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PARTIAL AVERAGING FOR IMPULSIVE DIFFERENTIAL
EQUATIONS WITH SUPREMUM

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

Abstract. Partial averaging for impulsive differential equations with
supremum is justified. The proposed averaging schemes allow one to
simplify considerably the equations considered.

1. Introduction

For mathematical simulation in various fields of science and technology
impulsive differential equations with supremum are successfully used. The
investigation of these equations is rather difficult due to the discontinuous
character of their solutions and the presence of the supremum of the un-
known function, hence the need for approximate methods for solving them.

In the present paper three schemes for partial averaging of impulsive
differential equations with supremum are considered and justified.

2. Preliminary Notes

We note, for the sake of definiteness, that by the value of a piecewise
continuous function at a point of discontinuity we mean the limit from the
left of the function (provided it exists) at this point. By the symbol

∑

0<τk<T
we denote summation over all values of k for which the inequality 0 < τk < T
is satisfied, and by the symbol ‖ · ‖ the Euclidean norm in Rn.

In the proof of the main result we shall use the following two lemmas.

Lemma 1. Let u(t) be a piecewise continuous function for t ≥ a with
points of discontinuity of the first kind τk > a, k = 1, 2, . . . , for which
τk < τk+1 for k = 1, 2, . . . , and lim

k→∞
τk = ∞. Then, if for t ≥ a the
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inequality

u(t) ≤ c1 + c2

t
∫

a

u(τ) dτ + c3

∑

a<τk<t

u(τk)

holds, where c2 is a positive constant and c1, c3 are nonnegative constants,
then for t ≥ a the estimate

u(t) ≤ c1(1 + c3)i(a,t) exp{c2(t− a)}

is valid, where i(a, t) is the number of points τk which belong to the interval
[a, t).

Lemma 1 is proved by means of the Gronwall–Bellman inequality and by
induction.

Lemma 1 is a particular case of the theorems on integral inequalities
obtained in [1] and [2].

Lemma 2. Let the sequence τ1, . . . , τk . . . be such that for any k ∈ N the
inequality τk − τk−1 ≥ θ holds, where θ is a positive constant and τ0 = 0.
Then for any T ≥ θ and t0 ≥ 0 the inequality

∑

t0≤τk<t0+T

(τk − t0) <
3T 2

2θ

is valid.

Proof. Let n ≥ 2 and τj < t0 ≤ τj+1 < · · · < τj+n < t0 +T . Then for T ≥ θ
we have

∑

t0≤τk<t0+T

(τk − t0) =
j+n−1
∑

k=j+1

(τk − t0) + (τj+n − t0) ≤

≤ 1
θ

j+n−1
∑

k=j+1

(τk − t0)(τk+1 − τk) + (τj+n − t0) ≤

≤ 1
θ

τj+n
∫

τj+1

(t− t0) dt + (τj+n − t0) <
T 2

2θ
+ T ≤ 3T 2

2θ
.

Let τj < t0 ≤ τj+1 < t0 + T ≤ τj+2. Then for T ≥ θ we have

∑

t0≤τk<t0+T

(τk − t0) = τj+1 − t0 < T ≤ 3T 2

2θ
.
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3. Main Results

Let the impulsive system of differential equations with supremum have
the form

ż(t) = εZ(t, z(t), z(t), z̃(t)), t > 0, t 6= τk,

z(t) = κ(t), ż(t) = κ̇(t), −h ≤ t ≤ 0,

∆z(t) ≡ z(t + 0)− z(t− 0) = εLk(z(t− 0)), t = τk, k ∈ N,
(1)

where z(t) = (z1(t), . . . , zn(t)), h is a positive constant,

z(t) = (z1(t), . . . , zn(t)), z̃(t) = (z̃1(t), . . . , z̃n(t)),

z(t + 0)=(z1(t + 0), . . . , zn(t + 0)), z(t− 0)=(z1(t− 0), . . . , zn(t− 0)),

zi(t) = sup{zi(s) : s ∈ [t− h, t]}, z̃i(t) = sup{żi(s) : s ∈ [t− h, t]},
zi(t + 0) = lim

s→t, s>t
zi(s), zi(t− 0) = lim

s→t, s<t
zi(s), i = 1, . . . , n,

κ(t) = (κ1(t), . . . ,κn(t)) is an initial function,

0=τ0 <τ1 < · · ·<τk < · · · , lim
k→∞

τk =∞ and ε>0 is a small parameter.

Let the functions Z(t, z) and Lk(z) exist for which

lim
T→∞

1
T

T
∫

0

[

Z(t, z, z, 0)− Z(t, z)
]

dt = 0 (2)

and

lim
T→∞

1
T

∑

0<τk<T

[

Lk(z)− Lk(z)
]

dt = 0, k ∈ N. (3)

Then with the initial-value problem (1) we associate the averaged impulsive
system of differential equations

ζ̇(t) = εZ(t, ζ(t)), t > 0, t 6= τk,

∆ζ(t) ≡ ζ(t + 0)− ζ(t− 0) = εLk(ζ(t− 0)), t = τk, k ∈ N,

ζ(0) = κ(0).

(4)

We shall prove a theorem on nearness of the solutions of the initial-value
problems (1) and (4).

Theorem 1. Let the following conditions hold:
1. The functions Z(t, z, u, v), Z(t, z), Lk(z), and Lk(z), k ∈ N, are

continuous in the respective projections of the domain {t ≥ 0, z, u ∈ G,
v ∈ H}, where G and H are open domains in Rn. The functions κ(t) and
κ̇(t) are continuous in the interval [−h, 0], h = const > 0, κi(t) and κ̇i(t)



14 D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

(i = 1, . . . , n) have a finite number of extremums in the interval [−h, 0], and
κ(t) ∈ G, κ̇(t) ∈ H for t ∈ [−h, 0].

2. There exist positive constants λ and M such that for all t ≥ 0,
z, u, z′, u′ ∈ G, v, v′ ∈ H, k ∈ N, the following inequalities are valid:

‖Z(t, z, u, v)‖+ ‖Z(t, z)‖+ ‖Lk(z)‖+ ‖Lk(z)‖ ≤ M,

‖Z(t, z, u, v)− Z(t, z′, u′, v′)‖ ≤ λ
(

‖z − z′‖+ ‖u− u′‖+ ‖v − v′‖
)

,

‖Z(t, z)− Z(t, z′)‖+ ‖Lk(z)− Lk(z′)‖+ ‖Lk(z)− Lk(z′)‖ ≤ λ‖z − z′‖

and for t ∈ [−h, 0] the estimate ‖κ(t)‖+ ‖κ̇(t)‖ ≤ M is valid.
3. For each z ∈ G there exist the limits (2) and (3).
4. There exists a positive constant θ such that for k ∈ N the inequality

τk − τk−1 ≥ θ holds, where τ0 = 0.
5. For any ε ∈ (0, ε∗], ε∗ = const > 0, the initial-value problem (1) has a

unique solution z(t) which is defined for t ≥ 0; zi(t) and żi(t) (i = 1, . . . , n)
have a finite number of extremums in each interval of length h; z(t) and
ż(t) satisfy respectively the conditions z(0 + 0) = κ(0) and ż(0 + 0) = κ̇(0).

6. For any ε ∈ (0, ε∗] the initial-value problem (4) has a unique solution
ζ(t) which is defined for t ≥ 0 and for t ≥ 0 belongs to the compact Q ⊂ G
together with some ρ-neighborhood of it (ρ = const > 0).

Then for any η > 0 and L > 0 there exists ε0 ∈ (0, ε∗) (ε0 = ε0(η, L))
such that for ε ∈ (0, ε0] and t ∈ [0, Lε−1] the inequality ‖z(t) − ζ(t)‖ < η
holds.

Proof. From the conditions of Theorem 1 it follows that for the compact
Q ⊂ G there exists a continuous function α(T ) which monotonically tends
to zero as T →∞ and is such that for z ∈ Q the inequalities

∥

∥

∥

T
∫

0

[

Z(t, z, z, 0)− Z(t, z)
]

dt
∥

∥

∥ ≤ Tα(T ) (5)

and
∥

∥

∥

∑

0<τk<T

[

Lk(z)− Lk(z)
]

∥

∥

∥ ≤ Tα(T ) (6)

hold.
For t ∈ Tε = [0, Lε−1] we have

z(t) = z(0) + ε

t
∫

0

Z(τ, z(τ), z(τ), z̃(τ))dτ + ε
∑

0<τk<t

Lk(z(τk)), (7)
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ζ(t) = ζ(0) + ε

t
∫

0

Z(τ, ζ(τ))dτ + ε
∑

0<τk<t

Lk(ζ(τk)), (8)

where z(t) = κ(t) and ż(t) = κ̇(t) for t ∈ [−h, 0].
Subtracting (8) from (7) for t ≥ 0 we obtain

‖z(t)− ζ(t)‖ ≤ ε

t
∫

0

‖Z(τ, z(τ), z(τ), z̃(τ))− Z(τ, ζ(τ), ζ(τ), 0)‖dτ +

+ ε
∑

0<τk<t

‖Lk(z(τk))− Lk(ζ(τk))‖+

+ ε
∥

∥

∥

t
∫

0

[

Z(τ, ζ(τ), ζ(τ), 0)− Z(τ, ζ(τ))
]

dτ
∥

∥

∥ +

+ ε
∥

∥

∥

∑

0<τk<t

[

Lk(ζ(τk))− Lk(ζ(τk))
]

∥

∥

∥. (9)

Denote successively by β(t), γ(t), δ(t), and σ(t) the summands on the
right-hand side of (9).

Without loss of generality, for the estimation of the function β(t) we
shall assume that h < t, zi(τk) = max(zi(τk − 0), zi(τk + 0)), and żi(τk) =
max(żi(τk − 0), żi(τk + 0)) for i = 1, . . . , n and k ∈ N. From the last
assumption it follows that the supremums in zi(t) and z̃i(t) (i = 1, . . . , n)
are achieved.

Denote by si(t) (resp., s̃i(t)) the leftmost point of the interval [t − h, t],
t ≥ 0, at which zi(s) (resp., żi(s)) takes its greatest value in this interval.
Then zi(t) = zi(si(t)) and z̃i(t) = żi(s̃i(t)) (i = 1, . . . , n).

Using the conditions of Theorem 1, we obtain

β(t) = ε

t
∫

0

‖Z(τ, z(τ), z(τ), z̃(τ))− Z(τ, ζ(τ), ζ(τ), 0)‖dτ ≤

≤ 2ελ

t
∫

0

‖z(τ)− ζ(τ)‖dτ + ελ

t
∫

0

[

‖z(τ)− z(τ)‖+ ‖z̃(τ)‖
]

dτ. (10)

Denote by β0(t) the second summand on the right-hand side of (10). We
obtain the following estimate:

β0(t) = ελ

t
∫

0

[

‖z(τ)− z(τ)‖+ ‖z̃(τ)‖
]

dτ ≤
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≤ ελ

h
∫

0

[

‖z(τ)‖+ ‖z(τ)‖+ ‖z̃(τ)‖
]

dτ +

+ ελ

t
∫

h

[

‖z(τ)− z(τ)‖+ ‖z̃(τ)‖
]

dτ ≤

≤ ελ

h
∫

0

[

‖κ(τ − h)‖+ ‖κ̇(τ − h)‖+ 2‖z(τ)‖+ ‖ż(τ)‖
]

dτ +

+ ελ

t
∫

h

[
n

∑

i=1

(

zi(si(τ))− zi(τ)
)2

]1/2
dτ +

+ ελ

t
∫

h

[
n

∑

i=1

ż2
i (s̃i(τ))

]1/2
dτ ≤

≤ ελh
[

3 + ε(1 + h) + ε
h
θ

]

M + ε2λ(t− h)M
√

n +

+ ελ

t
∫

h

[
n

∑

i=1

(

ε

τ
∫

si(τ)

Zi(`, z(`), z(`), z̃(`))d` +

+ ε
∑

si(τ)<τk<τ

Lki(z(τk))
)2]1/2

dτ.

Setting A = λh[3 + ε(1 + h) + εh
θ ]M + λ(L − εh)M

√
n and applying

Minkowski’s inequality, we obtain for t ∈ Tε

β0(t) ≤ εA + ε2λ

t
∫

h

{[
n

∑

i=1

∣

∣

∣

τ
∫

si(τ)

Zi(`, z(`), z(`), z̃(`))d`
∣

∣

∣

2]1/2
+

+
[

n
∑

i=1

∣

∣

∣

∑

si(τ)<τk<τ

Lki(z(τk))
∣

∣

∣

2]1/2}

dτ ≤

≤ εA + ε2λ

t
∫

h

{[
n

∑

i=1

h2M2
]1/2

+
[

n
∑

i=1

(h
θ

)2
M2

]1/2}

dτ ≤

≤ εA + ελ(L− εh)
1 + θ

θ
hM

√
n .



PARTIAL AVERAGING FOR IMPULSIVE DIFFERENTIAL EQUATIONS 17

For γ(t) and t ∈ Tε by the conditions of Theorem 1 we get the estimate

γ(t) = ε
∑

0<τk<t

‖Lk(z(τk))− Lk(ζ(τk))‖ ≤ ελ
∑

0<τk<t

‖z(τk)− ζ(τk)‖.

In order to obtain estimates of the functions δ(t) for t ∈ Tε we partition
the interval Tε into q equal parts by the points ti = iL

εq , i = 0, 1, . . . , q.
Let t be an arbitrary chosen and fixed number from the interval Tε, and

let t ∈ (ts, ts+1], where 0 ≤ s ≤ q−1. Then, using the conditions of Theorem
1 and inequality (5), we obtain

δ(t) ≤ ε
∥

∥

∥

s−1
∑

i=0

ti+1
∫

ti

[

Z(τ, ζ(τ), ζ(τ), 0)− Z(τ, ζ(τ))−

− Z(τ, ζ(ti), ζ(ti), 0) + Z(τ, ζ(ti))
]

dτ
∥

∥

∥ +

+ ε
∥

∥

∥

s−1
∑

i=0

ti+1
∫

ti

[

Z(τ, ζ(ti), ζ(ti), 0)− Z(τ, ζ(ti))
]

dτ
∥

∥

∥ +

+ ε

t
∫

ts

[

‖Z(τ, ζ(τ), ζ(τ), 0)‖+ Z(τ, ζ(τ))‖
]

dτ ≤

≤ ε
s−1
∑

i=0

ti+1
∫

ti

[

‖Z(τ, ζ(τ), ζ(τ), 0)− Z(τ, ζ(ti), ζ(ti), 0)‖+

+‖Z(τ, ζ(τ))−Z(τ, ζ(ti))‖
]

dτ +ε
s−1
∑

i=0

∥

∥

∥

ti+1
∫

0

[

Z(τ, ζ(ti), ζ(ti), 0)−

−Z(τ, ζ(ti))
]

dτ
∥

∥

∥+ε
s−1
∑

i=1

∥

∥

∥

ti
∫

0

[

Z(τ, ζ(ti), ζ(ti), 0)−Z(τ, ζ(ti))
]

dτ
∥

∥

∥+

+
ML
q

≤ 3ελ
s−1
∑

i=0

ti+1
∫

ti

‖ζ(τ)− ζ(ti)‖dτ + ε
s−1
∑

i=0

ti+1α(ti+1) +

+ ε
s−1
∑

i=1

tiα(ti) +
ML
q

≤ 3ε2λ
1 + θ

θ
M

s−1
∑

i=0

ti+1
∫

ti

(τ − ti)dτ +

+ 2ε
s

∑

i=1

tiα(ti) +
ML
q

≤ 3ε2λ
1 + θ
2θ

M
s−1
∑

i=0

( L
εq

)2
+
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+
2s2L

q
α
( L

εq

)

+
ML
q

=
(3λs(1 + θ)L + 2θq)ML

2θq2 +
2s2L

q
α
( L

εq

)

.

We pass to the estimation of σ(t). Using the conditions of Theorem 1
and inequality (6) for t ∈ Tε, we obtain

σ(t) = ε
∥

∥

∥

∑

0<τk<t

[

Lk(ζ(τk))− Lk(ζ(τk))
]

∥

∥

∥ ≤

≤ εtα(t) ≤ sup
0≤τ≤L

τα
(τ

ε

)

= δ1(ε), δ1(ε) → 0, ε → 0.

From (9) and the estimates obtained for the functions β(t), γ(t), δ(t),
and σ(t) it follows that for t ∈ Tε the inequality

‖z(t)− ζ(t)‖ ≤ b(q) + c(q, ε) + 2ελ

t
∫

0

‖z(τ)− ζ(τ)‖dτ +

+ ελ
∑

0<τk<t

‖z(τk)− ζ(τk)‖ (11)

holds, where

b(q) =
(3λ(1 + θ)L + 2θ)ML

2θq
,

c(q, ε) = εA + ελ(L− εh)
1 + θ

θ
hM

√
n + 2qLα

( L
εq

)

+ δ1(ε).

Choose a sufficiently large q0 ∈ N so that the inequality

b(q0) ≤
1
2

exp
{

− λL
(

2 +
1
θ
)}

min(η, ρ)

holds.
Consider inequality (11) for q = q0, ε ∈ (0, ε∗], t ∈ Tε and apply to it

Lemma 1. Thus we obtain

‖z(t)− ζ(t)‖ ≤
(

b(q0) + c(q0, ε)
)

exp{2ελt}(1 + ελ)i(0,t) ≤

≤
(

b(q0) + c(q0, ε)
)

exp
{

2ελt +
t
θ

ln(1 + ελ)
}

≤

≤
(

b(q0) + c(q0, ε)
)

exp
{

λL
(

2 +
1
θ
)}

.

Choose a sufficiently small ε0 ∈ (0, ε∗] so that for ε ∈ (0, ε0] we have

c(q0, ε) <
1
2

exp
{

− λL
(

2 +
1
θ
)}

min(η, ρ).
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Then for any ε ∈ (0, ε0] (ε0 = ε0(η, L)) and t ∈ Tε the inequality

‖z(t)− ζ(t)‖ < min(η, ρ)

holds.
Hence, for ε ∈ (0, ε0] and t ∈ Tε, z(t) belongs to the domain G, and the

estimate ‖z(t)− ζ(t)‖ < η is valid.

Consider the initial-value problem (1), where

z(t) =
(

x(t)
y(t)

)

, Z(t, z(t), z(t), z̃(t)) =
(

X(t, z(t), z(t), z̃(t))
Y (t, z(t), z(t), z̃(t))

)

,

κ(t) =
(

ϕ(t)
ψ(t)

)

, ∆z(t) =
(

∆x(t)
∆y(t)

)

, Lk(z) =
(

Ik(z)
Jk(z)

)

, k ∈ N,
(12)

x(t) and y(t) are `- and m-dimensional vector-functions, and ` + m = n.
For problem (1), (12) various schemes for partial averaging are possi-

ble, which lead to averaged systems of differential equations not containing
supremum.

First scheme for partial averaging. Let the following limits exist:

lim
T→∞

1
T

T
∫

0

X(t, z, z, 0) dt = X(z) (13)

and

lim
T→∞

1
T

∑

0<τk<T

Ik(z) = I(z). (14)

Then with the initial problem (1), (12) we associate the partially averaged
impulsive system of differential equations (4) with

Z(t, z) =
(

X(z)
Y (t, z, z, 0)

)

, (15)

Lk(z) =
(

I(z)
Jk(z)

)

, k ∈ N. (16)

Theorem 2. Let the following conditions hold:
1. The functions X(t, z, u, v), Y (t, z, u, v), Ik(z), Jk(z), k ∈ N, are con-

tinuous in the respective projections of the domain {t ≥ 0, z, u ∈ G, v ∈ H},
where G and H are open domains in Rn. The functions ϕ(t), ϕ̇(t), ψ(t),
ψ̇(t) are continuous in the interval [−h, 0], h = const > 0, ϕi(t), ϕ̇i(t)
(i = 1, . . . , `), ψj(t), ψ̇j(t) (j = 1, . . . , m) have a finite number of extremums
in the interval [−h, 0], and κ(t) = (ϕ(t), ψ(t)) ∈ G, κ̇(t) = (ϕ̇(t), ψ̇(t)) ∈ H
for t ∈ [−h, 0].
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2. There exist positive constants λ and M such that for all t ≥ 0,
z, u, z′, u′ ∈ G, v, v′ ∈ H, k ∈ N, the following inequalities are valid:

‖X(t, z, u, v)‖+ ‖Y (t, z, u, v)‖+ ‖Ik(z)‖+ ‖Jk(z)‖ ≤ M,

‖X(t, z, u, v)−X(t, z′, u′, v′)‖ ≤ λ
(

‖z − z′‖+ ‖u− u′‖+ ‖v − v′‖
)

,

‖Y (t, z, u, v)− Y (t, z′, u′, v′)‖ ≤ λ
(

‖z − z′‖+ ‖u− u′‖+ ‖v − v′‖
)

,

‖Ik(z)− Ik(z′)‖+ ‖Jk(z)− Jk(z′)‖ ≤ λ‖z − z′‖

and for t ∈ [−h, 0] the estimate ‖ϕ(t)‖ + ‖ϕ̇(t)‖ + ‖ψ(t)‖ + ‖ψ̇(t)‖ ≤ M is
valid.

3. For each z ∈ G there exist the limits (13) and (14).
4. There exists a positive constant θ such that for k ∈ N the inequality

τk − τk−1 ≥ θ holds, where τ0 = 0.
5. For any ε ∈ (0, ε∗], ε∗ = const > 0 the initial-value problem (1),

(12) has a unique solution z(t) which is defined for t ≥ 0; zi(t) and żi(t)
(i = 1, . . . , n) have a finite number of extremums in each interval of length
h; z(t) and ż(t) satisfy respectively the conditions z(0 + 0) = κ(0) and
ż(0 + 0) = κ̇(0).

6. For any ε ∈ (0, ε∗] the initial-value problem (4), (15), (16) has a unique
solution ζ(t) which is defined for t ≥ 0 and for t ≥ 0 belongs to the compact
Q ⊂ G together with some ρ-neighborhood of it (ρ = const > 0).

Then for any η > 0 and L > 0 there exists ε0 ∈ (0, ε∗] (ε0 = ε0(η, L))
such that for ε ∈ (0, ε0] and t ∈ [0, Lε−1] the inequality ‖z(t) − ζ(t)‖ < η
holds.

Proof. From (13), (14) and the conditions of Theorem 2 it follows that in the
domain G the functions X(z) and I(z) are bounded, continuous, and satisfy
the Lipschitz condition. Hence for the functions Z(t, z, u, v), Z(t, z), Lk(z),
and Lk(z), k ∈ N, of problem (1), (12), conditions 1 and 2 of Theorem 1
are met. Further on, the proof of Theorem 2 is analogous to the proof of
Theorem 1.

Second scheme for partial averaging. Let there exist the limit (13)
Then with the initial-value problem (1), (12) we associate the partially aver-
aged impulsive system of differential equations (4) with Z(t, z) determined
by (15) and

Lk(z) = Lk(z), k ∈ N. (17)

Theorem 3. Let the following conditions hold:
1. Conditions 1, 2, 4, and 5 of Theorem 2 are met.
2. For each z ∈ G there exists the limit (13).
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3. For any ε ∈ (0, ε∗] the initial-value problem (4), (15), (17) has a unique
solution ζ(t) which is defined for t ≥ 0 and for t ≥ 0 belongs to the compact
Q ⊂ G together with some ρ-neighborhood of it (ρ = const > 0).

Then for any η > 0 and L > 0 there exists ε0 ∈ (0, ε∗] (ε0 = ε0(η, L))
such that for ε ∈ (0, ε0] and t ∈ [0, Lε−1] the inequality ‖z(t) − ζ(t)‖ < η
holds.

The proof of Theorem 3 is analogous to the proof of Theorem 1.

Third scheme for partial averaging. Let there exist (13), (14) and

lim
T→∞

1
T

∑

0<τk<T

Jk(z) = J(z). (18)

Then with the initial-value problem (1), (12) we associate the averaged
system of ordinary differential equations

χ̇(t) = ε
[

Z(t, χ(t)) + L(χ(t))
]

(19)

with the initial condition

χ(0) = κ(0), (20)

where Z(t, z) is determined by (15) and

L(z) =
(

I(z)
J(z)

)

. (21)

Theorem 4. Let the following conditions hold:
1. Conditions 1, 2, 4, and 5 of Theorem 2 are met.
2. For each z ∈ G there exist the limits (13), (14), (16).
3. For any ε ∈ (0, ε∗] the initial-value problem (4), (15), (17) and the

initial-value problem (19), (20), (15), (21) have unique solutions ζ(t) and
χ(t), respectively, which are defined for t ≥ 0 and lie in the compact Q ⊂ G,
together with some of its ρ-neighborhood (ρ = const > 0).

Then for any η > 0 and L > 0 there exists ε0 ∈ (0, ε∗] (ε0 = ε0(η, L))
such that for ε ∈ (0, ε0] and t ∈ [0, Lε−1] the inequality ‖z(t) − χ(t)‖ < η
holds.

Proof. From (13), (14), (16) and the conditions of Theorem 4 it follows
that in the domain G the functions X(z), I(z), and J(z) are bounded,
continuous, and satisfy the Lipschitz condition, namely for all z, z′ ∈ G the
inequalities

‖X(z)‖ ≤ M, ‖I(z)‖ ≤ M
θ

, ‖J(z)‖ ≤ M
θ

,

‖X(z)−X(z′)‖ ≤ 2λ‖z − z′‖,
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‖I(z)− I(z′)‖ ≤ λ
θ
‖z − z′‖, ‖J(z)− J(z′)‖ ≤ λ

θ
‖z − z′‖

are valid.
By Theorem 3 for each η > 0 and L > 0 there exists a number ε̂0 ∈ (0, ε∗]

(ε̂ = ε̂0(η, L)) such that for ε ∈ (0, ε̂0] and t ∈ [0, Lε−1] the inequality

‖z(t)− ζ(t)‖ <
1
2

min(η, ρ) (22)

holds, where z(t) is a solution of the initial-value problem (1), (12), and ζ(t)
is a solution of the initial-value problem (4), (15), (17).

From the conditions of Theorem 4 it follows that for the compact Q ⊂ G
there exists a continuous function α(T ) which monotonically tends to zero
as T →∞ and is such that for z ∈ Q the inequality

∥

∥

∥

∑

0<τk<T

Lk(z)− L(z) · T
∥

∥

∥ ≤ Tα(T ) (23)

holds.
For t ∈ Tε = [0, Lε−1], from (4) and (19), (20) we have

ζ(t) = κ(0) + ε

t
∫

0

Z(τ, ζ(τ))dτ + ε
∑

0<τk<t

Lk(ζ(τk)), (24)

χ(t) = κ(0) + ε

t
∫

0

[

Z(τ, χ(τ)) + L(χ(τ))
]

dτ. (25)

Subtracting (25) from (24) for t ≥ 0 we obtain

‖ζ(t)− χ(t)‖ ≤ ε

t
∫

0

‖Z(τ, ζ(τ))− Z(τ, χ(τ))‖dτ +

+ ε
∑

0<τk<t

‖Lk(ζ(τk))− Lk(χ(τk))‖+

+ ε
∥

∥

∥

∑

0<τk<t

Lk(χ(τk))−
t

∫

0

L(χ(τ))dτ
∥

∥

∥. (26)

Denote by ω(t) the third summand in the right-hand side of (26).
In order to estimate ω(t) for t ∈ Tε = [0, Lε−1], we partition the interval

Tε into q equal parts by means of the points ti = iL
εq , i = 0, 1, . . . , q.
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Let t be an arbitrary chosen and fixed number of the interval Tε and let
t ∈ (ts, ts+1], where s ∈ N and 0 ≤ s ≤ q − 1. Then, using the conditions of
Theorem 4 and inequality (23), we obtain

ω(t) ≤ε
∑

0<τk<t1

‖Lk(χ(τk))−Lk(χ(0))‖+ε

t1
∫

0

‖L(χ(τ))−L(χ(0))‖dτ +

+ ε
s−1
∑

i=1

(
∑

ti≤τk<ti+1

‖Lk(χ(τk))− Lk(χ(ti))‖+

+

ti+1
∫

ti

‖L(χ(τ))− L(χ(ti))‖dτ
)

+

+ ε
∥

∥

∥

∑

0<τk<t1

Lk(χ(0))−
t1

∫

0

L(χ(0))dτ
∥

∥

∥ +

+ ε
s−1
∑

i=1

∥

∥

∥

∑

ti≤τk<ti+1

Lk(χ(ti))−
ti+1
∫

ti

L(χ(ti))‖dτ
∥

∥

∥ +

+ ε
∑

ts≤τk<t

‖Lk(χ(tk))‖+ ε

t
∫

ts

‖L(χ(τ))‖dτ ≤

≤ ελ
∑

0<τk<t1

‖χ(τk)− χ(0)‖+ ε
2λ
θ

t1
∫

0

‖χ(τ)− χ(0)‖dτ +

+ ελ
s−1
∑

i=1

(
∑

ti≤τk<ti+1

‖χ(τk)− χ(ti)‖+
2
θ

ti+1
∫

ti

‖χ(τ)− χ(ti)‖dτ
)

+

+ εt1α(t1) + ε
s−1
∑

i=1

∥

∥

∥

∑

0<τk<ti+1

Lk(χ(ti))− ti+1L(χ(ti))
∥

∥

∥ +

+ ε
s−1
∑

i=1

∥

∥

∥

∑

0<τk<ti

[

Lk(χ(ti))− tiL(χ(ti))
]

∥

∥

∥ +

+ ε
s−1
∑

i=1

∑

τk=ti

‖Lk(χ(ti))‖+
3LM
θq

≤

≤ 2ε2λM(1 + θ)
θ

s−1
∑

i=1

(
∑

ti≤τk<ti+1

(τk − ti) +
2
θ

ti+1
∫

ti

(τ − ti)dτ
)

+



24 D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

+εt1α(t1)+ε
s−1
∑

i=1

ti+1α(ti+1)+ε
s−1
∑

i=1

tiα(ti) + 2ε(s− 1)M+
3LM
θq

≤

≤ 2ε2λM(1 + θ)
θ

s−1
∑

i=0

(
∑

ti≤τk<ti+1

(τk − ti)
)

+
2sλL2M(1 + θ)

θ2q2 +

+
2s2L

q
α
( L

εq

)

+ 2ε(s− 1)M +
3LM
θq

.

From (26), the conditions of Theorem 4, and the estimate obtained for
ω(t) it follows that for t ∈ Tε the inequality

‖ζ(t)− χ(t)‖ ≤ b(q, ε) + c(q, ε) + 4ελ

t
∫

0

‖ζ(τ)− χ(τ)‖dτ +

+ ελ
∑

0<τk<t

‖ζ(τk)− χ(τk)‖ (27)

holds, where

b(q, ε) =
(

3 +
2λL(1 + θ)

θ

)LM
θq

+

+
2ε2λM(1 + θ)

θ

m−1
∑

i=0

(
∑

ti≤τk<ti+1

(τk − ti)
)

,

c(q, ε) = 2qLα
( L

εq

)

+ 2εqM.

Choose successively a sufficiently large q0 ∈ N and a sufficiently small
ε1 ∈ (0, ε̂0] so that the inequalities

(

3 +
5λL(1 + θ)

θ

)LM
θq0

≤ 1
4

exp
{

− λL
(

4 +
1
θ
)}

min(η, ρ),

ε1q0 ≤
L
θ

(28)

holds.
For q = q0 and ε ∈ (0, ε1] we apply Lemma 2 to the summand on the

right-hand side of b(q, ε) and obtain

2ε2λM(1 + θ)
θ

q0−1
∑

i=0

(
∑

ti≤τk<ti+1

(τk − ti)
)

≤ 3λ2L2M(1 + θ)
θ2q0

. (29)
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From (27), (28), and (29) for q = q0, ε ∈ (0, ε1], and t ∈ Tε there follows
the inequality

‖ζ(t)− χ(t)‖ ≤ b(q0, ε) + c(q0, ε) + 4ελ

t
∫

0

‖ζ(τ)− χ(τ)‖dτ +

+ ελ
∑

0<τk<t

‖ζ(τk)− χ(τk)‖, (30)

where b(q0, ε) ≤ 1
4 exp{−λL(4 + 1

θ )}min(η, ρ).
Applying Lemma 1 to (30), we get

‖ζ(t)− χ(t)‖ ≤
(

b(q0, ε) + c(q0, ε)
)

(1 + ελ)i(0,t) exp{4ελt} ≤

≤
(

b(q0, ε) + c(q0, ε)
)

exp
{

4ελt +
t
θ

ln(1 + ελ)
}

≤

≤
(

b(q0, ε) + c(q0, ε)
)

exp
{

λL
(

4 +
1
θ
)}

.

Choose a sufficiently small ε̌0 ∈ (0, ε1] so that for ε ∈ (0, ε̌0] we have

c(q0, ε) <
1
4

exp
{

− λL
(

4 +
1
θ
)}

min(η, ρ).

Then for ε ∈ (0, ε̌0] (ε̌0 = ε̌0(η, L)) and t ∈ Tε the inequality

‖ζ(t)− χ(t)‖ <
1
2

min(η, ρ) (31)

holds.
From (22) and (31) it follows that for ε ∈ (0, ε0], ε0 = min(ε̂0, ε̌0), and

t ∈ Tε the inequality

‖z(t)− χ(t)‖ ≤ ‖z(t)− ζ(t)‖+ ‖ζ(t)− χ(t)‖ ≤ min(η, ρ)

holds.
Hence for ε ∈ (0, ε0] and t ∈ Tε, z(t) lies in the domain G, and the

estimate ‖z(t)− χ(t)‖ < η is valid.
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