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COMBINATORIAL INVARIANCE OF STANLEY-REISNER
RINGS

W. BRUNS AND J. GUBELADZE

ABSTRACT. In this short note we show that Stanley—Reisner rings
of simplicial complexes, which have had a “dramatic application” in
combinatorics [2, p. 41], possess a rigidity property in the sense that
they determine their underlying simplicial complexes.

For convenience we recall the notion of a Stanley—Reisner ring (for more
information the reader is referred to [1, Ch. 5]). Let V be a finite set to be
called below a vertex set. A system A of subsets of V is called an abstract
simplicial complex (on the vertex set V') if the following conditions hold:

(a) {v} € A for any element v € V,

(b) 0’ € A whenever o’ C o for some o € A.

Elements of A will be called faces.

Now assume we are given a field £ and an abstract simplicial complex A
on a vertex set V. The Stanley—Reisner ring corresponding to these data is
defined as the quotient ring of the polynomial ring k[v,... ,v,]/I, where
n = #(V), the v; are the elements of V, and the ideal I is generated by
the set of monomials {v;, - v;, [{viy,... v, } ¢ A}. This k-algebra will
be denoted by k[A] and called the Stanley—Reisner ring of A. Further, the
image of v; in it will again be denoted by v; (they are all different!) and
hence will again be thought of as elements of V.

Theorem. Letk be a field, and A and A’ be two abstract simplicial com-
plexes defined on the vertex sets V.= {v1,... ,un} and U = {uq,... ,un}
respectively. Suppose k[A] and k[A'] are isomorphic as k-algebras. Then
there exists a biyjective mapping ¥V : V. — U which induces an isomorphism
between A and A'.

Proof. Let f : k[A] — Kk[A'] be a k-isomorphism. By scalar extension we
may assume k is algebraically closed. Let us first show that without loss of
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generality we may also assume f is an isomorphism of augmented k-algebras,
where k[A] is endowed with an augmented k-algebra structure induced by
v; — 0, and similarly for k[A’]. Indeed, if v; is a zero-divisor in k[A] for some
i € [1,n], then its image in k[A’] cannot have a nonzero constant term (with
respect to the uniquely determined canonical expansion). So the deviation
from “being augmented” for f can appear only at the elements v; € V which
are not zero-divisors. It is easy to observe that v; € V is not a zero-divisor
in k[A] if and only if it is a variable for k[A], i.e., k[A] = k[A%][v;], where
A’ is a simplicial subcomplex of A consisting of those faces which do not
contain v;, and this v; on the right-hand side is understood as a variable.

Let {v;,,...,v;, } be the set of all nonzero-divisor vertices and {¢;,, ... ,¢;, }
be the set of constant terms in the canonical expansions of f(v;,), ..., f(vi,)
respectively. Consider the elements w;, = vy, — ¢;y,... ,w;, — ¢, € k[A].

Clearly, they are all different. Let W = {wy,...,w,} be the set obtained
from V' by substituting w;; by v;,, respectively, and let A° be the abstract
simplicial complex on the vertex set W induced by the natural bijection
between V' and W. Since all of the v;; are (independent!) variables for k[A]
(as remarked above), we conclude that k[A] = k[A°] and f is an augmented
isomorphism between k[A°], considered as an augmented k-algebra with
respect to w; — 0, and k[A’]. So from the very beginning we can assume f
is augmented. [

Next we pass to the corresponding graded isomorphism (with respect to
the augmentation ideals)

gr(f) : gr(k[A]) — gr(k[AT]).

But gr(k[A]) = E[A] and gr(k[A’]) = k[A’]. This means that we may
also assume f is a graded k-isomorphism of graded k-algebras k[A] and
k[A’] where deg(v1) = ... = deg(v,) = deg(uy) = ... = deg(u,) = 1.
Now passing to the geometrical picture (i.e., to the closed points of the
corresponding affine schemes) we obtain the following situation: we are
given two k-linear spaces

k™ = maxSpec(k[vy, ... ,v,])
and
k™ = maxSpec(klu, ... ,Un))

(the v; and u; are considered as variables) and two arrangments of k-linear
coordinate subspaces (of appropriate dimensions)

A* = maxSpec(k[A]) C k",
(A")* = maxSpec(k[A]) C k™.
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More precisely, A* consists of those coordinate subspaces of £™ which are

spanned by the coordinate directions of v;,, ..., v;, whenever {v;,,...,v; } €
A, and similarly for (A’)*. This claim follows directly from the equality
A=) @hUU),

{vig e viy YEA

where Ufj denotes the coordinate hyperplane of dimension n — 1 avoiding
v;;, and the similar one for (A')*.

So for each maximal face (with respect to the inclusion) o € A we have
the corresponding coordinate linear subspace L, C k™ and

A* = U L.

o a maximal face of A

Similarly, for each maximal face ¢’ € A’ we have the corresponding coordi-
nate linear subspace M, C k™ and

(A" = U M,

o’/ a maximal face of A’

The corresponding algebraic map
SIS
will be the restriction of the k-linear isomorphism
F*: k™ — k"

contravariantly corresponding to the (uniquely determined) graded k-iso-
morphism F' from the commutative square

klvi, ..., vp) SN klut, ..., tum]

Kal  —L— k)
This gives rise to the well defined bijective map
® : (maximal faces of A’) — (maximal faces of A).

Namely, ®(o’) = (the maximal face o of A for which L, = f*(M,/)).
After this “linear” interpretation it becomes obvious that m = n and
#o0' = #P(o’) for each maximal o’ € A’. Moreover,

#(o1N ... Noy) = #(B(o1) N+ NO(a7)). (%)
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Indeed,

#(oyN---Noy) = dimg(My 0N M)
= dimy(f*(Moy) N -0 f5 (M)
= dimy(Lao)) N+ N La(oy))
= #(®(o1) NN (a7)).

Now we introduce the following equivalence relations on the vertex sets V'
and U: for v, v, € V (ujy,uj, € U) we put v;, ~ v;, if and only if the two
sets of maximal faces of A containing v;, and v;, respectively coincide (and
similarly for u;, and u;,). The equivalence classes in V' will be the minimal
(with respect to inclusion) nonempty intersections of maximal faces of A
(and similarly for the vertex set U). Accordingly, these equivalence classes
will be in one-to-one correspondence (via ®) with the minimal nonzero inter-
sections (w.r.t. inclusion) of the linear subspaces L, C k™ (similarly for the
equvalence classes in U and the linear subspaces M,, C k™). Since we are
given a global linear isomorphism F*, using ® we immediately see that the
two systems of equivalence classes are in natural bijective correspondence.
By (%) the corresponding equivalence classes have the same quantities of el-
ements. This gives rise in a natural way to the bijective mapping ¢ : U — V
which satisfies the condition that u € ¢’ if and only if ¥(u) € ®(o’), where
u € U and ¢/ € A’ is a maximal face. Since any face in an abstract sim-
plicial complex is contained in some maximal face, we finally arrive at the
conclusion that ¥ = (1)~! : V — U satisfies the desired condition.
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