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COMBINATORIAL INVARIANCE OF STANLEY–REISNER
RINGS

W. BRUNS AND J. GUBELADZE

Abstract. In this short note we show that Stanley–Reisner rings
of simplicial complexes, which have had a “dramatic application” in
combinatorics [2, p. 41], possess a rigidity property in the sense that
they determine their underlying simplicial complexes.

For convenience we recall the notion of a Stanley–Reisner ring (for more
information the reader is referred to [1, Ch. 5]). Let V be a finite set to be
called below a vertex set. A system ∆ of subsets of V is called an abstract
simplicial complex (on the vertex set V ) if the following conditions hold:

(a) {v} ∈ ∆ for any element v ∈ V ,
(b) σ′ ∈ ∆ whenever σ′ ⊂ σ for some σ ∈ ∆.
Elements of ∆ will be called faces.
Now assume we are given a field k and an abstract simplicial complex ∆

on a vertex set V . The Stanley–Reisner ring corresponding to these data is
defined as the quotient ring of the polynomial ring k[v1, . . . , vn]/I, where
n = #(V ), the vi are the elements of V , and the ideal I is generated by
the set of monomials {vi1 · · · vik |{vi1 , . . . , vik} /∈ ∆}. This k-algebra will
be denoted by k[∆] and called the Stanley–Reisner ring of ∆. Further, the
image of vi in it will again be denoted by vi (they are all different!) and
hence will again be thought of as elements of V .

Theorem. Let k be a field, and ∆ and ∆′ be two abstract simplicial com-
plexes defined on the vertex sets V = {v1, . . . , vn} and U = {u1, . . . , um}
respectively. Suppose k[∆] and k[∆′] are isomorphic as k-algebras. Then
there exists a bijective mapping Ψ : V → U which induces an isomorphism
between ∆ and ∆′.

Proof. Let f : k[∆] → k[∆′] be a k-isomorphism. By scalar extension we
may assume k is algebraically closed. Let us first show that without loss of
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generality we may also assume f is an isomorphism of augmented k-algebras,
where k[∆] is endowed with an augmented k-algebra structure induced by
vi 7→ 0, and similarly for k[∆′]. Indeed, if vi is a zero-divisor in k[∆] for some
i ∈ [1, n], then its image in k[∆′] cannot have a nonzero constant term (with
respect to the uniquely determined canonical expansion). So the deviation
from “being augmented” for f can appear only at the elements vi ∈ V which
are not zero-divisors. It is easy to observe that vi ∈ V is not a zero-divisor
in k[∆] if and only if it is a variable for k[∆], i.e., k[∆] = k[∆i][vi], where
∆i is a simplicial subcomplex of ∆ consisting of those faces which do not
contain vi, and this vi on the right-hand side is understood as a variable.
Let {vi1 , . . . , vik} be the set of all nonzero-divisor vertices and {ci1 , . . . , cik}
be the set of constant terms in the canonical expansions of f(vi1), . . . , f(vik)
respectively. Consider the elements wi1 = vi1 − ci1 , . . . , wik − cik ∈ k[∆].
Clearly, they are all different. Let W = {w1, . . . , wn} be the set obtained
from V by substituting wij by vij , respectively, and let ∆◦ be the abstract
simplicial complex on the vertex set W induced by the natural bijection
between V and W . Since all of the vij are (independent!) variables for k[∆]
(as remarked above), we conclude that k[∆] = k[∆◦] and f is an augmented
isomorphism between k[∆◦], considered as an augmented k-algebra with
respect to wi 7→ 0, and k[∆′]. So from the very beginning we can assume f
is augmented.

Next we pass to the corresponding graded isomorphism (with respect to
the augmentation ideals)

gr(f) : gr(k[∆]) → gr(k[∆′]).

But gr(k[∆]) = k[∆] and gr(k[∆′]) = k[∆′]. This means that we may
also assume f is a graded k-isomorphism of graded k-algebras k[∆] and
k[∆′] where deg(v1) = . . . = deg(vn) = deg(u1) = . . . = deg(um) = 1.
Now passing to the geometrical picture (i.e., to the closed points of the
corresponding affine schemes) we obtain the following situation: we are
given two k-linear spaces

kn = maxSpec(k[v1, . . . , vn])

and

km = maxSpec(k[u1, . . . , um])

(the vi and uj are considered as variables) and two arrangments of k-linear
coordinate subspaces (of appropriate dimensions)

∆∗ = maxSpec(k[∆]) ⊂ kn,

(∆′)∗ = maxSpec(k[∆′]) ⊂ km.
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More precisely, ∆∗ consists of those coordinate subspaces of kn which are
spanned by the coordinate directions of vi1 , . . . , vik whenever {vi1 , . . . , vik}∈
∆, and similarly for (∆′)∗. This claim follows directly from the equality

∆∗ =
⋂

{vi1 ,... ,vik}/∈∆

(v◦i1 ∪ · · · ∪ v◦ik
),

where v◦ij
denotes the coordinate hyperplane of dimension n − 1 avoiding

vij , and the similar one for (∆′)∗.
So for each maximal face (with respect to the inclusion) σ ∈ ∆ we have

the corresponding coordinate linear subspace Lσ ⊂ kn and

∆∗ =
⋃

σ a maximal face of ∆

Lσ.

Similarly, for each maximal face σ′ ∈ ∆′ we have the corresponding coordi-
nate linear subspace Mσ′ ⊂ km and

(∆′)∗ =
⋃

σ′ a maximal face of ∆′
Mσ′ .

The corresponding algebraic map

f∗ : (∆′)∗ → ∆∗

will be the restriction of the k-linear isomorphism

F ∗ : km → kn

contravariantly corresponding to the (uniquely determined) graded k-iso-
morphism F from the commutative square

k[v1, . . . , vn] F−−−−→ k[u1, . . . , um]




y





y

k[∆]
f−−−−→ k[∆′].

This gives rise to the well defined bijective map

Φ : (maximal faces of ∆′) → (maximal faces of ∆).

Namely, Φ(σ′) = (the maximal face σ of ∆ for which Lσ = f∗(Mσ′)).
After this “linear” interpretation it becomes obvious that m = n and

#σ′ = #Φ(σ′) for each maximal σ′ ∈ ∆′. Moreover,

#(σ′1 ∩ . . . ∩ σ′t) = #(Φ(σ′1) ∩ · · · ∩ Φ(σ′t)). (∗)
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Indeed,

#(σ′1 ∩ · · · ∩ σ′t) = dimk(Mσ′1 ∩ · · · ∩Mσ′t)

= dimk(f∗(Mσ′1) ∩ · · · ∩ f∗(Mσ′t))

= dimk(LΦ(σ′1)
∩ · · · ∩ LΦ(σ′t))

= #(Φ(σ′1) ∩ · · · ∩ Φ(σ′t)).

Now we introduce the following equivalence relations on the vertex sets V
and U : for vi1 , vi2 ∈ V (uj1 , uj2 ∈ U) we put vi1 ∼ vi2 if and only if the two
sets of maximal faces of ∆ containing vi1 and vi2 respectively coincide (and
similarly for uj1 and uj2). The equivalence classes in V will be the minimal
(with respect to inclusion) nonempty intersections of maximal faces of ∆
(and similarly for the vertex set U). Accordingly, these equivalence classes
will be in one-to-one correspondence (via Φ) with the minimal nonzero inter-
sections (w.r.t. inclusion) of the linear subspaces Lσ ⊂ kn (similarly for the
equvalence classes in U and the linear subspaces Mσ′ ⊂ km). Since we are
given a global linear isomorphism F ∗, using Φ we immediately see that the
two systems of equivalence classes are in natural bijective correspondence.
By (∗) the corresponding equivalence classes have the same quantities of el-
ements. This gives rise in a natural way to the bijective mapping ψ : U → V
which satisfies the condition that u ∈ σ′ if and only if ψ(u) ∈ Φ(σ′), where
u ∈ U and σ′ ∈ ∆′ is a maximal face. Since any face in an abstract sim-
plicial complex is contained in some maximal face, we finally arrive at the
conclusion that Ψ = (ψ)−1 : V → U satisfies the desired condition.
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