
GEORGIAN MATHEMATICAL JOURNAL: Vol. 3, No. 2, 1996, 101-120

ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A
SECOND ORDER NONLINEAR DIFFERENTIAL

EQUATION

V. M. EVTUKHOV AND N. G. DRIK

Abstract. Asymptotic properties of proper solutions of a certain
class of essentially nonlinear binomial differential equations of the
second order are investigated.

Introduction

Let us consider a nonlinear differential equation of the second order

y′′ = α0p(t) exp(σy)|y′|λ, (0.1)

where α0 ∈ {−1; 1}; σ, λ ∈ R, σ 6= 0, λ 6= 1, λ 6= 2; p : [a, ω[→]0,+∞[
(−∞ < a < ω ≤ +∞) is a continuously differentiable function. Opposite
to the well-studied Emden–Fowler equation of the type

y′′ = α0p(t)|y|σ|y′|λ sign y, (0.2)

the above binomial equation has nonlinearity of another type. The main
results about the behavior of the solutions of (0.2) when λ = 0 are given
in the monograph [1]. Asymptotic behavior of monotonic solutions of (0.2)
when λ 6= 0 is investigated in [2]–[6].

Equation of type (0.1) as well as of (0.2) are derived while describ-

ing different physical processes. In particular, the equation 1
r

d
dr

(

r dϕ
dr

)

=

A exp(νϕ) + B exp(−νϕ) from electrodynamics and the equation u′′ =
u exp(αx − u)/2 from combustion theory reduce to the equation of type
(0.1) with the help of some transformations [7].

In this work asymptotic representations of all proper solutions of (0.1)
and their first derivatives are obtained when certain conditions on the func-
tion p are satisfied.
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§ 1. Formulation of Basic Results

A real solution y of equation (0.1) is said to be proper if it is defined
in the left neighborhood of ω, and for certain t0 from this neighborhood
y′(t) 6= 0 for t ∈ [t0; ω[.

Let us introduce the auxiliary notation

Γ(t) =
α0σ
λ− 2

[ 1
2− λ

p
λ−3
2−λ (t)p′(t)

t
∫

γ0

p
1

2−λ (s)ds− 1
]

,

V (t) =
∣

∣

∣

σ
λ− 2

t
∫

γ0

p
1

2−λ (s)ds
∣

∣

∣

λ−2
σ

;

γ0 =

{

a, if
∫ ω

a p
1

2−λ (s)ds = +∞
ω if

∫ ω
a p

1
2−λ (s)ds < +∞

; β0 =

{

−1, if limt↑ω V (t) = 0
1, if limt↑ω V (t) = +∞

.

When the conditions

lim
t↑ω

Γ(t) = Γ0, 0 < |Γ0| < +∞ (1.1)

are fulfilled, the following statements hold.

Theorem 1.1. Let ω ≤ +∞. If Γ0 < 0, then each proper solution y of
equation (0.1) admits one of the representations

y(t) = c + o(1), t ↑ ω for ω < +∞, (1.21)

y(t) = c1t + o(1), t → +∞ for ω = +∞, (1.22)

where c ∈ R, c1σ ≤ 0.
If Γ0 > 0 and α0σ > 0, then each proper solution y of (0.1) admits one

of the representations (1.2i) (i ∈ {1; 2}) or

y(t) = ln[|Γ0|
1
σ V (t)] + o(1), t ↑ ω. (1.3)

If Γ0 > 0 and α0σ < 0, then each proper solution y of (0.1) either admits
one of the representations (1.2i) (i ∈ {1; 2}), (1.3) or there exists a sequence
{tk} ↑ ω, k →∞, such that y(tk) = 1

σ ln[V σ(tk)Γ(tk)], k = 1, 2, . . . .

Theorem 1.2. Let ω < ∞. The derivative of each proper solution y of
the type (1.21) of equation (0.1) satisfies one of the asymptotic representa-
tions

y′(t) = c0 + o(1), t ↑ ω, (1.4)
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or

y′(t) =
∣

∣

∣(1− λ) exp(σc)

t
∫

ρ

p(s)ds
∣

∣

∣

1
1−λ

[ν + o(1)], t ↑ ω, (1.5)

where ρ = ω, ν = − sign(1 − λ) if
∫ ω

a p(t)dt < iy, and ρ = a, ν =
α0 sign(1− λ) otherwise.

For a proper solution y of equation (0.1) admitting one of the representa-
tions (1.21), (1.4) ((1.21), (1.5)) to exist, it is necessary and sufficient that
ω
∫

a
p(t)dt < ∞ (σβ0(1− λ) > 0).

Theorem 1.3. Let ω = +∞. For a proper solution of equation (0.1), y
of the type (1.22), where c1 = 0, to exist, it is necessary and sufficient that
σβ0(1− λ) > 0. The derivative of each of such solutions satisfies (1.5).

Theorem 1.4. Let ω = +∞. For arbitrary c1 satisfying the inequality
σc1 < 0 and c ∈ R, equation (0.1) possesses a proper solution y admitting
representation (1.22). The derivative of each of such solutions is represented
in the form

y′(t) = c1 + o(1), t → +∞.

Theorem 1.5. Let ω ≤ +∞. For a proper solution y of equation (0.1)
of the type (1.3) to exist, it is necessary and sufficient that Γ0 > 0. The
derivative of each of such solutions satisfies the relation

y′(t) =
V ′(t)
V (t)

[1 + o(1)], t ↑ ω.

§ 2. Some Auxiliary Statements

Let us consider the system of differential equations

{

u′1 = f1(τ) + a11(τ)u1 + a12(τ)u2 + g1(τ)X1(τ, u1, u2)
u′2 = f2(τ) + a21(τ)u1 + a22(τ)u2 + g2(τ)X2(τ, u1, u2)

, (2.1)

where the functions f1, g1 : [T, +∞[→ R (i = 1, 2), aij : [T,+∞[→ R
(i, j = 1, 2) are continuous and the functions Xi : Ω → R (i = 1, 2) are
continuous in r, u1, u2 in the domain

Ω = [T, +∞[×D, D = {(u1, u2) : |u1| ≤ δ, |u2| ≤ δ, δ > 0}. (2.2)



104 V. M. EVTUKHOV AND N. G. DRIK

Introduce the following notation: ai(τ, t) = exp
∫ τ

t aii(s)ds (i = 1, 2);

A2(τ) =
∣

∣

∣

τ
∫

α2

|a21(t)|a2(τ, t)dt
∣

∣

∣; A1(τ) =
∣

∣

∣

τ
∫

α1

|a12(t)|A2(t)a1(τ, t)dt
∣

∣

∣;

F2(τ) =
∣

∣

∣

τ
∫

β2

|f2(t)|a2(τ, t)dt
∣

∣

∣; G2(τ) =
∣

∣

∣

τ
∫

γ2

|g2(t)|a2(τ, t)dt
∣

∣

∣;

F1(τ) =
∣

∣

∣

τ
∫

β1

|f1(t)|a1(τ, t)dt
∣

∣

∣ +
∣

∣

∣

τ
∫

β12

|a12(t)|F2(t)a1(τ, t)dt
∣

∣

∣;

G1(τ) =
∣

∣

∣

τ
∫

γ1

|g1(t)|a1(τ, t)dt
∣

∣

∣ +
∣

∣

∣

τ
∫

γ12

|a12(t)|G2(t)a1(τ, t)dt
∣

∣

∣,

where each of the limits of integration αi, βi, γi (i = 1, 2), β12, γ12 is equal
either to T or to +∞ and is chosen in a special way: in every integral
defining the functions Fi, Ai, Gi (i = 1, 2) and having the form

I(µ, τ) =

τ
∫

µ

|b(t)| exp

τ
∫

t

a(s) ds dt, (2.3)

we put µ = +∞ if the integral I(T, +∞) converges, and µ = T otherwise.

Theorem 2.1. Let the functions Xi (i = 1, 2) have bounded partial
derivatives with respect to the variables u1, u2 in the domain Ω and let
Xi(τ, 0, 0) ≡ 0 (i = 1, 2) for τ ∈ [T ; +∞[. If

lim
τ→+∞

Fi(τ) = lim
τ→+∞

Gi(τ) = 0, lim
τ→+∞

Ai(τ) = Ao
i < 1 (i = 1, 2),

then (2.1) possesses at least one real solution (u1(τ), u2(τ)) tending to zero
as τ → +∞.

Theorem 2.2. Let Xi(τ, 0, 0) ≡ 0 (i = 1, 2) for τ ≥ T , and let the
functions ∂Xi(τ,u1,u2)

∂uk
(i, k = 1, 2) tend to zero as |u1|+ |u2| → 0 uniformly

with respect to τ ∈ [T, +∞[. If

lim
τ→+∞

Fi(τ) = 0, lim
τ→+∞

Ai(τ) = Ao
i < 1, lim

τ→+∞
Gi(τ) = const (i = 1, 2),

then (2.1) possesses at least one real solution (u1(τ), u2(τ)) tending to zero
as τ → +∞.
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Theorems 2.1 and 2.2 immediately follow from the results of Kostin’s
work [8].

We will use also the following statements dealing with limit properties of
integrals of the type (2.3) ([2], [8]).

Lemma 2.1. Let a function a : [T, +∞[→ R be continuous and rep-
resented in the form a(t) = a0(t) + α(t), where a0 : [T, +∞[→ R is a
continuous function of constant sign (in particular, it can be a0(t) ≡ 0) in
a certain neighborhood of +∞; α : [T, +∞[→ R is such that

∫ +∞
T α(t)dt

converges. If b : [T, +∞[→ R is continuous and
∫ +∞

T |b(t)|dt < ∞, then
limτ→+∞ I(µ, τ) = 0, where µ is chosen as stated above.

Lemma 2.2. Let the function a satisfy the conditions of Lemma 2.1. If
∣

∣

∣

∫ +∞
T a0(t)dt

∣

∣

∣ = ∞ and the function b : [T ; +∞[→ R is continuous and

satisfies the asymptotic correlation |b(t)| = a0(t)[q + o(1)], t → +∞ with
q ∈ R, then limτ→+∞ I(τ, µ) = 0, where µ is chosen as stated above.

§ 3. Investigation of an Auxiliary Equation

Let us consider a second-order nonlinear differential equation

(ξ′(τ)
ξ(τ)

+ β0

)′
+ β0S(τ)

(ξ′(τ)
ξ(τ)

+ β0

)

= α0ξσ(τ)
∣

∣

∣

ξ′(τ)
ξ(τ)

+ β0

∣

∣

∣

λ
, (3.1)

where α0, β0 ∈ {−1, 1}; λ, σ ∈ R, σ 6= 0, λ 6= 1, λ 6= 2, and the function
S : [b, +∞[→ R is continuous and satisfies

lim
τ→+∞

S(τ) = S0, 0 < |S0| < ∞. (3.2)

A real solution ξ of equation (3.1) will be said to be proper if it is defined
in a certain neighborhood of +∞, and for some τ0 from this neighborhood
it satisfies the inequalities ξ(τ) > 0, ξ′(τ) + β0ξ(τ) 6= 0 for τ ≥ τ0.

Theorem 3.1. Each proper solution ξ of equation (3.1) either has no
limit as τ → +∞, and then there exists a sequence {τk}∞k=1 converging to
+∞ with ξσ(τk) = α0S(τk), k = 1, 2, . . . or it possesses one of the properties

lim
τ→+∞

ξ(τ) = ξ0, 0 < ξ0 < +∞; (3.3)

lim
τ→+∞

ξ′(τ)/ξ(τ) = −β0; (3.4)

lim
τ→+∞

ξ′(τ)/ξ(τ) = ±∞. (3.5)
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Proof. Assume that a proper solution ξ of equation (3.1) has no limit as
τ → +∞. Then there exists a sequence {sk}∞k=1 of extremum points of
this solution converging to +∞. Taking into account that ξ′(sk) = 0, k =
1, 2, . . . , equation (3.1) implies

ξ′′(sk) = ξ(sk)
[

ξσ(sk)− β0S(sk)
]

, k = 1, 2, . . . . (3.6)

Owing to the continuity of the functions S(τ) and ξσ(τ), if their graphs
have no common points, then the right-hand side of equality (3.6) has the
same sign when k = 1, 2, . . . . But this is impossible because it means that
the solution ξ has only maximums or only minimums.

Let now ξ be a proper solution of (3.1), and let limτ→+∞ ξ(τ) (finite or
infinite) exist.To prove the theorem it suffices to show that if this limit is
equal to zero or +∞, then the solution ξ has one of the properties (3.4) and
(3.5). Assume that

lim
τ→+∞

ξσ(τ) = 0 (3.7)

and consider the function Uc(τ) = −β0cS(τ) + α0|c|λξσ(τ) with c 6= 0.
According to (3.2) and (3.7), the function Uc retains the sign in a certain
interval [τc, +∞[⊂ [τ0,+∞[, i.e.,

Uc(τ) > 0 or Uc(τ) < 0 when τ ≥ τc. (3.8)

If the function u(τ) = β0 + ξ′(τ)/ξ(τ) has no limit as τ → +∞, then there
exists a constant c 6= 0 such that for any T ≥ τc there is T1 ≥ T such
that u(T1) = c. In view of (3.1) this contradicts (3.8). It means that
limτ→+∞ u(τ) (finite or infinite) exists. Suppose now that

lim
τ→+∞

u(τ) = u0. (3.9)

Then taking into account (3.2) and (3.7), it follows from (3.1) that
limτ→+∞ u′(τ) = −β0S0 6= 0, but this contradicts (3.9). Hence each proper
solution ξ of (3.1) satisfying (3.7) possesses one of the properties (3.4) and
(3.5).

In the case where the solution ξ instead of (3.7) satisfies the condition
limτ→+∞ ξσ(τ) = ∞, the proof of the theorem is analogous.

Corollary 3.1. If one of the inequalities α0S0 < 0 or α0σ > 0 is fulfilled,
then each proper solution ξ of (3.1) possesses one of the properties (3.3)–
(3.5).

Proof. If α0S0 < 0, then the validity of the statement is obvious. Let
α0σ > 0, and let ξ be a proper solution of (3.1) for which the limit does
not exist as τ → +∞. Then, according to Theorem 3.1, there exists a
sequence {τk}∞k=1 tending to +∞ as k → +∞ such that ξσ(τk) = α0S(τk),
k = 1, 2, . . . . Because of (3.2) it is easy to see that there will be at least one
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point of the local maximum m1 or of the local minimum m2 of the function
ξσ(τ) at which the inequality ξσ(m1) > α0S(m1) or ξσ(m2) < α0S(m2) is
respectively fulfilled. From (3.1) we have

[

ξσ(τ)
]′′

∣

∣

∣

τ=mi

= α0σξσ(mi)
[

ξσ(mi)− α0S(mi)
]

, i ∈ {1, 2}. (3.10)

Because α0σ > 0, it follows from (3.10) that [ξσ(τ)]′′|τ=m1 > 0 or
[ξσ(τ)]′′|τ=m2 < 0. The obtained contradiction completes the proof of the
Corollary.

Thus, if a proper solution ξ of (3.1) is such that limτ→+∞ ξ(τ) (finite
or infinite) exists, then it possesses one of properties (3.3)–(3.5), and vice
versa. Corollary 3.1 shows the conditions under which the limit exists for
each proper solution ξ of (3.1). Using conditions (3.3)–(3.5), these solutions
can be divided into three groups. Therefore further investigation will be
performed for each group separately.

3.1. On Proper Solutions of Equation (3.1) Which Have Finite
Different from Zero Limit as τ → +∞.

Theorem 3.2. For equation (3.1) to have a proper solution ξ with prop-
erty (3.3), it is necessary and sufficient that

α0S0 > 0 and ξ0 = |S0|
1
σ . (3.11)

Moreover, each of such solutions admits the representation

ξ′(τ) + β0ξ(τ) = β0ξ0 + o(1), τ → +∞. (3.12)

Proof. Let ξ be a proper solution of (3.1) with property (3.3). Since for
every fixed value c which is different from the solutions of the equation
α0|c|λξσ

0 −β0cS0 = 0, the function Uc(τ) = −β0cS(τ)+α0|c|λξσ(τ) (c ∈ R)
retains the sign in a certain interval [c, +∞[⊂ [τ0, +∞[, arguing as in proof
of Theorem 3.1, it is not difficult to show that limτ→+∞ ξ′(τ)/ξ(τ) (finite
or infinite) exists. Then, according to (3.3), limτ→+∞ ξ′(τ) also exists and
equals zero. Passing to the limit as τ → +∞ in (3.1) in which ξ is the
solution in question, we obtain S0 = α0ξσ

0 which proves (3.11).
Finally, because limτ→+∞ ξ′(τ)/ξ(τ) = 0, the equality (3.12) is true due

to (3.3).
Assume now that (3.11) holds. We shall prove that the equation (3.1)

has at least one solution ξ satisfying the conditions (3.3) and (3.12).
Applying to equation (3.1) the transformation

ξ(τ) = β0 + u1(τ), ξ′(τ) + β0ξ(τ) = ξ0β0 + u1(τ)h + u2(τ), (3.13)
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where h is a constant which will be defined later on, we obtain the system
{

u′1 = (h− β0)u1 + u2

u′2 = −ξ0[S(τ)− S0] + a21(τ)u1 + a22(τ)u2 + X(u1, u2)
, (3.14)

in which

a21(τ) = −h2 + hβ0[2− S(τ) + λS0] + S0(σ + 1− λ)− 1,

a22(τ) = β0 − h− β0[S(τ)− λS0],

X(u1, u2) = (ξ0β0 + hu1 + u2)2(ξ0 + u1)−1 − [ξ0 + (2β0h− 1)u1 +

+2β0u2] + α0
(

|ξ0β0 + hu1 + u2|λ|ξ0 + u1|σ+1−λ −
−ξσ

0 [ξ0 + (σ + 1− λ + β0hλ)u1 + β0λu2]
)

.

Define D by [S0(λ− 1)/2]2 and consider two cases: D ≥ 0 and D < 0.
10. Let D ≥ 0. In this case we choose a constant h so that h2 − hβ0[2 +

S0(λ− 1)]− S0(σ + 1− λ) + 1 = 0. Note that now

h− β0[1 + S0(λ− 1)] 6= 0, h− β0 6= 0. (3.15)

Consider the system (3.14) in the domain Ω (see (2.2), where T = b,
0 < δ < xi0(|h|+1)). Partial derivatives ∂X(u1,u2)

∂ui
(i = 1, 2) tend to zero as

|u1|+ |u2| → 0 and X(0, 0) = 0. The functions Ai, Fi, Gi (i = 1, 2) defined
for (3.14) in §2 are of the form

A2(τ) =
∣

∣

∣

τ
∫

α2

a21(t) exp

τ
∫

t

a22(s)ds dt
∣

∣

∣;

A1(τ) =
∣

∣

∣

τ
∫

α1

A2(t) exp

τ
∫

t

(h− β0)ds dt
∣

∣

∣;

F2(τ) =
∣

∣

∣

τ
∫

β2

ξ0|S(t)− S0| exp

τ
∫

t

a22(s)ds dt
∣

∣

∣;

F1(τ) =
∣

∣

∣

τ
∫

β1

F2(t) exp

τ
∫

t

(h− β0)ds dt
∣

∣

∣;

G2(τ)=
∣

∣

∣

τ
∫

γ2

exp

τ
∫

t

a22(s)ds dt
∣

∣

∣; G1(τ)=
∣

∣

∣

τ
∫

γ12

G2(t)exp

τ
∫

t

(h− β0)ds dt
∣

∣

∣.

Using Lemma 2.2 and taking into account (3.2), (3.11), and (3.15), we
can easily verify that limτ→+∞Ai(τ) = limτ→+∞ Fi(τ) = 0 (i = 1, 2),
limτ→+∞G2(τ) = |h− β0| limτ→+∞G1(τ) = 1/|h− β0[1 + S0(1− λ)]|.
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Thus system (3.14) satisfies the conditions of Theorem 2.2; hence it has
at least one real solution (u1(τ), u2(τ)) tending to zero as τ → +∞. Because
of the transformation (3.13), this implies that there exists a solution ξ of
(3.1) satisfying conditions (3.3), (3.12).

20. Let D < 0. We use the following notation: q =
√
−D,

p = β0S0(λ− 1)/2,

M(τ)=
(

cos(qτ) sin(qτ)
(p+β0) cos(qτ)−q sin(qτ) q cos(qτ)+(p+β0) sin(qτ)

)

, (3.16)
(

δ11(τ) δ12(τ)
δ21(τ) δ22(τ)

)

= M−1(τ)
(

0 0
0 −β0[S(τ)− S0]

)

. (3.17)

Putting h = 0 in (3.14) and applying the transformation
(

u1(τ)
u2(τ)

)

= M(τ)
(

z1(τ)
z2(τ)

)

, (3.18)

we obtain a system
{

z′1 = f1(τ) + [p + δ11(τ)]z1 + δ12(τ)z2 + X1(τ, z1, z2)
z′2 = f2(τ) + δ21(τ)z1 + [p + δ22(τ)]z2 + X2(τ, z1, z2)

, (3.19)

in which f1(τ) = ξ0
q [S(τ) − S0] sin(qτ), f2(τ) = − ξ0

q [S(τ) − S0] cos(qτ),
X1(τ, z1, z2) = − 1

q sin(qτ)X(u1, u2), X2(τ, z1, z2) = 1
q cos(qτ)X(u1, u2).

Partial derivatives ∂Xi(τ,z1,z2)
∂zk

(i, k = 1, 2) tend to zero as |z1|+ |z2| → 0
uniformly with respect to τ ∈ [b, +∞[, and Xi(τ, 0, 0) ≡ 0 (i = 1, 2) on
[b, +∞[.

Consider system (3.19) in the domain Ω (see (2.2), where T = b,
0 < δ < ξ0

2 min{1, 1/(|p + β0| + q)}). The functions ai, Ai, Fi, Gi (i = 1, 2)
defined for the system (3.19) in §2 are of the form

ai(τ, t) = exp

τ
∫

t

[δii(s) + p]ds (i = 1, 2);

A2(τ) =
∣

∣

∣

τ
∫

α2

|δ21(t)|a2(τ, t)dt
∣

∣

∣; A1(τ) =
∣

∣

∣

τ
∫

α1

|δ12(t)|A2(t)a1(τ, t)dt
∣

∣

∣;

F2(τ) =
∣

∣

∣

τ
∫

β2

|f2(t)|a1(τ, t)dt
∣

∣

∣; G2(τ) =
∣

∣

∣

τ
∫

γ2

a2(τ, t)dt
∣

∣

∣;

F1(τ) =
∣

∣

∣

τ
∫

β1

|f1(t)|a1(τ, t)dt
∣

∣

∣ +
∣

∣

∣

τ
∫

β12

|δ12(t)|F2(t)a1(τ, t)dt
∣

∣

∣;
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G1(τ) =
∣

∣

∣

τ
∫

γ1

a1(τ, t)dt
∣

∣

∣ +
∣

∣

∣

τ
∫

γ12

|δ12(t)|G2(t)a1(τ, t)dt
∣

∣

∣,

It follows from (3.2), (3.16), and (3.17) that limτ→+∞ δik(τ) = 0 (i, k =
1, 2), hence

∫ +∞
b [p + δii(τ)]dτ = +∞ (i = 1, 2). Then using Lemma

2.2 it is easy to make sure that limτ→+∞Ai(τ) = limτ→+∞ Fi(τ) = 0;
limτ→+∞Gi(τ) = 1

|p| (i = 1, 2).
Thus system (3.19) satisfies all the conditions of Theorem 2.2. Therefore

it has at least one real solution (u1(τ), u2(τ)) tending to zero as τ → ∞.
Because of transformations (3.13) and (3.18) this implies that there exists
a solution ξ of (3.1) satisfying (3.3) and (3.12).

3.2. On the Proper Solutions of Equation (3.1) with the Property
(3.4.). We use the following notation:

H(τ) =

τ
∫

b

S(t)dt; θ(τ) exp(−δβ0τ + (1− λ)H(τ)).

Theorem 3.3. Each proper solution ξ of equation (3.1) with property
(3.4) admits the asymptotic representation

ξ(τ) = c exp(−β0τ)[1 + o(1)], τ → +∞, (3.20)

where c > 0, and its derivative satisfies one of the equalities

ξ′(τ)
ξ(τ)

+ β0 = c0 exp(−H(τ))[1 + o(1)], τ → +∞, (3.21)

or

ξ′(τ)
ξ(τ)

+ β0 = ν exp(−H(τ))
∣

∣

∣cσ(1− λ)×

×
τ

∫

γ

θ(t)dt
∣

∣

∣

1
1−λ

[1 + o(1)], τ → +∞, (3.22)

where ν =−α0 sign(1−λ), γ=+∞ if
+∞
∫

b
θ(t)dt<∞ and ν =−α0 sign(1−λ),

γ = b otherwise, c0 6= 0.
Equation (3.1) has a proper solution ξ with property (3.4) which satisfies

both asymptotic equalities (3.20), (3.21) if and only if

β0S0 > 0,

+∞
∫

b

θ(τ)dτ < +∞, (3.23)
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and equalities (3.20), (3.22) if and only if

σβ0(1− λ) > 0. (3.24)

Proof. Let ξ be a proper solution of (3.1) with property (3.4). Set

u(τ) =
ξ′(τ)
ξ(τ)

+ β0, ϕ(τ) =

τ
∫

τ0

u(t)dt, Φ(τ) =

τ
∫

r

θ(t) exp ϕ(t)dt,

where r = +∞ if
∫ +∞

τ0
θ(t) exp ϕ(t)dt converges, and r = τ0 otherwise. Then

lim
τ→+∞

u(τ) = 0 (3.25)

ξ(τ) = ξ0 exp(−β0τ + ϕ(τ)), (3.26)

where ξ0 is a certain constant. Substituting (3.26) into the right-hand side
of (3.1), we find

|u(τ)|1−λ = exp(−(1− λ)H(τ))[c1 + α0ξσ
0 (1− λ)ν0Φ(τ)], (3.27)

where ν0 = sign u(τ), c1 ∈ R. It is clear from (3.27) that either

u(τ) = c0 exp(−H(τ))[1 + o(1)], τ → +∞, (3.28)

where c0 6= 0 or

u(τ) ∼ ν exp(−H(τ))|ξσ
0 (1− λ)Φ(τ)|

1
1−λ , τ → +∞. (3.29)

Moreover, (3.28) happens to be the case only if r = τ0.
Assume that the solution of (3.1) in question satisfies (3.28). This does

not contradict (3.25) only if β0S0 > 0. It is easy to see that if this inequal-
ity holds, then

∫ +∞
τ0

θ(τ)dτ < ∞, and the solution ξ satisfies asymptotic
equalities (3.20), (3.21) by (3.26), (3.28).

Suppose now that the solution in question satisfies (3.29). According to

(3.25), since for any ρ ∈ [0, ρ∗[, where ρ∗ = min
{∣

∣

∣

σ
1−λ

∣

∣

∣, |S0|
}

, ϕ(τ) = o(τ),
τ → +∞, we have

lim
τ→+∞

Φ(τ)
exp((1− λ)[H(τ)− ρτ ])

=

{

0 if σβ0 > 0
±∞ if σβ0 < 0

, (3.30)

which (for ρ = 0) implies that (3.29) does not contradict (3.25) only if
σβ0(1− λ) > 0. Moreover, if this inequality holds, then

[Φ(τ)]
1

1−λ = o(exp(H(τ)− ρτ)), τ → +∞,
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and therefore
+∞
∫

τ0

exp(−H(τ))|Φ(τ)|
1

1−λ dτ < ∞. (3.31)

Next, (3.26), (3.29), and (3.31) imply that the solution ξ admits repre-
sentation (3.20), where c > 0 is a certain constant. Substituting (3.20) into
the right-hand side of (3.1) and integrating the obtained equation, it is not
difficult to make sure that ξ satisfies (3.22).

Let conditions (3.23) be fulfilled, and let c > 0, c0 6= 0 be arbitrary fixed
numbers. We shall prove that there exists at least one solution ξ of equation
(3.1) satisfying representations (3.20), (3.21).

Using

ξ(τ) = c exp(−β0τ)[1 + u1(τ)],

ξ′(τ)
ξ(τ)

+ β0 = c0 exp(−H(τ))[1 + u2(τ)],
(3.32)

equation (3.1) is transformed into the differential system
{

u′1 = c exp(−H(τ))[1 + u1 + u2 + X1(u1, u2)]
u′2 = mθ(τ)[1 + σu1 + λu2 + X2(u1, u2)]

(3.33)

where m = α0c0|c0|λ−2cσ, X1(u1, u2) = u1u2, X2(u1, u2) = (1 + u1)σ ×
|1 + u2|λ − 1 − σu1 − λu2. Consider system (3.33) in the domain Ω (see
(2.2), where T = b, 0 < δ < 1). The functions Ai, Fi, Gi (i = 1, 2) defined
in §2 for system (3.33) are of the form

A2(τ) =
∣

∣

∣mσ

τ
∫

α2

θ(t) exp(λm

τ
∫

t

θ(s)ds dt
∣

∣

∣;

A1(τ) =
∣

∣

∣c0

τ
∫

α1

A2(t) exp
(

−H(t) + c0

τ
∫

t

exp(−H(s))ds
)

dt
∣

∣

∣;

F1(τ) =
∣

∣

∣c0

τ
∫

β1

exp
(

−H(t) + c0

τ
∫

t

exp(−H(s))ds
)

dt
∣

∣

∣ +
1
|σ|

A1(τ);

F2(τ) = G2(τ) =
1
|σ|

A2(τ); G1(τ) = F1(τ).

It follows from Lemma 2.1 and (3.23) that limτ→+∞Ai(τ) =
limτ→+∞ Fi(τ) = limτ→+∞Gi(τ) = 0 (i = 1, 2). Furthermore, partial
derivatives of Xi (i = 1, 2) with respect to u1, u2 are bounded in the do-
main Ω, and Xi(0, 0) = 0 (i = 1, 2). Thus the system (3.33) satisfies the
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conditions of Theorem 2.1 and has at least one real solution (u1(τ), u2(τ))
tending to zero as τ → +∞ to which, due to the transformation (3.32),
there corresponds a proper solution ξ of (3.1) satisfying asymptotic equali-
ties (3.20), (3.21).

Let now inequality (3.24) hold, and let c > 0 be an arbitrary fixed num-
ber. We shall prove that equation (3.1) has at least one solution ξ satisfying
representations (3.20), (3.22).

Applying the transformation

ξ(τ) = c exp(−β0τ)[1 + u1(τ)],

ξ′(τ)
ξ(τ)

+ β0 = N(τ)[1 + hu1(τ) + u2(τ)],
(3.34)

where N(τ) = ν exp(−H(τ))
∣

∣

∣cσ(1− λ)
∫ τ

γ θ(t)dt
∣

∣

∣

1
1−λ

, h = σ/(1− λ), we get
the system











u′1 = N(τ)[1 + (h + 1)u1 + u2 + X1(u1, u2)
u′2 = −hN(τ)− h(h + 1)N(τ)u1 − [hN(τ)+

+(1− λ)Q(τ)]u2 + Q(τ)X2(τ, u1, u2),
(3.35)

where Q(τ) = θ(τ)
[

(1 − λ)
∫ τ

γ θ(t)dt
]−1

(ν, γ are the same as in (3.22))

X1(u1, u2) = hu2
1 + u1u2, X2(τ, u1, u2) = |1 + hu1 + u2|λ(1 + u1)σ − 1 −

(hλ + σ)u1 − λu2 − hN(τ)Q−1(τ)X1(u1, u2).
Consider system (3.35) in the domain Ω (see (2.2), where T = b 0 < δ <

1/(|h| + 1)). The functions ai, Ai, Fi, Gi (i = 1, 2) defined in §2 for system
(3.35) are of the form

a2(τ, t) = exp

τ
∫

t

[−hN(s)− (1− λ)Q(s)]ds;

a1(τ, t) = exp
(

(h + 1)

τ
∫

t

N(s)ds
)

;

A2(τ) =
∣

∣

∣h(h + 1)

τ
∫

α2

N(t)a2(τ, t)dt
∣

∣

∣; F2(τ) =
1

|h + 1|
A2(τ);

G2(τ) =
∣

∣

∣

τ
∫

γ2

Q(t)a2(τ, t)dt
∣

∣

∣; A1(τ) =
∣

∣

∣

τ
∫

α1

N(t)A2(t)a1(τ, t)dt
∣

∣

∣;
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F1(τ) =
∣

∣

∣

τ
∫

β1

N(t)[1 + F2(t)]a1(τ, t)dt
∣

∣

∣;

G1(τ) =
∣

∣

∣

τ
∫

γ1

N(t)[1 + G2(t)]a1(τ, t)dt
∣

∣

∣.

Since (3.30) is fulfilled for any function ϕ(τ) = o(τ), τ → +∞, we have

N(τ) = o(exp(ρ0τ)), τ → +∞ (3.36)

for arbitrary ρ0 ∈]0, ρ∗[. Using L’Hospital’s rule it is easy to make sure that

lim
τ→+∞

∫ τ

b
θ(t)dt

θ(τ) exp(ρ0τ) = 0. Therefore, taking into consideration (3.36), we have

lim
τ→+∞

N(τ)Q−1(τ) = 0. (3.37)

It follows from Lemmas 2.1, 2.2 and (3.36), (3.37) that limτ→+∞Ai(τ) =
limτ→+∞ Fi(τ) = limτ→+∞G1(τ) = 0 (i = 1, 2),

lim
τ→+∞

G2(τ) =

{

0
1

|1−λ|
if

+∞
∫

b

θ(τ)dτ
< +∞
= +∞ .

Partial derivatives ∂Xi
∂uk

(i, k = 1, 2) tend to zero as |u1|+ |u2| → 0 uniformly
with respect to τ ∈ [T, +∞[. Furthermore, X2(τ, 0, 0) ≡ 0 for τ ≥ T ,
X1(0, 0) = 0.

Thus by Theorem 2.2 system (3.35) has at least one real solution
(u1(τ), u2(τ)) tending to zero as τ → +∞ to which, due to transforma-
tion (3.34), there corresponds a proper solution ξ of (3.1) satisfying (3.20),
(3.22).

3.3. On the Proper Solutions of Equation (3.1) with the Property
(3.5). Below we shall use the following simple statement whose validity can
be easily verified.

Lemma 3.1. Let f : [T,+∞[→ R be a continuously differentiable func-
tion such that limt→+∞ |f(t)| = +∞. If for some ε > 0 there exists
limt→+∞ f ′(t)/|f(t)|1+ε, then this limit equals zero.

Consider first the solutions of (3.1) for which

lim
τ→+∞

ξ′(τ)/ξ(τ) = +∞. (3.38)
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Lemma 3.2. Let ξ be a proper solution of (3.1) with the property (3.33).
Then

lim
τ→+∞

ξσ(τ)uλ−2(τ) = +∞ when σ > 0. (3.39)

and

lim
τ→+∞

ξσ(τ)uλ−1(τ) = 0 when σ < 0. (3.40)

Proof. Let ξ be a proper solution of (3.1) with property (3.38). Obviously,

lim
τ→+∞

ξ(τ) = +∞. (3.41)

First we shall show that for any ε > 0 the function z(τ) = u(τ)ξ−ε(τ) has
the limit as τ → +∞, and this limit equals zero.

Assume on the contrary that limτ→+∞ z(τ) does not exist. Then there
exists a constant c different from zero and ε

1
λ−2 , such that the graph of the

function z = z(τ) intersects the straight line z = c at τ = tk, k = 1, 2, . . . ,
and the sequence {tk}∞k=1 tends to infinity. Since by (3.1), z′(τ) ≡ z(τ)β0[ε−
S(τ)] for τ ≥ t0, this implies that due to (3.2) and (3.41) the values z′(tk),
k = N,N+1, . . . for some N are of the same sign, which is impossible. Hence
limτ→+∞ z(τ) exists, and because of the fact that z(τ) ∼ ξ′(τ)/ξ1+ε(τ) as
τ → +∞, (3.41), and Lemma 3.1, we have

lim
τ→+∞

z(τ) = 0. (3.42)

By virtue of (3.38) and (3.41) the validity of (3.39) and (3.40) is obvious if
λ > 2 and λ < 1, respectively.

Let σ > 0 and λ < 2. Choosing ε such that σ + (λ− 2)ε > 0 and taking
into account (3.38), (4.42), we obtain

lim
τ→+∞

ξσ(τ)uλ−2(τ) = lim
τ→+∞

ξσ+(λ−r)ε(τ)zλ−2(τ) = +∞,

i.e., (3.39) holds when λ < 2.
If σ < 0 and λ > 1 we choose ε so that σ + (λ− 1)ε < 0. Then because

of (3.38), (3.42) we have

lim
τ→+∞

ξσ(τ)uλ−1(τ) = lim
τ→+∞

ξσ+(λ−1)ε(τ)zλ−1(τ) = 0,

i.e., (3.40) holds when λ > 1. Thus Lemma 3.2 is proved.

Theorem 3.4. Equation (3.1) has solutions with the property (3.38) if
and only if

σ < 0, β0S0 < 0. (3.43)
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Furthermore, each of such solutions admits asymptotic representations

ξ(τ) = c exp
(

− β0τ + c0

τ
∫

b

exp(−H(t))dt
)

[1 + o(1)], τ → +∞, (3.44)

ξ′(τ)
ξ(τ)

+ β0 = c0 exp(−H(τ))[1 + o(exp(−kτ))], τ → +∞, (3.45)

where c > 0, c0 > 0, k > 0.

Proof. Let ξ be a proper solution of (3.1) with property (3.38) and u(τ) =
β0+ξ′(τ)/ξ(τ). When σ > 0, it follows from (3.1), (3.2), (3.38), and Lemma
3.2 that

lim
τ→+∞

α0u′(τ)
u2(τ)

= lim
τ→+∞

[

− α0β0S(τ)u−1(τ) + uλ−2(τ)ξσ(τ)
]

= +∞,

which contradicts Lemma 3.1.
When σ < 0 and β0S0 > 0, it follows from (3.1), (3.2) and Lemma 3.2

that limτ→+∞
u′(τ)
u(τ) = −β0S0 < 0, which contradicts (3.38).

Thus equation (3.1) can have a proper solution with property (3.38)
provided only that (3.43) holds. Let inequalities (3.43) be fulfilled, and let
ξ be such a solution. Put ε(τ) = β0S(τ) + u′(τ)/u(τ), ψ(τ) =

∫ τ
τ0

ε(t)dt.
Then u(τ) = c1 exp(−H(τ) + ψ(τ)),

ξ(τ) = ξ0 exp
(

− β0τ + c1

τ
∫

τ0

exp(−H(t) + ψ(t))dt
)

, (3.46)

where ε0 > 0, c1 > 0. It follows from (3.1), (3.2), (3.43), and Lemma 3.2
that

lim
τ→+∞

ε(τ) = 0. (3.47)

Substituting (3.46) into the right-hand side of (3.1) and taking into account
(3.38), (3.43), and (3.47), we find that

u(τ) = exp(−H(τ))
[

c1 + (1− λ)α0ξσ
0 ×

×
τ

∫

∞

θ(t) exp
(

σc1

t
∫

τ0

exp(−H(s) + ψ(s))ds
)

dt
] 1

1−λ
, (3.48)

where c1 ≥ 0. Because of (3.42), (3.46)–(3.48) by using L’Hospital’s rule, it
is not difficult to verify that if c1 = 0, then limτ→+∞ u(τ) = 0 when λ < 1,
and

lim
τ→+∞

ξσ(τ)uλ−1(τ) = +∞ when λ > 1,
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which contradicts (3.38) and (3.39), respectively. Consequently, c1 > 0.
Note that owing to (3.43) and (3.47),

+∞
∫

τ

θ(t)exp
(

σc1

t
∫

τ0

exp(−H(s)+ψ(s))ds
)

dt=o(exp(−kτ)), τ→+∞, (3.49)

for any k > 0. Therefore, representation (3.48) can be expressed in the form
(3.45) which implies that ξ satisfies (3.44) with certain constants c > 0,
c0 > 0, k > 0.

Next we shall prove that conditions (3.43) are sufficient for (3.1) to have
a proper solution ξ satisfying (3.44), (3.45).

Let c, c0, k be arbitrary fixed numbers satisfying inequalities c>0, c0 >0,

k > −β0S0. (3.50)

Applying to (3.1) the transformation

ξ(τ) = c exp
(

− β0τ + c0

τ
∫

b

exp(−H(t))dt
)

[1 + u1(τ)],

ξ′(τ)
ξ(τ)

+ β0 = c0 exp(−H(τ))[1 + exp(−kτ)u2(τ)],

(3.51)

we obtain the system














u′1 = c0 exp(−H(τ)− kτ)[u2 + X1(u1, u2)]
u′2 = ku2 + α0cλ−1

0 cσθ(τ)×
× exp

(

σc1
∫ τ

b exp(−H(t))dt + kτ
)

[1 + X2(τ, u1, u2)],
(3.52)

where X1(u1, u2) = u1u2, X2(τ, u1, u2) = (1 + u1)σ|1 + exp(−kτ)u2|λ − 1.
Consider system (3.52) in the domain Ω (see (2.2), where T = b, 0 < δ <

min{1, exp(kT )}). Partial derivatives of Xi (i = 1, 2) with respect to ui, u2

are bounded in the domain Ω, and X1(0, 0) = 0, X2(τ, 0, 0) ≡ 0 for τ ≥ T .
The functions Ai, Fi, Gi (i = 1, 2) defined in §2 for system (3.52) are of the
form

A2(τ) ≡ A1(τ) ≡ 0; F2(τ) = cλ−1
0 cσ exp(kτ)

∣

∣

∣

τ
∫

β2

θ(τ)×

× exp
(

σc0

t
∫

b

exp(−H(s)
)

ds
)

dt
∣

∣

∣;
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F1(τ) = c0

∣

∣

∣

τ
∫

β12

exp(−H(t)− kt)F2(t)dt
∣

∣

∣; G2(τ) ≡ F2(τ);

G1(τ) = c0

∣

∣

∣

τ
∫

γ1

exp(−H(t)− kt)dt
∣

∣

∣ + F1(τ).

It is easily seen that asymptotic equality (3.49) under the conditions
(3.43) remains true if we set ϕ(τ) ≡ 0. It follows that limτ→+∞ F2(τ) =
limτ→+∞G2(τ) = 0. This implies limτ→+∞ F1(τ) = limτ→+∞G1(τ) = 0
due to (3.51). Thus, by Theorem 2.1 system (3.52) has at least one real
solution (u1(τ), u2(τ)) tending to zero as τ → +∞. Taking into account
transformation (3.51), we complete the proof of the theorem.

Consider now the solutions of (3.1) satisfying

lim
τ→+∞

ξ′(τ)/ξ(τ) = −∞. (3.53)

We make the substitution 1/ξ(τ) = µ(τ) to obtain the equation

(µ′(τ)
µ(τ)

− β0

)′
+ β0S(τ)

(µ′(τ)
µ(τ)

− β0

)

= −α0µ−σ(τ)
∣

∣

∣

µ′(τ)
µ(τ)

− β0

∣

∣

∣

λ
. (3.54)

Clearly, a proper solution ξ of (3.1) with property (3.53) corresponds to
the solution µ of (3.54) with the property limτ→+∞ µ′(τ)/µ(τ) = +∞, and
vice versa. Since equations (3.1) and (3.54) are of the same form, using
the above arguments it is not difficult to see that the following statement is
true.

Theorem 3.5. Equation (3.10) has solutions with the property (3.53) if
and only if σ > 0, β0S0 < 0. Furthermore, each of such solutions ξ admits
asymptotic representations

ξ(τ) = c exp
(

− β0τ − c0

τ
∫

b

exp(−H(t))dt
)

[1 + o(1)], τ → +∞,

ξ′(τ)
ξ(τ)

+ β0 = −c0 exp(−H(τ))[1 + (exp(−kτ))], τ → +∞,

where c > 0, c0 > 0, k > 0.
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§ 4. Proofs of Theorems 1.1–1.5

Applying to (0.1) the transformation

y(t) = ln[V (t)ξ(τ)], τ = β0 ln V (t), (4.1)

we get τ ′(t) > 0 for t ∈ [a1, ω[ (a1 is a certain number in the interval ]a, ω[),
and limt↑ω τ(t) = +∞. The transformation (4.1) yields equation (3.1) in
which S(τ) = S(τ(t)) = α0Γ(t), b = β0 ln V (a). Moreover, proper solution
ξ of (3.1) corresponds to each proper solution y of (0.1), and vice versa.
Taking into account transformation (4.1) and the notation introduced in
§§1 and 3, it is easy to see that

H(τ) = H(τ(t)) = ln
∣

∣

∣

V ′(t)
V (t)

∣

∣

∣ + ln
∣

∣

∣

V (a)
V ′(a)

∣

∣

∣,

τ(t)
∫

γ

θ(s)ds =
∣

∣

∣

V ′(a)
V (a)

∣

∣

∣

1−λ
t

∫

ρ

p(s)ds,

where ρ = ω if
∫ ω

a p(t)dt < +∞, and ρ = a otherwise,

+∞
∫

b

exp
(

− β0

τ
∫

b

S(t)dt
)

dτ =
∣

∣

∣

V ′(a)
V (a)

∣

∣

∣

ω
∫

a

dt. (4.2)

Because of (1.1), the function S satisfies the condition (3.2), and S0 =
α0Γ0. Therefore it follows from (4.2) that if either α0β0Γ0 > 0 or α0β0Γ0 <
0, then ω < +∞ or ω = +∞, respectively.

Taking into consideration the above arguments, it is easily seen that
Theorems 3.1–3.6 result in Theorems 1.1–1.5.

Remark 1. The results dealing with the asymptotic behavior of proper
solutions of (0.1) in the case λ = 1 may be found in [9].

In the case λ = 2, Theorems 1.1–1.5 in which

Γ0 = −α0σ lim
t↑ω

p(t)p′′(t)
[p′(t)]2

, V (t) = p−
1
σ (t)

are valid under an additional assumption that p is twice continuously
differentiable function satisfying one of the conditions limt↑ω p(t) = 0 or
limt↑ω p(t) = +∞.

Remark 2. Paper [10] contains results on the asymptotic properties of
proper solutions of (0.1) in the case where Γ0 = ±∞.



120 V. M. EVTUKHOV AND N. G. DRIK

References

1. I. T. Kiguradze and T. A. Chanturia, Asymptotic properties of solu-
tions of nonautonomous ordinary differential equations. (Russian) Nauka,
Moscow, 1990; English translation: Kluwer Academic Publishers, Dordrecht,
1993.

2. A. V. Kostin and V. M. Evtukhov, Asymptotic behavior of solutions
of a nonlinear differential equation. (Russian) Dokl. Akad. Nauk SSSR
231(1976), No. 5, 1059–1062.

3. V. M. Evtukhov, On a second-order nonlinear differential equation.
(Russian) Dokl. Akad. Nauk SSSR 233(1977), No. 4, 531–534.

4. V. M. Evtukhov, Asymptotic properties of solutions of a certain class
of second-order differential equations. (Russian) Math. Nachr. 115(1984),
215–236.

5. V. M. Evtukhov, Asymptotic representations of solutions of a certain
class of second-order nonlinear differential equations. (Russian) Bull. Acad.
Sci. Georgian SSR 106(1982), No. 3, 473–476.

6. V. M. Evtukhov, Asymptotic behavior of solutions of a half-linear
differential equation of the second-order. (Russian) Differentsial’nye Urav-
neniya 26(1990), No. 5, 776–787.

7. V. M. Evtukhov and N. G. Drik, Asymptotic representations of so-
lutions of a nonlinear differential equation of the second-order. (Russian)
Reports of Enlarged Sessions of Seminar of the I. N. Vekua Institute of
Applied Mathematics 7(1992), No. 3, 39–42.

8. A. V. Kostin, On the existence of boundary particular solutions tend-
ing to zero as t → +∞ of systems of ordinary differential equations. (Rus-
sian) Differentsial’nye Uravneniya 1(1965), No. 5, 585–604.

9. V. M. Evtukhov and N. G. Drik, Asymptotic representations of so-
lutions of a certain class of second-order nonlinear differential equations.
(Russian) Bull. Acad. Sci. Georgian SSR 133(1989), No. 1, 29–32.

10. N. G. Drik, Asymptotic behavior of solutions of a second-order non-
linear differential equation in a special case. (Russian) Differentsial’nye
Uravneniya 25(1989), No. 1, 1071–1072.

(Received 17.08.1994)

Authors’ address:
Faculty of Mechanics and Mathematics
I. Mechnikov Odessa State University
2, Petra Velikogo St., Odessa 270057
Ukraine


