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ON THE SOLVABILITY OF A DARBOUX TYPE
NON-CHARACTERISTIC SPATIAL PROBLEM FOR THE

WAVE EQUATION

S. KHARIBEGASHVILI

Abstract. The question of the correct formulation of a Darboux
type non-characteristic spatial problem for the wave equation is in-
vestigated. The correct solvability of the problem is proved in the
Sobolev space for surfaces of the temporal type on which Darboux
type boundary conditions are given.

In the space of variables x1, x2, t let us consider the wave equation

�u ≡ ∂2u
∂t2

− ∂2u
∂x2

1
− ∂2u

∂x2
2

= F, (1)

where F and u are known and desired real functions, respectively.
We denote by D : k1t < x2 < k2t, 0 < t < t0, −1 < ki = const < 1,

i = 1, 2, k1 < k2, a domain lying in the half-space t > 0 and bounded by
the plane surfaces Si : kit − x2 = 0, 0 ≤ t ≤ t0, i = 1, 2, of the temporal
type and by the plane t = t0.

We shall consider a Darboux type problem formulated as follows: In
the domain D find a solution u(x1, x2, t) of equation (1) by the boundary
conditions

u
∣

∣

Si
= fi, i = 1, 2, (2)

where fi, i = 1, 2, are the known real functions on Si and (f1−f2)|S1∩S2 = 0.
It should be noted that in [1–5] Darboux type problems are studied for the

cases where at least one of the surfaces S1 and S2 is the characteristic surface
of equation (1) passing through the Ox1-axis. Other multi-dimensional
analogues of the Darboux problem are treated in [6–8].
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As distinct from the cases considered in [1–5], the fact that none of
the surfaces S1 and S2 is characteristic results in the nonavailability of
an integral representation for regular solutions of problem (1), (2). The
latter circumstance somehow complicates the investigation of this problem.
Below we shall prove the existence and uniqueness theorems for regular as
well as for strong solutions of problem (1), (2) belonging to the class W 1

2 .
Let C∞∗ (D) denote a space of functions belonging to the class C∞(D)

and having bounded supports, i.e.,

C∞∗ (D) =
{

u ∈ C∞(D) : diam supp u < ∞
}

.

The spaces C∞∗ (Si), i = 1, 2, are defined similarly.
The well-known Sobolev spaces will be denoted by W 1

2 (D), W 2
2 (D),

W 1
2 (Si), i = 1, 2. Note that the space C∞∗ (D) is an everywhere dense

subspace of the spaces W 1
2 (D) and W 2

2 , while C∞∗ (Si) is an everywhere
dense subspace of the space W 1

2 (Si), i = 1, 2.

Definition. Let fi ∈ W 1
2 (Si), i = 1, 2, F ∈ L2(D). A function u ∈

W 1
2 (D) is called a strong solution of problem (1), (2) belonging to the class

W 1
2 if there exists a sequence un ∈ C∞∗ (D) such that un → u in the space

W 1
2 (D), �un → F in the space L2(D), and un|Si → fi in W 1

2 (Si), i = 1, 2,
i.e., for n →∞

‖un − u‖W 1
2 (D) → 0, ‖�un − F‖L2(D) → 0,

‖un|Si − fi‖W 1
2 (Si) → 0, i = 1, 2.

We have

Lemma 1. If −1 < k1 < 0, 0 < k2 < 1, then for any u ∈ W 1
2 (D) there

holds the a priori estimate

‖u‖W 1
2 (D) ≤ C

(
2

∑

i=1

‖fi‖W 1
2 (Si) + ‖F‖L2(D)

)

, (3)

where fi = u|Si , i = 1, 2, F = �u, and the positive constant C does not
depend on u.

Proof. Since the space C∞∗ (D) (C∞∗ (Si)) is an everywhere dense subspace
of the spaces W 1

2 (D) and W 2
2 (D) (W 1

2 (Si)), by virtue of the well-known
theorems on embedding the space W 2

2 (D) into the space W 1
2 (D), and the

space W 2
2 (D) into W 1

2 (Si) it is sufficient for us to prove that the a priori
estimate (3) holds for functions u of the class C∞∗ (D).
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We introduce the notation

Dτ =
{

(x, t) ∈ D : t < τ
}

, D0τ = ∂Dτ ∩
{

t = τ
}

, 0 < τ ≤ t0,

Siτ = ∂Dτ ∩ Si, i = 1, 2, Sτ = S1τ ∪ S2τ ,

α1 = cos(n̂, x1), α2 = cos(n̂, x2), α3 = cos( ̂n, t).

Here n = (α1, α2, α3) denotes the external normal unit vector to ∂Dτ . One
can easily verify that

n
∣

∣

S1τ
=

(

0,
−1

√

1 + k2
1

,
k1

√

1 + k2
1

)

, n
∣

∣

S2τ
=

(

0,
1

√

1 + k2
2

,
−k2

√

1 + k2
2

)

,

n
∣

∣

D0τ
= (0, 0, 1).

Therefore for −1 < k1 < 0, 0 < k2 < 1 we have

α3
∣

∣

Siτ
< 0, i = 1, 2, α−1

3 (α2
3 − α2

1 − α2
2)

∣

∣

Si
> 0, i = 1, 2. (4)

On multiplying both parts of equation (1) by 2ut, where u ∈ C∞∗ (D),
F = �u, and integrating the obtained expression with respect to Dτ , we
obtain due to (4)

2
∫

Dτ

Fut dx dt =
∫

Dτ

(∂u2
t

∂t
+ 2ux1utx1 + 2ux2utx2

)

dx dt−

−2
∫

Sτ

(ux1utα1 + ux2utα2)ds =
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx +

+
∫

Sτ

[

(u2
t + u2

x1
+ u2

x2
)α3 − 2(ux1utα1 + ux2utα2)

]

ds =

=
∫

D0τ

(u2
t +u2

x1
+u2

x2
)dx+

∫

Sτ

α−1
3

[

(α3ux1−α1ut)2+(α3ux2−α2ut)2+

+(α2
3 − α2

1 − α2
2)u

2
t

]

ds ≥
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx +

+
∫

Sτ

α−1
3

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds. (5)
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Assuming

w(τ) =
∫

D0τ

(u2
t + u2

x1
+ u2

x2
)dx, ũi = α3uxi − αiut, i = 1, 2,

C1 = max

(
√

1 + k2
1

|k1|
,

√

1 + k2
2

|k2|

)

,

we find by (5) that

w(τ) ≤ C1

∫

Sτ

(ũ2
1 + ũ2

2)ds +
∫

Dτ

(F 2 + u2
t )dx dt ≤

≤ C1

∫

Sτ

(ũ2
1 + ũ2

2)ds +

τ
∫

0

dξ
∫

D0ξ

u2
t dx +

∫

Dτ

F 2dx dt ≤

≤ C1

∫

Sτ

(ũ2
1 + ũ2

2)ds +

τ
∫

0

w(ξ)dξ +
∫

Dτ

F 2dx dt. (6)

Let (x, τx) be the point at which the surface S1 ∪ S2 intersects with the
straight line parallel to the t-axis and passing through the point (x, 0). We
have

u(x, τ) = u(x, τx) +

τ
∫

τx

ut(x, t)dt,

which implies

∫

D0τ

u2(x, τ)dx ≤ 2
∫

D0τ

u2(x, τx)dx + 2|τ − τx|
∫

D0τ

dx

τ
∫

τx

u2
t (x, t)dt =

= 2
∫

Sτ

α−1
3 u2ds + 2|τ − τx|

∫

Dτ

u2
t dx dt ≤

≤ C2

(

∫

Sτ

u2ds +
∫

Dτ

u2
t dx dt

)

, (7)

where C2 = 2 max(C1, t0).
On introducing the notation

w0(τ) =
∫

D0τ

(u2 + u2
t + u2

x1
+ u2

x2
)dx
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and combining inequalities (6) and (7), we obtain

w0(τ) ≤ C2

[

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds +

τ
∫

0

w0(ξ)dξ +
∫

Dτ

F 2dx dt
]

,

which by virtue of Gronwall’s lemma implies

w0(τ) ≤ C3

[

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds +
∫

Dτ

F 2dx dt
]

, (8)

where C3 = const > 0.
One can easily verify that the operator α3

∂
∂xi

−αi
∂
∂t is the internal differ-

ential operator on the surface Sτ . Therefore the following inequality holds
by virtue of (2):

∫

Sτ

(u2 + ũ2
1 + ũ2

2)ds ≤ C4

2
∑

i=1

‖fi‖2W 1
2 (Siτ ), C4 = const > 0. (9)

From (8) and (9) we obtain

w0(τ) ≤ C5

(
2

∑

i=1

‖fi‖2W 1
2 (Siτ ) + ‖F‖2L2(Dτ )

)

, C5 = const > 0. (10)

The integration of both parts of inequality (10) with respect to τ gives
us estimate (3).

In the sequel it will be assumed that −1 < k1 < 0, 0 < k2 < 1, i.e., that
inequalities (4) are fulfilled.

Lemma 2. The dependence domain for the point P0(x0
1, x

0
2, t

0) ∈ D of
the solution u(x1, x2, t) of problem (1), (2) belonging to the class C2(D) or
W 2

2 (D) is contained within the characteristic cone of the past ∂KP0 : t =
t0 −

√

(x1 − x0
1)2 + (x2 − x0

2)2 with the vertex at the point P0.

Proof. We set

ΩP0 = D ∩KP0 , SiP0 = Si ∩ ∂ΩP0 , i = 1, 2,

where KP0 : t < t0 −
√

(x1 − x0
1)2 + (x2 − x0

2)2 is the interiority of the
characteristic cone ∂KP0 .

To prove the lemma it is sufficient to show that if

fi
∣

∣

SiP0
≡ u

∣

∣

SiP0
= 0, i = 1, 2, F

∣

∣

ΩP0
≡ �u

∣

∣

ΩP0
= 0, (11)

then u|ΩP0
= 0.
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Let us first consider the case with u ∈ C2(D). We denote by S3P0 the re-
mainder part of the boundary of the domain ΩP0 , i.e., S3P0 = ∂ΩP0\(S1P0 ∪
S2P0). Since by our construction the surface S3P0 is part of the characteristic
cone ∂KP0 of equation (1), we have

α3
∣

∣

S3P0
= const > 0, (α2

3 − α2
1 − α2

2)
∣

∣

S3P0
= 0, (12)

where n = (α1, α2, α3) is the external normal unit vector to ∂ΩP0 .
On multiplying both parts of equation (1) by 2ut and integrating the

obtained expression with respect to the domain ΩP0 , we obtain due to (4),
(11), (12) and the arguments used in deriving (5) the following inequality:

0=2
∫

ΩP0

Futdx dt=
∫

∂ΩP0

[

(u2
t +u2

x1
+u2

x2
)α3−2(ux1utα1+ux2utα2)

]

ds=

=
∫

∂ΩP0

α−1
3

[

(α3ux1−α1ut)2+(α3ux2−α2ut)2+(α2
3−α2

1−α2
2)u

2
t

]

ds≥

≥
∫

S3P0

α−1
3

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds. (13)

To obtain (13) we used the fact that the operator α3
∂

∂xi
−αi

∂
∂t is the internal

differential operator on the surface ∂ΩP0 and, in particular, on S1P0 ∪S2P0 .
By virtue of (11) we have the equalities

(

α3
∂u
∂xi

− αi
∂u
∂t

)∣

∣

∣

S1P0∪S2P0

= 0, i = 1, 2.

Since α3 > 0 on S3P0 , (13) implies

(α3uxi − αiut)
∣

∣

S3P0
= 0, i = 1, 2. (14)

Taking into account that u ∈ C2(D) and the internal differential opera-
tors α3

∂
∂xi

−αi
∂
∂t , i = 1, 2, are linearly independent on the two-dimensional

connected surface S3P0 , we immediately find by (14) that

u
∣

∣

S3P0
≡ const. (15)

But by (11)
u
∣

∣

S3P0∩
(

S1P0∪S2P0

)

= 0,

which on account of (15) gives us

u
∣

∣

S3P0
≡ 0. (16)

From (16) it follows in particular that u(P0) = 0.
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If now we take an arbitrary point Q ∈ ΩP0 , then (11) implies that the
above equalities will hold if the point P0 is replaced by the point Q. There-
fore, on repeating our previous reasoning for the domain ΩQ, we find that
u(Q) = 0. Thus for the case with u ∈ C2(D) we obtain u|ΩP0

= 0.
Let now u ∈ W 2

2 (D) and equalities (11) be fulfilled. One can easily verify
that inequality (13), where the point P0 is replaced by the point Q, also
holds for any point Q ∈ ΩP0 , i.e.,

∫

S3Q

α−1
3

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds ≤ 0.

Hence by virtue of the fact that α3|S3Q = const > 0 we obtain

∫

S3Q

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds = 0. (17)

Let ΓQ denote a piecewise-smooth curve which is the boundary of the two-
dimensional connected surface S3Q. It is obvious that

ΓQ = S3Q ∩
(

S1Q ∪ S2Q
)

. (18)

Recalling the fact that on the surface S3Q the internal differential operators
α3

∂
∂xi

− αi
∂
∂t , i = 1, 2, are independent for any v ∈ W 1

2 (S3Q) it is not
difficult to obtain the estimate

∫

S3Q

v2ds ≤ C
(

∫

ΓQ

v2ds +

+
∫

S3Q

[

(α3vx1 − α1vt)2 + (α3vx2 − α2vt)2
]

ds
)

, (19)

where C = const > 0 does not depend on v and the trace v|ΓQ ∈ L2(ΓQ) is
correctly defined by virtue of the respective embedding theorem.

Since u ∈ W 2
2 (D), the traces u|S3Q ∈ W 1

2 (S3Q), u|ΓQ ∈ L2(ΓQ) are
correctly defined by virtue of the embedding theorems. Therefore by (11)
and (18) we have

u
∣

∣

ΓQ
= 0. (20)
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From (17), (19) and (20) we obtain
∫

S3Q

u2ds ≤ C
(

∫

ΓQ

u2ds +

+
∫

S3Q

[

(α3ux1 − α1ut)2 + (α3ux2 − α2ut)2
]

ds
)

= 0

which immediately implies
∫

S3Q

u2ds = 0, u
∣

∣

S3Q
= 0, ∀Q ∈ ΩP0 . (21)

Since u ∈ W 2
2 (D), we conclude due to (21) and Fubini’s theorem that

u
∣

∣

ΩP0
= 0.

Remark 1. Lemma 2 implies that the wave process described by problem
(1), (2) propagates at finite velocity. Therefore if u ∈ C∞(D) is a solution
of problem (1), (2) for fi ∈ C∞∗ (Si), i = 1, 2, F ∈ C∞∗ (D), then we have
u ∈ C∞∗ (D).

For our further discussion we shall need

Lemma 3. Let G be a bounded subdomain a of D having a piecewise-
smooth boundary and bounded from above by the plane t = t0 and from the
sides by the planes S1, S2 and the piecewise-smooth surfaces S3, S4 of the
temporal type on which the following inequalities are fulfilled:

α3
∣

∣

S3
< 0, α3

∣

∣

S4
< 0, (22)

where n = (α1, α2, α3) is the unit normal vector to ∂G and S3 ∩ S4 = ∅.
Let K+

P0
: t > t0 +

√

(x1 − x0
1)2 + (x2 − x0

2)2 be the domain bounded by the
characteristic cone of the future with the vertex at the point P0(x0

1, x
0
2, t

0).
Let u0 ∈ C∞(G) and gi = u0|∂G∩Si , i = 1, 2, F0 = �u0, X = supp g1 ∪
supp g2 ∪ supp F0, Y = ∪

P0∈X
K+

P0
.

We denote by Sε
3, Sε

4 ε-neighborhoods of the surfaces S3, S4, where ε is
a fixed sufficiently small positive number. Then if

u0
∣

∣

S3∪S4
= 0, (23)

Y ∩
(

S3
3 ∪ S3

4

)

= ∅, (24)

then the function

u(P ) =

{

u0(P ), P ∈ G,
0, P ∈ D\G
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is a solution of problem (1), (2) of the class C∞∗ (D) for

fi(P ) =

{

gi(P ), P ∈ ∂G ∩ Si,
0, P ∈ Si\(∂G ∩ Si),

i = 1, 2,

F (P ) =

{

F0(P ), P ∈ G,
0, P ∈ D\G.

Proof. To prove this lemma it is sufficient to show that the function u0 ∈
C∞(G) vanishes on the set G ∩ (Sε

3 ∪ Sε
4).

Let P0 ∈ G ∩ (Sε
3 ∪ Sε

4) be an arbitrary point of this set. We shall show
that u0(P0) = 0.

Let us use the notation of Lemma 2:

ΩP0 = G ∩KP0 , SiP0 = Si ∩ ∂ΩP0 , i = 1, 2, 3, 4, S5P0 = ∂KP0 ∩ ∂ΩP0 .

It is obvious that ∂ΩP0 =
5
∪

i=1
SiP0 .

By the assumptions of Lemma 3 we have

α3
∣

∣

SiP0
<0, i=1, 2, 3, 4; α−1

3 (α2
3 − α2

1 − α2
2)

∣

∣

SiP0
>0, i=1, 2, 3, 4; (25)

α3
∣

∣

S5P0
> 0, (α2

3 − α2
1 − α2

2)
∣

∣

S5P0
= 0, (26)

where n = (α1, α2, α3) is the unit normal vector to ∂ΩP0 .
Due to (23), (24) and P0 ∈ G ∩ (Sε

3 ∪ Sε
4) we have

u0
∣

∣

SiP0
= 0, i = 1, 2, 2, 4; �u0

∣

∣

ΩP0
= F0

∣

∣

ΩP0
= 0. (27)

On multiplying both sides of the equation �u0 = F0 by 2u0t and on
integrating the obtained expression by ΩP0 , we find by virtue of (25)–(27)
and the arguments used in deriving inequalities (5) and (13) that

0 = 2
∫

ΩP0

F0
∂u0

∂t
dx dt =

∫

∂ΩP0

α1
3

[(

α3
∂u0

∂x1
− α1

∂u0

∂t

)2
+

+
(

α3
∂u0

∂x2
− α2

∂u0

∂t

)2
+

(

α2
3 − α2

1 − α2
2

)

(∂u0

∂t

)2]

ds ≥

≥
∫

S5P0

α−1
3

[(

α3
∂u0

∂x1
− α1

∂u0

∂t

)2
+

(

α3
∂u0

∂x2
− α2

∂u0

∂t

)2]

ds.

Since α3|S5P0
> 0, the latter formula gives us

(

α3
∂u0

∂xi
− αi

∂u0

∂t

)∣

∣

∣

S5P0

= 0, i = 1, 2.
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The rest of the reasoning repeats the proof of Lemma 2. Therefore
u(P0) = 0.

Remark 2. One can easily verify that Lemma 3 remains valid if conditions
(22) are not fulfilled on some set ω ⊂ S3 ∪ S4 of the zero two-dimensional

measure, i.e., α3|ω = 0. In particular, if ω =
m
∪

i=1
γi is the union of the finite

number of smooth curves γi ⊂ S3 ∪S4 and α3|ω = 0, α3|(S3∪S4)\ω < 0, then
Lemma 3 remains valid. We shall use this fact in the sequel when proving
Theorem 1.

Remark 3. Also note that Lemmas 2 and 3 actually provide us with the
technique for constructing the solution of problem (1), (2) to be described
below when proving Theorem 1. This technique consists in reducing the
initial problem (1), (2) to the mixed problem for a second-order hyperbolic
equation in the finite cylinder.

It will be assumed below that in the boundary conditions (2) the functions
f1 and f2 vanish on the straight line Γ = S1 ∩ S2, i.e.,

fi
∣

∣

Γ = 0, i = 1, 2. (28)

Functions of the class W 1
2 (Si) which satisfy equality (28) will be denoted

by
◦

W 1
2(Si, Γ), i.e.,

◦
W 1

2(Si, Γ) =
{

f ∈ W 1
2 (Si) : f

∣

∣

Γ = 0
}

, i = 1, 2.

We have

Theorem 1. For any fi ∈
◦

W 1
2(Si,Γ), i = 1, 2, F ∈ L2(D) there exists

a unique strong solution u of problem (1), (2) of the class W 1
2 for which

estimate (3) holds.

Proof. We denote by S0
i : kit − x2 = 0, 0 ≤ t < +∞, i = 1, 2, the half-

plane containing the support Si from the boundary conditions (2), and by
D0 the dihedral angle between the half-planes S0

1 and S0
2 . It is known that

the function fi ∈
◦

W 1
2(Si, Γ) can be extended into the half-plane S0

i as a

function ˜fi of the class
◦

W 1
2(S

0
i ), i.e., (fi − ˜fi)|Si = 0, ˜fi ∈

◦
W 1

2(S
0
i ), i = 1, 2.

We assume that

˜F (P ) =

{

F (P ), P ∈ D,
0, P ∈ D0\D.

Obviously, ˜F ∈ L2(D0).
If C∞0 (D0), C∞0 (S0

i ), i = 1, 2, are the spaces of finite infinitely differ-
entiable functions, then, as we know, these spaces are everywhere dense
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in the spaces L2(D0), W 1
2 (S0

i ), i = 1, 2, respectively. Therefore there are
sequences Fn ∈ C∞0 (D0) and fin ∈ C∞0 (S0

i ), i = 1, 2, such that

lim
n→∞

‖ ˜F − Fn‖L2(D0) = lim
n→∞

‖˜fi − fin‖W 1
2 (S0

i ) = 0, i = 1, 2. (29)

In the plane of the variables x2, t we introduce the polar coordinates r, ϕ.
The t-axis is assumed to be the polar axis, while the polar angle ϕ is counted
from the t-axis and assumed to be positive in the clockwise direction. We
denote by ϕi the value of the dihedral angle between the half-planes S0

i and
x2 = 0, 0 ≤ t < +∞, i = 1, 2. Since the half-planes S0

i are of the temporal
type (−1 < k1 < 0, 0 < k2 < 1), we have 0 < ϕi < π

4 , i = 1, 2.
In passing from the Cartesian cordinates x1, x2, t to the system of co-

ordinates x1, τ = log r, ϕ, the dihedral angle D0 transforms to an infinite
layer

H =
{

−∞ < x1 < ∞, −∞ < τ < ∞, −ϕ1 < ϕ < ϕ2
}

(30)

while in terms of the previous notations for the functions u and F equation
(1) takes the form

e−2τL(τ, ϕ, ∂)u = F, (31)

where ∂ = ( ∂
∂x1

, ∂
∂τ , ∂

∂ϕ ), and L(τ, ϕ, ∂) is a second-order hyperbolic type
differential operator with respect to τ with infinitely differentiable coeffi-
cients which depend on τ and ϕ.

In the half-plane x1, ϕ let us consider a convex domain Ω of the class C∞

bounded by the straight line segments `1 : ϕ = −ϕ1, `2 : ϕ = ϕ2 and the
curves γ1 : x1 = g(ϕ), −ϕ1 ≤ ϕ ≤ ϕ2, γ2 : x2 = −g(ϕ), −ϕ1 ≤ ϕ ≤ ϕ2.
Here g(ϕ) ∈ C∞(−ϕ1, ϕ2) ∩ C[−ϕ1, ϕ2], g(ϕ) > 0 for −ϕ1 ≤ ϕ ≤ ϕ2,
g′(ϕ) > 0 for −ϕ1 < ϕ < 0, g′(0) = 0, g′(ϕ) < 0 for 0 < ϕ < ϕ2, g′′(ϕ) < 0
for −ϕ1 < ϕ < ϕ2, and

min
(

g(−ϕ1), g(ϕ2)
)

> 1 + t0 + d, (32)

where

d = max(d1, d2, d3), di = sup
(x1,x2,t)∈supp fi

|x1|, i = 1, 2,

d3 = sup
(x1,x2,t)∈supp F

|x1|.

We denote by H0 ⊂ H a cylindrical domain Ω×(−∞,∞) of the class C∞

where (−∞,∞) is the τ -axis, and by ∂H0 its lateral surface ∂Ω× (−∞,∞).
When the inverse transformation (x1, τ, ϕ) → (x1, x2, t) takes place, the
cylindrical domain H0 will transform into the infinite domain G0 ⊂ D0

bounded by the surfaces ˜Si = S0
i ∩ ∂G0, i = 1, 2, and also by the surfaces

˜S3 and ˜S4.
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We shall show below that the surfaces ˜S3 and ˜S4 are of the temporal type
and the following conditions are fulfilled on them:

α3
∣

∣

(S̃3∪S̃4)\ω
< 0, α3

∣

∣

ω = 0, (33)

where ω is the union of two smooth curves ω1 and ω2 lying on ˜S3 ∪ ˜S4.
Indeed, one can easily verify that the surfaces ˜S1 and ˜S2 are the images of

the cylindrical surfaces S′1 = `1×(−∞,∞) ⊂ ∂H0 and S′2 = `2×(−∞,∞) ⊂
∂H0, while the surfaces ˜S3 and ˜S4 are the images of the surfaces S0

3 =
γ1 × (−∞,∞) ⊂ ∂H0 and S0

4 = γ2 × (−∞,∞) ⊂ ∂H0 when the inverse
transformation (x1, τ, ϕ) → (x1, x2, t) takes place. We divide the surface S0

3
into two parts S0

3 = S0
3+ ∪ S0

3−, where

S0
3+ = γ1+ × (−∞,∞), S0

3− = γ1− × (−∞,∞),

γ1+ : x1 = g(ϕ), 0 < ϕ < ϕ2, γ1− : x1 = g(ϕ), −ϕ1 < ϕ < 0.

It is easy to see that when the inverse transformation (x1, τ, ϕ) → (x1, x2, t)
occurs, the image ˜S3+ ⊂ ˜S3 of the surface S0

3+ admits the parametric rep-
resentation

˜S3+ : x1 = g(ϕ), x2 = σ sin ϕ, t = σ cos ϕ; 0 < ϕ < ϕ2, 0 < σ < +∞.

Hence for the unit normal vector n = (α1, α2, α3) to ∂G0 on the segment
˜S3+ we obtain the expression

n
∣

∣

S̃3+
=

(

σ
√

σ2 + g′2(ϕ)
,
−g′(ϕ) cos ϕ
√

σ2 + g′2(ϕ)
,

g′(ϕ) sin ϕ
√

σ2 + g′2(ϕ)

)

. (34)

Taking into account the structure of the domain Ω, by (34) we find that ˜S3+
is a surface of the temporal type on which α3|S̃3+

< 0. Similar statements

are proved also for the other segments ˜S3−, ˜S4+ and ˜S4− of the surfaces ˜S3

and ˜S4. To prove finally that condition (33) is fulfilled, it remains for us
only to note that component α3 of the unit normal vector n vanishes on the
curves

ω1 = ∂ ˜S3+ ∩ ∂ ˜S3−, ω2 = ∂ ˜S4+ ∩ ∂ ˜S4−

which are the images of the straight lines ω̃1 : x1 = g(0), ϕ = 0, −∞ < τ <
∞, and ω̃2 : x1 = −g(0), ϕ = π, −∞ < τ < ∞, and the third component
α3 of the unit normal vector n is equal to zero.

On the boundary ∂G0 of the domain G0 we define a function νn(x1, x2, t)
of the class C∞ as follows:

νn
∣

∣

S̃i
= fin, i = 1, 2, νn

∣

∣

S̃3
= νn

∣

∣

S̃4
= 0, n = 1, 2, . . . .
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The fact that the function νn ∈ C∞0 (∂G0) is implied by the structure of
G0, by inequality (32), and also by the smoothness and positioning of the
carriers of the functions fin ∈ C∞0 (S0

i ), i = 1, 2.
In passing to the variables x1, τ , ϕ, the functions νn and Fn will transform

into some functions for which we shall use the previous notation. It is
obvious that

νn ∈ C∞0 (∂H0), Fn ∈ C∞0 (H0). (35)

By virtue of (35) there are numbers hin = const, h1n < h2n such that

supp νn ⊂ ∂H0 ∩
{

h1n < τ < h2n
}

,

supp Fn ⊂ H0 ∩
{

h1n < τ < h2n
}

= Hn.
(36)

Note that when the inverse transformation J−1 : (x1, τ, ϕ) → (x1, x2, t)
takes place, the upper base ∂Hn ∩ {τ = h2n} of the finite cylinder Hn will
transform into the surface lying higher than the plane t = t0, i.e., inf t > t0
for (x1, x2, t) ∈ ∂(J−1(Hn)) ∩ {log r = h2n}.

Assume that

h0
n1 = h1n − 1, h0

2n = h2n + 1, H0
n = H0 ∩

{

h0
1n < τ < h0

2n

}

.

Denote by S0n the lateral surface of the finite cylinder H0
n, and by Ω0 the

lower base of H0
n.

For the hyperbolic equation (31) with F = Fn let us consider, in the
cylinder H0

n, the following mixed problem:

e−2τL(τ, ϕ, ∂)v = Fn, (37)

v
∣

∣

Ω0
= 0,

∂v
∂τ

∣

∣

∣

Ω0

= 0, (38)

v
∣

∣

S0n
= νn. (39)

By virtue of (35) and the results from [9], [10] the mixed problem (37)–
(39) has a unique solution v = vn of the class C∞(H0

n). Note that if

Hn1 = H0 ∩
{

h1n − 1 < τ < h1n
}

⊂ H0
n,

then by virtue of (36) this solution is identically zero in the cylinder Hn1,
i.e., vn|Hn1 = 0. We assume H−

n = H0 ∩ {−∞ < τ < h0
2n} and

un(θ) =

{

vn(θ), θ ∈ H0
n,

0, θ ∈ H−
n \H0

n.
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Since vn|Hn1 = 0, the function un belongs to the class C∞(H−
n ), vanishes for

τ < h1n and is a solution of the following mixed problem in the semi-infinite
cylinder H−

n with the Cauchy zero data for τ = −∞:

e−2τL(τ, ϕ, ∂)un = Fn,

un
∣

∣

∂H−
n ∩∂H0

= νn.

Returning to the initial variables x1, x2, t when the inverse transformation
J−1 : (x1, τ, ϕ) → (x1, x2, t) takes place and retaining the previous notation
for the functions un and Fn, we find that:

(1) the function un in the domain Gn = J−1(H−
n )∩{0 < t < t0} belongs

to the class C∞(Gn) and satisfies the equation

�un = Fn;

by the construction of the domains Ω, H0, and G0, the domain Gn does not
depend on the number n and therefore will be denoted below by G;

(2) the function un on the lateral part
4
∪

i=1
˜S0

i of the boundary ∂G satisfies

the conditions

un
∣

∣

S̃0
3∪S̃0

4
= 0, un

∣

∣

S̃0
i

= fin, i = 1, 2,

where, as one can easily verify, the surface ˜S0
i is a part of the surface Si

for i = 1, 2, and is a part of the surface ˜Si, figuring in conditions (33), for
i = 3, 4.

Thus by virtue of (32), (33), Lemma 3, and Remark 2, the function

u0
n(P ) =

{

un(P ), P ∈ G,
0, P ∈ D\G

belongs to the class C∞∗ (D) and is the solution of problem (1), (2) for
fi = fin, i = 1, 2, and F = Fn.

Due to inequality (3) we have

‖u0
n − u0

m‖W 1
2 (D) ≤ C

(
2

∑

i=1

‖fin − fim‖W 1
2 (Si) + ‖Fn − Fm‖L2(D)

)

. (40)

From (29) and (40) we conclude that the sequence of functions u0
n is funda-

mental in the space W 1
2 (D). Therefore by virtue of the fact that the space

W 1
2 (D) is complete there is a function u ∈ W 1

2 (D) such that u0
n → u in

W 1
2 (D), �u0

n → F in the space L2(D), and u0
n|Si → fi in W 1

2 (Si), i = 1, 2,
for n →∞. Therefore the function u is the strong solution of problem (1),
(2) of the class W 1

2 . The uniqueness of the strong solution of problem (1),
(2) belonging to the class W 1

2 follows from inequality (3).
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Let us now consider the case where equation (1) contains the lowest terms

L0u ≡ �u + aux1 + bux2 + cut + du = F, (41)

where the coefficients a, b, c, and d are the known bounded measurable
functions in the domain D.

In the space W 1
2 (D) we introduce the equivalent norm which depends on

the parameter γ

‖u‖2D,1,γ =
∫

D

e−γt(u2 + u2
t + u2

x1
+ u2

x2
)dx dt, γ > 0.

Arguments similar to those used in [4] allow us to prove

Lemma 4. For any u ∈ W 2
2 (D) the following a priori estimate holds:

‖u‖D,1,γ ≤
C
√

γ

(
2

∑

i=1

‖fi‖Si,1,γ + ‖F‖D,0,γ

)

, (42)

where fi = u|Si , F = �u, and the positive constant C does not depend on
u and the parameter γ.

By virtue of estimate (42) the lowest terms in equation (41) for the
above-introduced equivalent norms of the spaces L2(D), W 1

2 (D), W 1
2 (Si),

i = 1, 2, give arbitrarily small perturbations for a sufficiently large value of
the parameter γ, which fact enables one to prove by Theorem 1 and the
results from [4] that problem (41), (2) has a unique solution in the class
W 1

2 .
The following theorem is valid:

Theorem 2. For any fi ∈
◦

W 1
2(Si, Γ), i = 1, 2, F ∈ L2(D) there exists

a unique strong solution u of problem (41), (2) in the class W 1
2 , for which

estimate (3) holds.
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