `).
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