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Abstract We give a condition of sufficiency for the hypoellipticity
of a family of equations with constant coefficients satisfied prescribed power
growth rate with respect to € € (0,1). The framework is Colombeau algebra
of generalized functions.
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1. Introduction

We have considered in [5] the hypoellipticity of a differential equation
with generalized constant coefficients and have given several necessary con-
ditions. In order to explain our approach, consider a family of equations
with constant coefficients

P.(D)G = ) aa:D*G=F., F.€C™(Q), €€ (0,1)

la<m

If P.(D) is hypoelliptic for fixed € € (0, 1), then the corresponding solution to

the above equation, Gg, is in C*°(Q). If we suppose that sup |D“F.(z)]
reKCCQ
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satisfies the power growth condition O(¢~Vx) for every a (N depends on
a compact set K), then one can ask whether the derivatives of G, satisfy
similar estimates on compact sets.

In this paper we will repeat necessary conditions for the hypoellipticity
([5]) and give appropriate sufficient conditions for it.

Another type of hypoellipticity was considered by Héormann and Ober-
guggenberger (personal communication) who pointed to us that our suffi-
cient conditions in [5] need some additional assumptions. In this paper we
reconsider the following condition:

“There exist N > 0 and ¢ € N such that for every ¢ € A; A > 0 there
exist n > 0 and B € R such that

|7| > A(log |o| + Nloge) — B,o + i1t € V(Py.), € € (0,7),”
and show that above we need
|7| > Alog|o| + Nloge — B,o + it € V(Py.), € € (0,7).

The proof of this fact is the main goal of this paper.

2. Colombeau algebras

Let
Ao(®) = {9 € CF| [ o(w)ds = 1, diam(supp ) = 1}

A(®) ={¢€ Al [a6()dz =0, 1<a<q aeN}, geN

and AG(R") = {é(x1,...,2n) = ¢1(z1) - ... - ¢1(xn)| o1 € Ag(R)}. Put
e = (1/e)¢(-/€), where ¢ € Ay.

Let € be an open subset of R” and £(£2) be the space of functions
G : Ay x (0,1) x Q — C which are C™ for every ¢ € Ay and £ € (0,1). We
will use the notation Gy, for (¢,e,x) — Gy (x), © € Q.

A family of smooth complex valued functions on Q, Gy., ¢ € Ag, € €
(0,1), belongs to Epr(2) if for every compact set K CC Q and a € N there
exist N € N and r = r(K,a) € R such that

sup |0%Gy ()] = O(e"), € = 0, for every ¢ € An. (1)
zeK
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If Gy does not depend on z and (1) holds for & = 0, then the space
of corresponding families of complex numbers is denoted by Cps. If g € D/,
the corresponding element in &y is given by Gg . = g * d4 ., where we use
the notation 0y . = ¢., ¢ € Ap since it is a delta net.

The space of all elements G . in Ep/(€2) which satisfy (1) independently
of a € Ny is denoted by £37.

The space () (resp. Cp) is the subspace of £3/(€2) (resp. Cpr) consist-
ing of elements G . with the property that for every K CC Q, a € Nij and
r € R there exists N € N such that (1) holds (resp. (1) holds for @ = 0 and
G4 does not depend on z) for every ¢ € An.

The space of Colombeau’s generalized functions on an open set 2 C R” is
defined by G(Q) = En(2)/E(Q2) and C = Cp/Cy is the ring of Colombeau’s
generalized complex numbers. Note that Q@ — G(Q2), Q C R", is a sheaf.

[G4.e] denotes the class in G (or C) determinated by the representative
G

Let G € G(2). The complement of the largest open set of Q in which G
is equal to the zero generalized function is called the support of G, supp, G.

The space of generalized functions with compact supports in the interior
of Q is denoted by G ().

G>®(Q) (cf. [6]) is the space of all generalized functions which have a
representative in £37. It is a subalgebra of G(£2) and

GX(Q) ND' () = C®(Q) (see [6]).

The space of tempered Colombeau’s generalized functions G¢(R™) is de-
fined to be & (R™)/Eot (R™), where E(R™) is the set of all G4 . € £ such that
for every a € Njj there exist v > 0, NV € N and r € R such that

sup [0°Gge(x)|/(1 + |z])" = O(e"), € — 0 for every ¢ € Ay, (2)
TERM

and &y (R™) is the space of all Gy, € & with the property that for every
o € Ny there exists v € R such that for every r € R there exists N € N such
that (2) holds for every ¢ € Ap.

Note that G¢(R"™) is not a subspace of G(R™), but there is a canonical
map Gy(R") — G(R").

Let G € G(f2). The complement of the largest open set of Q in which G
is in G*°(Q) is called the singular support of G. It is denoted by singsupp, G.

The equality in G is often too strong for applications, so we shall use

a notion of equality in generalized distribution (resp. generalized tempered

distribution) sense o4 (resp. g'éd') which is defined by:
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Gy ot Go (resp. Gy gtd. G4 for tempered generalized functions) if for
every ¢ € D (resp. ¢ € S), (G1,v) = (G2,7¢) in C, where (G,1)) means
J G(2)y(x)dz.

3. Hypoellipticity

Following [8], we define polynomials in n real variables as elements of
the ring C[z1,...,2,]. A generalized polynomial function is a tempered
generalized function of the form

It is of degree m if ao, = 0 for |a| > m and there exists 3, |3| = m such that
ag # 0.

I [Hye(2)] = X |aj<ml@a,p,eJz is such a generalized function, then it can
be written only in one way as a polynomial. In fact, if > g<p, b57¢75:p5 =
Ny o(x) € Ei(R™), then by making successive derivations and by putting
x = 0 it follows bg 4. € Co, |B] < m ([8]).

Let us remind that in the classical distribution theory a fundamental
solution of a differential operator is a distribution E such that P(D)E = .

Let
P(D)= Y aaD" = [Pyclin)) (D° = ilor) Q

la|<m

where Zlalém aqx® is a polynomial in G. In Colombeau’s theory, the fun-
damental solution of P is a generalized function E € G satisfying P(D)E =
[04.c]. This means that its representatives Ey . € &y satisfy

> a3 D*Eye(w) = 65 (x) + Nyo(2), z € R",

for some Ny . € &.

This fundamental solution allows us to solve the equation P(D)U e
for G € G, because G * [0 ] “wq.

Proposition 5 ([5]) Let P(D) be a generalized differential operator of the
form (4) with coefficients in C of degree m such that for some (¢1,¢2, ..., ¢n) €
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R"™ there existr > 0 and N € N such that for every ¢ € Ay there exist C > 0
and n > 0 such that

| D a2 CET, e € (0,m). (4)

|a|=m
Then, P(D) admits a generalized fundamental solution.

In non-standard models of Colombeau’s theory this hypothesis can be
replaced by 34—, Ga,pcc” # 0, since C is a field in such models (cf. Li
Bang He, [4] and Oberguggenberger [7]).

Solution to

D 0peD*Goe = Fyey Fye € Enr, aage € Cur, (5)

laj<m

in &y are constructed in [8], in a simplified version of Colombeau’s theory,
by adapting the classical distributional method of solving a constant coeffi-
cients partial differential equation. Problems which are specific for (5) are
connected with the growth rate of solutions with respect to € which implies
that the main assertions in [8] and in this paper are non-trivial generalization
of the corresponding ones in the space of distributions.

In this paper we investigate the hypoellipticity of the families of equa-
tions (5). This family is hypoelliptic if Fyy . € £37 implies Gy * 64 € Exy-

Now we give the definition of hypoellipticity in the framework of Colom-
beau generalized functions. Let [P4.(D)] be of the form (3) and suppose
that (4) holds for some ¢ = (¢1,...,¢,) € R", C1 > 0,7 >0, N € N and
n > 0. This operator is called hypoelliptic if for every open 2 C R™ and
every solution G € G(Q) to

P(D)G =0, (6)
the generalized function G * [04 ] is in G>(Q).

Proposition 6 ([5])
a) P(D) is hypoelliptic if it admits a fundamental solution E with

singsuppE = {0}. (7)

b) Let [Py o(D)] be hypoelliptic. Then, for every open set  and G € G(S2),
P(D)G € G>®(Q) implies G * [64] € G>(Q).

Let P, . be a hypoelliptic differential operator on 2, Qy, W, and O are
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the same as in the proof of assertion a) in Proposition 6, G a solution of (6)
and W £ O C Qy. Then we have the following

Proposition 7 ([5]) There exists N € N such that for every q € Ny there
exist C' > 0 and n > 0 such that
’ -N

q < .
max [DIGo.c  0p.c(2)] < Omax|Gog(z)le™, e <n

4. Main assertion

The main prerequisite, Lemma 1 of [5], has the same proof as in [5].

Lemma 1 Let N, A, n and B be the same as in (8) below. Assume that
a), b) and c) hold for e < ey, ¢ € Ay, where

a) (01,09) € R? such that Alog|(o1,09)| + Nloge > B + 1.
b) 1 €R, || < (Alog|(o1,02)| + Nloge — B)/2.

c) (01 +171) € V(Py.) and |71| > (Alog|(G1,02)| + Nloge — B).

N+1 N+1

Then, for every fired e < n, |61 — 01| > € or |t —1|>e¢

Theorem 1 The operator P(D) is hypoelliptic if and only if there exist
N > 0 and q € N such that for every ¢ € Ay and A > 0 there exist n > 0
and B > 0 such that

|7| > Alog|o|+ Nloge — B, o+ it € V(Py,), € € (0,n). (8)

Proof of sufficiency Without a loss of generality one can assume that
n < eg and q > qo, where n and g are used in the estimates bellow, while g
and ¢p are from Lemma 1. The change of constant A bellow will cause an
appropriate decrease of 1, but we shall use the same letter n in all cases.

One needs to prove that (8) implies (5). We will assume, without loss of
generality, that Py . is of the form Py.(s) = @, ¢57" + lower order terms.
The fundamental solution for P . is given by

—i(z,s)
Eye(z) = (277)71/% w

ey [ [ SO i),
Pt} Thooe Py o((o1 +im1,0")) ’

ds
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where Ty . = U;21{(01 +iT1,0'); o1 € R, 71 = kj € {0,...,m+ 1}, 0’ =
oo € T'j 4.} and T'j 4. are bounded closed domains of R™! such that for
pe Ay, Py(§) >Cpe”, E€Ty., e <.

Only the proof for n = 2 is given bellow. Higher dimensions can be
handled in a similar way.

Let the ball By, = B((x1,x2),h),h > 0, does not contain the point 0 and
a = dist(0, By,). We will prove that Ey . represents an element in G*(By,).

Divide (o1, 02)-plane into nine regions Q;, j = 1,...,9 by the lines o =
+u, o9 = +p and denote them by Q1 = {|o1]| < p, |oa| < p}, Qo = {01 >
s loz| < ph, Q3 = {01 > p,02 > p}, U = {lo1] < p,02 > pf, ... Now,

choose p > 0 such that

B+Co/A —~N/A
9

Alog p+N loge—B = max{ max 7,1} = Cp, ie. p=e e<n.
S€ELg e

Without a loss of generality one can assume that B((x1, z2), h) C [0, 00) %
[0,00). Denote by T 4 - the projection of Q; on Ty,

Tj7¢75 = {(01 +iT1,02)’ o1 €ER, 11 € {0, e, M+ 1},02 S Fk7¢75ﬂﬂj, ke N}.
Then Ey4 . = Z?:o Ej 4, where

—i{(x1,22),(s1,52))
e ¢(53)d8’j:1,_,,,9,x€R2-

E;s.(x) =27 _"/
j7¢75( ) ( ) Tj,¢,5 P¢75(S)
We will show that there exist N and § such that for every ¢ € Ajg,
a=(a,a) € N(Q) there exist C, > 0 and 7, such that

Sup [0%E; e (2)] < Cac, & <oy G=1,...,9, 9)
r€By,

We always take ¢ = ¢ and ¢ € A,.

Let j =1 and A > 3|a|. Put n, = n and take any ¢ < n. Using that
mes(T1 4:) = (2p)? = 4(e(B+C0)/Ag=N/A)2 Pyo(s) > Cpe”, s € Th 4 and
1591552 < Cpe= /Al (¢ < ), we have

/ (_i)|a\s?1832¢3(68) ds (10)
T1,¢,c

sup [0%E1 g.(x)] = (2m)™"

rEBy, P¢,8(S)

< 05—3N\a|/A—T’ (11)

for some C' > 0. This proves (9) for j = 1.
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Consider Fj 4., < 1. The integration over the contour oy + i1y, p <
o1 <wv, 7 €{0,...,m+ 1} is changed by integration over the contour

Q) Q1 (1) U Q1(1)Q1(v) U —Q()Q1(v),

where Q(1)Q1(u) )—{uﬂ't\@été 3(Alogp+Nloge—B)}, Qi(1)Q1(v) =
{on +im[ m = 3(Alogloi| + Nloge — B), o1 € [, 1]}, Q)Q1(v) = {v +
it]0<t<i (Alogv—l—Nlogs— B)}. We have

—f +/ )

Py yo(x) = (21)" /
#e ewaw Jewaw  Jawaw
8(13615326—i<(1‘1,1‘2),(81,82»(;%(88)

Pd),e(s)

ds = I + Ir. + I3, © € By,

Since .
|Poe(51,02)| = lampel [T (Jon =71 + |7 = 71 %),
j=1
where oy is fixed, 71 +i71 € V(P;.) and s; = 01 + i1y belongs to any of the
quoted contours, Lemma 1 implies that |P, .(s)| > Cpe” on these contours
(for e < n). Now, one can prove that Ij, < Ce™"2e=N/4 ¢ <y for some
C>0.
For every k£ > 0 there exists C} > 0 such that

v+ 07| 022 | (e (v + iT, 02))]
Cjell

< v+ ar|* p]*?
< | | el (1—|—5(1/2+7‘2+|02|2)1/2)

on Q()Q1(v)

(see (1.4) in [2],Ch.2, Sec.2). Choosing v = £~2 and k large enough one gets
I < Csfrflst/A, for some C' > 0.
Consider I3.. Again,

|b(e(01 + i(log|o1|*e™ — B)/2,02))]
Ckee(log\oﬂAEN)/Q
<
= (L+e(af + (loglor[AeN — B)?/4 + |og|?)1/2)k

C’Ul‘AE/27

on Q1(p)Q1(v) for some C > 0. Thus, with suitable constants, we have

ko oy + i(log(Jon] ™) — B) /210 |y Uostioa A=)
I3c] < Cy
- P¢,e(3)
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~

¢(€S)(1 + )dUldUQ

A

2|01
oo

< Czs‘r(2u)lu|"‘25_“N/2/ |0y [A7270 A2 (|0 |1 + log™ |o| AN )dory.
n

Taking A so large that —aA/4 dominates all exponents of o1 under the
integral sign and o1 > p, we have (with suitable constants)

‘I3e| < CSE—T—aN/Q|M|a2+1—aA/4+Ae/2+oq logal |'U|A /oo ‘5”_aN/4d5'
1

< C4E—T—aN/2(g—N/A)oa2+2—aA/4+Aa/2+o¢1'
Now, it is easy to see that (4) holds in the case j = 2 if one takes A >
a(|af +2)/4.

One can give similar estimate for F34.,e < 7 with a change of the
integration over T3 4. (for 1 < o1 and p < 09) by the path consisting of
lines connecting the boundary points of 73 4 . and the points

((oc1 +i(Alog|o1| + Nloge — B)/2),02)and
((oc1 +i(Alog|o1| + Nloge — B)/2),02 + i(Alog |o2| + N loge — B)/2)).
The proof is based on the estimate on gZS as above.

The proof for each of Ej 4., j = 4,...,9 is the same as for j = 2 or
j=3.0
The change of condition (8) implies the change of Theorem 2 in [5].

Again its proof has the same idea as in [5].

Theorem 2 An operator [Py .(D)] is hypoelliptic if and only if there
exist N > 0 and q¢ € N such that for every ¢ € A, and every A > 0 there
exist h >0, 71 >0 and b € R such that

o+iT € V(Pye) = |1 > Vo™ — b, e € (0,7).
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